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Abstract

The goal of this work is to develop an e�cient numerical framework for the complex
multiphysical problem of �uid interacting with a thin poroelastic structure. The Fluid
- Porous Structure Interaction (FPSI) problems are relevant for a large class of physical
problems in �ltration. Simulation of �ltration processes helps designers and manufac-
turers of �lter elements. In some cases the deformation of the porous media can not
be omitted. The �ltration media is usually thin and by incorporating in our FPSI
mathematical model dimensionality reducing models for the poroelastic part, namely
plate and shell, we are able to further increase the e�ciency of the FPSI framework.
We develop an e�cient numerical framework for FPSI using both advanced modeling
techniques and advanced numerical simulation techniques. To numerically solve FPSI
problems, we �rst formulate and discuss the mathematical models that govern the
�uid �ow through plain and porous media as well as the interaction between the �uid
and the porous media. The interaction of the �uid with the porous media leads to
deformation of the porous material. In order to reduce the computational time and to
create an e�cient framework, we describe approximate mathematical models that can
be used for thin porous media with low permeability. We demonstrate the validity of
the numerical scheme by comparison with existing analytical and numerical solutions
of the approximate and the governing equations. We show numerical grid convergence
as well as numerical convergence of the iterative scheme we use. We test the limits of
the mathematical models in use and show particular cases when the reduced models
can not be applied. We investigate the accuracy of the �uid solver and show high
accuracy on grids with very few elements. We show very good agreement between
the numerical simulation and physical experiments for a rectangular channel with a
poroelastic plate. In this way we demonstrate the validity of the mathematical models
and numerical techniques that we use. In the case of FPSI problem including poroe-
lastic plate we demonstrate a speedup of up to 50 times in comparison with the model
involving 3D poroelasticity. We also present simulations of complex and industrially
relevant problems which illustrate the potential of the developed framework in solving
industrial FPSI problems.

iii
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Chapter 1

Introduction

The Fluid-Structure Interaction (FSI) is considered to be an essential class of mul-
tiphysics problems. A few of the areas where FSI �nds application are aerospace
engineering (see e.g. [1], [2] and [3]), cardiovascular research (see e.g. [4], [5] and
[6]) and development of wind turbines (see e.g. [7], [8] and [9]). In general it is re-
quiring signi�cant computational resources and sophisticated algorithms. The need
to improve the computation time for FSI problems is leading to the development
of parallel algorithms like the ones presented in [10] and [11]. An example of com-
plex numerical methods developed to tackle particular FSI problems is presented in
[4] where Bazilevs and co-authors develop an isogeometric framework based on non-
uniform rational B-splines (NURBS) in order to accurately capture complex domains
and non-linear displacements. While a lot of research is dedicated to develop and
analyze algorithms for FSI problems in the case of non-permeable structures, very
little is done in the case of porous structures. The goal of this work is to create a
framework of e�cient numerical algorithms, which solves the complex multiphysical
problem of �uid-porous structure interaction (FPSI).

In [12] Richer describes in details the di�erent ways to solve the multiphysics system
of equations in the case of FSI. One of the main di�culties is that a part of the
equations is in Lagrangian formulation, while the other part is in Eulerian formulation.
We use this terminology because with the de�ection of the porous media the domain
occupied by �uid is changing. With Lagrangian formulation we refer to the deformed
con�guration - the result of the displacement of the porous media. With Eulerian
formulation we refer to the initial con�guration of the domain before any displacements
take place. This is a common notation in FSI problems. Even that the �uid equations
are imposed in deformed con�guration, we use Eulerian description (or speci�cation)
of the �uid �ow. This means that the �uid velocity is de�ned as a function of space
and not as a function of a particular �uid particle. The equations describing the �ow
and the displacements are linear. However, the FSI problem is nonlinear due to the
fact that the shape of the structure in the FSI problems is a part of the solution, and
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is not given a priori. For small size problems one can write a monolithic scheme and
use a direct method at each of the iterations needed to solve the nonlinear problem.
For larger problems and for cases when the coupling is not very strong, a partitioned
(sequential) approach might be preferable. In such case one can reuse existing solvers
for the elastic and for the �ow subproblems, and impose the interface conditions via
iterations between the subproblems. However, the sequential algorithms usually do
not inherit the robustness of the monolithic approach. In general, the complexity of
the FSI problems does not allow to develop algorithms which are in the same time very
e�cient and applicable to a wide class of FSI problems. In this situation, our approach
is to concentrate on a class of FPSI problems and to develop a customized algorithm
to e�ciently solve the mathematical models describing this class of problems.

