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Abstract. This paper examines the impact of different box merging
strategies for sampling-based uncertainty estimation methods in object
detection. Also, a comparison between the almost exclusively used soft-
max confidence scores and the predicted variances on the quality of the
final predictions estimates is presented. The results suggest that esti-
mated variances are a stronger predictor for the detection quality. How-
ever, variance-based merging strategies do not improve significantly over
the confidence-based alternative for the given setup. In contrast, we show
that different methods to estimate the uncertainty of the predictions have
a significant influence on the quality of the ensembling outcome. Since
mAP does not reward uncertainty estimates, such improvements were
only noticeable on the resulting PDQ scores.
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1 Introduction

Uncertainty estimation has got increasing attention in the research community
during the last years as an utterly important feature for Deep Neural Networks
(DNNs) embedded in safety-critical applications, such as autonomous driving,
robotics, and medical image classification.

Bayesian neural networks allow to inherently express uncertainty by learning
a distribution over the weights, with the caveat of being extremely expensive
in terms of computation and therefore an unfeasible option for most practical
problems. Several methods were proposed to allow uncertainty estimation on
computer vision tasks like image classification. Sampling-based methods, such
as Monte Carlo Dropout and Deep Ensembles ([4],[8]) approximate Bayesian
models by combining multiple predictions for the same input. Other works focus
on training a model to predict the uncertainties for out-of-distribution detection
or to calibrate the usually overconfident softmax confidence scores (respectively
[2],[6]).

Adapting such methods to object detection architectures brings the chal-
lenge to a new complexity level because not only uncertainty regarding the label
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assignment has to be estimated but also concerning the spatial uncertainty of
the bounding box coordinates. [9] and [3] presented object detectors based on
the dropout approximation. Uncertainty regarding both label and box position
is mostly based on the softmax-output confidences of networks which are often
sampled from several forward passes through different model parameterizations
([4], [8]).

In [1], the authors propose a method that aggregates the ensemble detections
by means of the intersection over union (IoU) between the predicted objects.
Then, the merging method consists in discarding the clusters with the number
of elements below a certain threshold. Three thresholds were tested, 1, m/2, and
m, which is the number of models in the ensemble. In the end, non-maximum
suppression is used to get the final box predictions. [7] recently introduced a
loss function that was named KL-loss and integrate the usual bounding box
regression loss with a variance estimation, increasing the performance of object
detection models.

Even though existing works show how the quality of the uncertainty es-
timations can be improved by different methods, there is, to the best of our
knowledge, no work that compares network softmax confidence scores and vari-
ance estimates as effective features to help on adjusting the final bounding box
predictions.

In this paper, we compare variance and confidence as potential sources of
information to get reliable uncertainty estimations and compare different box
merging strategies using these predictions to obtain a final box prediction out
of multiple models. Also, two different uncertainty estimation methods are com-
pared. The results are evaluated using mAP, the dominant evaluation metric
for object detection models, and PDQ, which encompasses uncertainty on both
localization and classification tasks.

2 Methods

In this section, different methods used to combine the detections in the ensemble
to either get better detection estimates or improve the uncertainty estimation are
presented. Methods to combine the bounding boxes will be classified as merging
strategies while the uncertainty estimation methods use different detections to
assess more meaningful estimates. If we consider the bounding box coordinates
as Gaussian distributions over the pixels, the different merging strategies allow
shifting the mean coordinate values whereas the variance estimates represent the
standard deviation values.
D = [D1, D2, ..., Dn], is a detection vector that contains the detections pro-

vided by n detectors trained independently. Each detection Di = [Bi, ci, si],
with i ∈ {1...n}, consists of the bounding box coordinates Bi, the class label ci,
and the respective softmax confidence score si. To ensure that the detections
match the same object, they must have an IoU above a given threshold tIoU
and only one detection per model is taken in an ensemble D. The vector of
bounding boxes will be represented as B = [B1, B2, ..., Bn], the class label vec-
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tor C = [c1, c2, ..., cn], and confidence score vector S = [s1, s2, ..., sn]. The final
merged detection is represented as D̂ = [B̂, ĉ, ŝ]. The detections can be extended
by adding uncertainty estimates, D̂σ = [B̂, σ̂, ĉ, ŝ].

Since this paper focuses on improving the bounding box estimation, only the
spatial uncertainty will be considered. For the same reason, different methods
for improving the merging of the label predictions and the final scores will not be
discussed. In this paper, the resulting class ĉ is the mode of all predicted labels
in the ensemble, and the resulting score ŝ is the mean score.

2.1 Spatial Uncertainty Estimation

The spatial uncertainty estimation consists in finding the variances for each coor-
dinate of the bounding boxes, σ = [σx1, σy1, σx2, σy2]. Two different approaches
were considered.