Such a mathematically challenging and practically relevant class of problems is �ltra-
tion of solid particles out of �uid. Simulation of �ltration processes helps designers
and manufacturers of �lter elements in the acceleration of the design process and in
the optimization of the designed �lters. In the case of non-deformable porous me-
dia, �ltration-adapted algorithms and simulation software have proven their worth in
industrial applications for years (see e.g. [13] and references therein). However, in
many cases the de�ection of the �ltering medium can not be ignored. In this work we
focus on FPSI in the case of �uid �owing through thin �ltering medium with small
permeability.

In the work of Badia and co-authors in [14] and the works of Buka£ and co-authors
in [15, 16], FPSI is considered in cases where the �uid �ow is parallel to the free
�ow�porous media interface. Also one �uid�porous medium interface is considered.
In many industrial oil �lters (see e.g. Fig. 1.1) the so called dead end �ltration takes
place. In this case all of the �uid to be �ltered goes trough the porous media. For
porous media with low permeability the �uid �ow near the porous structure is predom-
inantly perpendicular to the plain �uid�porous media interface. Thus, for deformable
as well as for non-deformable media in dead end �ltration the Beavers-Joseph-Safmann
boundary condition, used in these works, can not be applied. Additionally we have
to consider at least two �uid-porous interfaces. The �rst task of this thesis is to for-
mulate a set of mathematical models, along with boundary and interface conditions,
which accurately represents the physical phenomenon of FPSI in dead end �ltration.
We are interested in the numerical simulation of physically relevant geometries. Thus,
we aim to use mathematical models which can be practically applied in such con�gu-
rations. For example a microscopic, pore scale, description of the porous structure is
not applicable for the numerical simulation of a full-scale �lter element.

In many of the industrial oil and air �lters the �ltration media is thin (see Fig. 1.1).
For thin elastic bodies plate and shell models can be used in order to reduce the
computational time of numerical simulations. The second task of this thesis is to
incorporate plate and shell models in the FPSI mathematical models in order to
increase the computational e�ciency of the FPSI framework.
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The third task of this thesis is to develop a robust customized numerical algorithm for
the mathematical models describing the FPSI occurring in dead end �ltration. This
numerical algorithm should tackle the multiphysics nature of the FPSI phenomenon.
As we consider macroscopic description of the porous media, we introduce a sharp
interface between the region of plain �uid �ow and the porous media. The charac-
teristics of the �uid �ow through this interface change rapidly and the interface is
also changing with the deformation of the porous material. The numerical algorithm
should resolve this interface accurately and should handle the rapid change of physical
parameters through it. It also has to be feasible for practically relevant geometries
and magnitudes of displacement.

We consider approximate plate and shell models in order to increase the numerical
e�ciency of the FPSI framework. It is very important to test the validity of this
approximations in practically relevant geometries. The next task of this thesis is to
validate the mathematical models in use. We aim to create a framework that can be
used for simulation of a class of �lters. Thus we aim not only to test the models validity
for particular geometries, but also to �nd the limits of the models. In this way one will
know when the mathematical models can be used to describe the FPSI phenomenon
in �ltration and when not. We also aim to validate the numerical framework against
a physical experiment.

The FPSI framework consist of both the mathematical models and the numerical
methods in use. Once we have tested the limits of the mathematical models, we set
the task to validate the numerical methods.

As we aim to develop a practically useful framework, the last task of this thesis is
to apply the FPSI framework to industrially relevant con�gurations. Our aim is to
perform simulations of the �lter media deformation in two physically relevant types of
�lters. The �rst part of this task is to consider a pleated �lter, such as the left one in
Fig. 1.1. The second part of this task is to consider a �lter with a �at porous media
such as the right one presented in Fig. 1.1.

After the clari�cation of the goals of this work let us discuss its structure. The thesis
is organized as following:

In Chapter 2 we describe and discuss a set of mathematical models governing the
physical phenomenon of �uid interacting with permeable porous media. We start with
a description of the classical model of the Navier-Stokes equations for �ow through
plain region. Next we show and discuss two di�erent models for �ow through rigid
porous media. We present the classical and widely used Darcy model as well as the
more �exible Navier-Stokes-Brinkman system of equations. Further on we present the
governing equations for �ow through deformable porous media - the Biot's system.
This model describes the deformations of a porous media due to �uid �ow through it.
This system also incorporates the backwards coupling - the e�ect of displacements of
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Figure 1.1: left - an industrial oil �lter for puri�cation of the oil running through a
car's engine, right - a virtual model of an oil �lter for puri�cation of the oil running
through an automatic transmission

the porous media on the �uid �ow. Later in Chapter 2 we discuss in detail the choice
of interface conditions between the plain free �ow region and the region occupied by
the porous media. At the end of the chapter we summarize the full 3D model that
describes the governing equations for FPSI.

In Chapter 3 we describe approximate models that can be used to improve the numeri-
cal e�ciency of the framework. As the de�ection itself takes very little time compared
to the operation of the �lter with already deformed media, we focus on the steady
state solution of the system. This allows us to decouple the equation for the e�ective
pressure from the equations of motion in Biot's system. Because of this we can be
more �exible with the choice of the model describing the elastic behavior of the porous
media. As in this work we focus on thin porous materials, we make use of poroelastic
shell and plate models. We �rst describe an elastic shell model which can be used for
a larger class of geometries as the porous material does not have to be initially �at.
Later we present a poroelastic plate model which can be used for initially �at �ltering
media. In particular scenarios the use of the poroelastic plate model is preferable as
it can further improve the numerical e�ciency of the framework. At the end of this
chapter we summarize the equations describing FPSI when plate or shell models are
describing the elastic behavior of the porous media.

In Chapter 4 we present the numerical algorithm that we use in order to solve the
mathematical models describing FPSI. Firstly we discuss how we solve the coupled
system of equations. To describe the �uid motion in the plain and porous regions we
use the Navier-Stokes-Brinkman system of equations. To describe the deformation
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of the porous material we use poroelastic shell or plate models. We solve these two
systems separately using di�erent solvers. In order to impose the interface conditions
between plain region and the porous region we use an iterative scheme running the two
solvers sequentially. Later we present the discretization techniques used to solve the
di�erent systems of equations. We use the Finite Volume (FV) method with Multi-
Point Flux Approximation (MPFA) to numerically solve the Navier-Stokes-Brinkman
system of equations. For the numerical solution of the Biot's system and the poroe-
lastic plate system of equations we use the Finite Element Method (FEM). In order
to solve the elastic shell model numerically, we use a Finite Di�erence (FD) scheme
and a FEM scheme. Further on we show the computational grids that we use in order
to solve the di�erent systems of equations. To solve e�ciently the �uid �ow system of
equations we develop a special boundary- and interface- �tted quadrilateral grid. To
avoid arti�cial numerical locking e�ects and to be able to use consistently the solu-
tions of the 3D Biot's system as reference solutions, we use triangular prism elements
for this model.

In Chapter 5 we perform a numerical validation of the mathematical models and the
numerical techniques we use. As we use the approximate plate and shell models, we
test the validity of the approximations for di�erent geometries and boundary loads.
To test the shell model we consider a circular arch and a poroelastic pleat. We
examine the behavior of the shell model for uniform and non-uniform boundary loads.
As a reference solution we use the solution of the 3D Biot's system. To test the
validity of the poroelastic plate model we consider a thin porous disc. We compare
the numerical solutions of the poroelastic plate model against the Biot's system for thin
cylinders (disks) with di�erent thicknesses under a range of boundary loads. Further
on, we validate the accuracy of the numerical methods used to solve the Navier-Stokes-
Brinkman system of equations. We very coarse consider grids as well as very �ne grids.
We compare the numerical results calculated on the di�erent grids with the Darcy law
prediction. We consider di�erent domains, �uids with di�erent viscosities and densities
as well as medias with di�erent permeabilities. To test the accuracy of the elasticity
solver and the grid e�ects on the solution, we compare numerical simulations with an
analytical solution. We also compare the computational e�ciency of the poroelasic
plate solver to the computational e�ciency of the Biot's system solver. We test the
convergence of the iterative scheme for a poroelastic pleat and for initially �at porous
media. The �rst example incorporates the shell model. The second example let us
test the convergence rate when the poroelastic plate model is being used. At the last
section of this chapter we compare numerical simulations to a physical experiment. We
�rst describe the experimental setup. Then we explain how the numerical framework
that we develop can be used for parameter identi�cation. Lastly we compare the
numerical and physical experiments for di�erent inlet velocities.