Ensemble variances: Considering that the ensemble provides boxes that, most
likely, have differences in the coordinates, variance estimates can be obtained by
calculating the covariance matrices from the bounding boxes coordinates:

σ2
b =

1

n− 1

n∑
k=1

(bk–b̄)2,

where b represents a vector with all values for a single box coordinate in the
ensemble B, i.e., b ∈ {x0, y0, x1, y1}, where x0 = [x01, x02, ..., x0n] and so on; and
b̄ is the mean value of the vector b.

KL-var: Another approach consists of changing the object detector architecture
to produce localization variance estimates. In this paper, all variance estimation
models utilize the KL-loss in combination with variance voting, as introduced
and explained in [7]. With this method, the bounding box predictions are treated
as Gaussian distributions whereas the ground truths are represented as a Dirac
delta. The regression loss is then the KL divergence of prediction and ground
truth distributions, allowing the model to learn the bounding box regression and
uncertainty at once. These models will be referred to as KL-var models.

For the KL-var ensembles , the resulting variance is the mean of the variances
present in the ensemble, σ̂KL = [σx0, σy0, σx1, σy1].

2.2 Box Merging

The merging strategy for the final box consists in a method to combine the
ensemble detections to get an improved resulting bounding box B̂. It can be
obtained by the weighted sum of the ensemble elements, i.e., B̂ = W · Bᵀ, where
W is a vector of weights: W = [w1, w2, ..., wn].
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Max: Taking always the box with the highest confidence score is a simple
algorithm, although highly dependent on a good calibration of the confidences
concerning the bounding box spatial accuracy.

Mean: The resulting bounding box can also be obtained as the mean of the
coordinates from the ensemble detections. : W =

[
1
n ,

1
n , ...,

1
n

]
.

WBF: Another method called weighted boxes fusion (WBF) was presented in
[11]. It uses the normalized confidence scores as weights:

W =
S
n∑
i=1

si

.

Var-WBF: To further investigate the comparison between confidence scores
and variance estimates as a good indicator of the detected bounding box cor-
rectness, WBF was adapted by replacing the normalized confidences with the
normalized inverted variances as weights (with the variance represented as the
mean from the 4 coordinate variances).

Variance voting: Var-voting was introduced in [7] to adjust the box coordi-
nates during non-maximum suppression (NMS) based on the variance estimates.
Since the task of merging the outputs of an ensemble of models Dσ is so closely
related to what is done in NMS algorithms, in both the goal is to select and/or
combine several bounding boxes to find a better box representative, var-voting
was adapted as one of the merging strategies.

3 Results

The results were obtained using Efficientdet-D0 and YoloV3 frameworks ([12],[10])
trained on the Kitti dataset [5]. Vanilla and KL-var ensembles were trained for
both frameworks. Each ensemble consists of 7 models trained independently. The
dataset was randomly split as follows: 80% of the images were used for training
and 20% for testing. The IoU threshold was tIoU = 0.5 for all the experiments.
The model was not fine-tuned in any specific way as the primary interest in this
paper is to examine the difference of merging strategies and uncertainty estima-
tion methods and not to improve the state-of-the-art performance. Also, objects
detected by a single model were discarded, because such cases will not benefit
from any of the considered methods.

3.1 Confidence versus variances

The correlation between the quality of each predicted bounding box and the
confidence and variance estimates was investigated. The comparison was done
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using the KL-var ensemble of Efficientdet-D0 models, that output both confi-
dence scores and coordinate variances for each prediction. The quality measure
was hereby defined as the IoU of the prediction and the corresponding ground-
truth. Good estimates, with a high IoU, should present a high confidence/low
variance, and a low IoU when the opposite is true.

The results, shown in Figure 1, demonstrate that the variances are a better
indicator of the detection spatial correctness, with a more pronounced correla-
tion (negative since high variance translates as a high spatial uncertainty). The
confidences show a weaker, albeit still present, correlation. It is important to no-
tice that poor estimates are much more recurrent on the confidences, as shown
in the scatter plots 1(a) and 1(b). Although in both cases a more dense mass
of points is close to the top-right and top-left corners respectively and therefore
representing good estimates, the confidences are almost uniformly distributed
for the remaining of the points. On the other hand, the variances proved more
accurate, being more concentrated around the first-order polynomial fitted to
the samples.

(a) Confidences (b) Variances (sum)

(c) Confidences (d) Variances (sum)

Fig. 1: Correlation between IOU and confidences/variances. Remark: the vari-
ance values are obtained by the sum of the σ vector elements.
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3.2 Merging strategies and uncertainty estimation

Tables 1 and 2 show the results obtained from the testing set regarding mAP,
average IoU and PDQ. All merging strategies presented in the Section 2.2 were
compared using vanilla ensembles without an uncertainty estimation, with uncer-
tainty obtained through the ensemble variance method and the KL-var ensem-
bles, which provides out-of-the-box uncertainty estimates. mAP and Avg. IoU
do not take the uncertainty estimates into account and are therefore presented
only once.

No uncertainty estimation Ens. var. KL-var

Method mAP Avg. IoU PDQ PDQ PDQ

Max 0.3206 0.8217 0.1253 0.2859 0.3489
Mean 0.3371 0.8356 0.1480 0.3007 0.3518
WBF 0.3373 0.8360 0.1482 0.3015 0.3520

Var-WBF∗ 0.3381 0.8366 0.1484 0.3074 0.3521
Var-voting∗ 0.3390 0.8372 0.1488 0.3113 0.3519

Table 1: EfficientDet-D0 ensemble results.

No uncertainty estimation Ens. var. KL-var

Method mAP Avg. IoU PDQ PDQ PDQ

Max 0.3001 0.8064 0.0725 0.3143 0.3388
Mean 0.3279 0.8271 0.1203 0.3391 0.3679
WBF 0.3280 0.8268 0.1263 0.3378 0.3673

Var-WBF∗ 0.3284 0.8268 0.1269 0.3399 0.3677
Var-voting∗ 0.3285 0.8253 0.1274 0.3384 0.3678

Table 2: YoloV3 ensemble results.

Var-WBF and Var-voting depend on the ensemble having individual variance
for each box in the ensemble and are not compatible with the vanilla ensembles.
All results for these methods were therefore obtained with the KL-var ensembles,
but the variances were only used for merging the boxes and not used as an
uncertainty estimate, except for the results on the KL-var column.

The results show that the different merging strategies perform almost the
same with a slight improvement between taking the maximum confidence box
and all other merging strategies, showing that trusting only in the confidences
is not a good method. However, despite the variances presenting a superior
estimate than the confidence scores, the Var-WBF did not perform better than
the regular WBF method. None of the methods performed significantly better
than taking the mean, which is the simplest of the merging strategies. One of
the reasons is that most of the detections have high confidence or low variance,
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since non-maximum suppression and var voting suppress the low scored ones.
After normalization, the weight distributions for both methods become close to
the mean weights.

Whilst the influence of the merging strategies appears negligible, a more pro-
nounced difference can be observed when comparing the different uncertainty es-
timation methods presented in section 2. A big step in the PDQ values is already
expected when providing meaningful uncertainty estimates since the variances
are treated as zeroes when no uncertainty estimate is available, as if the model is
completely certain about its bounding box predictions. With the ensemble vari-
ances as an uncertainty estimate, PDQ values already drastically improve. Even
though this simple method does not require any modification of the base object
detectors it more than doubles the detection quality if uncertainty is taken into
account. However, if the models themselves predict their individual uncertain-
ties, results improve even further for all cases and both model architectures.

4 Conclusions and Future Work

In this paper different strategies to merge bounding boxes from different models
in an ensemble-based object detection setting were investigated. Furthermore,
two approaches to estimate the uncertainty of the final box were presented and
evaluated.

The results demonstrate that predicted variances are better correlated with
the resulting IOUs than the almost uniquely used confidence values for object
detectors and should be interpreted as a better spatial correctness estimate.
However, when comparing merging strategies based on the variance and the
confidence scores, the improvement was not as pronounced as expected and all
the averaging methods showed similar results. In this regard, simply taking the
mean values can be considered a good baseline, with competitive performance
on all metrics and simple implementation.

We also observed significantly better results when employing variance pre-
dictions for bounding box uncertainty estimation, which is only rewarded by the
PDQ metric. Out of the two proposed approaches, utilizing predicted variances
from the individual detectors led to a better performance than relying on the
variance of the detected boxes by the different models.

With uncertainty estimation playing an important role towards the goal of
embedding AI in safety-critical systems, PDQ stands out as a more suited eval-
uation metric in opposition to mAP, commonly used and accepted as the object
detection metric. The results show that there is still great room for improvement
when working with the uncertainty estimations, with an expressive increase for
all metrics in both presented methods.

As future work, we would like to apply the same methods on different datasets,
such as COCO and Pascal VOC, that have different classes and different aspect
ratios, which may play an important factor in the merging results. Methods to
obtain uncertainty estimates on the classification task can also be integrated to
improve the PDQ scores. Finally, we would like to test if combining the indi-
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vidual box variances with the ensemble variance will result in a more refined
uncertainty estimation.
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