In Chapter 6 we present further applications of the numerical algorithms we develop.
We show how taking the �lter deformation into account can improve the simulations
of �lter elements. We demonstrate how the grid generation techniques we use can be
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applied in the simulation of industrial �lters. In the last section of this chapter we
show how the poroelastic plate model can be used in complex geometries.

Finally, in Chapter 7 we summarize the contributions of this thesis.



7

Chapter 2

Mathematical models

In this chapter we discuss the models governing �uid �ow through plain and porous
media. We consider both rigid and deformable porous media. It is important to
note that we aim to capture the two way coupling between the �uid �ow and the
de�ection of the porous media. Meaning that we are interested both in the �ow
induced deformation and the e�ect of the deformation on the �uid �ow.

Naturally the �uid �ow equations are imposed in deformed con�guration, while the
elasticity equations are written in the initial con�guration. For this reason we use
di�erent notations for variables and domains in the initial con�guration and deformed
con�guration. Let us denote by Ωp the region occupied by the porous �ltering medium
in non-deformed con�guration, by Ωf the region occupied by the pure �uid in non-
deformed con�guration, and by Ω̃p, Ω̃f the respective domains in the deformed con-
�guration. In Fig. 2.1 we present a schematic representation of the initial and the
deformed domains. In this �gure we consider a rectangular channel with an initially
�at �ltering media. Due to �ow from the left to the right side of the channel the
porous media is de�ecting. Further on, let Ω = Ωp ∪ Ωf = Ω̃p ∪ Ω̃f be the total com-
putational domain (which remains unchanged in the cases considered in this work),
and ∂Ω be its (external) boundary. Finally, ∂Ω̃pf stands for the interface between the
plain and the porous media in deformed con�guration. In Fig. 2.1 we demonstrate
schematically the interfaces with red lines. In order to write the interface conditions
on ∂Ω̃pf we will use Ωf as a reference domain. Let T : Ωf → Ω̃f (see Fig. 2.1) be a
C2 � di�eomorphism and F = ∇T . In this work we denote vectors with bold symbols.
The unknowns de�ned in deformed con�guration we denote with tilde. The unknowns
de�ned in the initial con�guration we denote without tilde. Unknowns de�ned in the
plain �uid region and in the porous region are equipped with the subscripts f and p,
respectively.
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Figure 2.1: Schematic representation of the initial and the deformed con�guration in
FPSI

The following assumptions hold for the practical problem we are interested in, and are
accounted for the model selection. The �ow is single phase, incompressible, Newtonian
and in a steady state. The �ltering media is thin with constant thickness and it is
an isotropic porous media (i.e. the permeability is a scalar and not a tensor). We
consider the pore size of the porous media to be signi�cantly smaller than the thickness
of the media and thus homogenized (macroscale) models can be used to describe the
�ow through the porous media and its deformation. We do not consider problems
with change in the topology of the domains of interest (e.g. no contact problems
are considered). We also focus on the so called dead end �ltration. In this case all
the �uid to be �ltered goes through the porous media. An alternative mechanism of
�ltration is the cross �ow �ltration when part of the �ow is parallel to the �ltering
medium and never crosses it. We do not account for the e�ect of gravity as it is not
relevant for the typical designs of dead end �lters. We focus on laminar and not very
fast �ows, so that Darcy law holds for the �ow through porous media. For the �uid
we assume to be incompressible and Newtonian. The incompressibility of the �uid
is not restrictive for �ltration in the case of liquid-solid separation. Incompressibility
can not be always considered in gas-solid separation. However. in many industrial
applications air is being �ltered under room temperature and atmospheric pressure
and incompressibility can be considered. Motor oils (as well as other oils) could inhibit
non-Newtonian behavior in low temperatures. However, we are interested in the long-
term behavior of the �ltering elements and the steady state of the system. In the long
run the motor oil operates under normal and high temperatures.

2.1 Flow through plain �uid region

Let us �rst discuss the �ow through the plain �uid region outside the �ltering media.
The incompressible laminar Navier-Stokes equations (see e.g. [17] or [18]) describe
the �uid motion.
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ρ
∂ṽf
∂t

+ ρ (ṽf · ∇) ṽf −∇ · (µ∇ṽf ) = −∇p̃f +−∇f̃ , ∇ · ṽf = 0 in Ω̃f . (2.1)

The equations are written in deformed con�guration. The notations ṽf and p̃f stand
for the �uid velocity and pressure in the region Ω̃f , respectively. With µ we denote
the dynamic viscosity of the �uid and with ρ its density. The function f stands for
the density of the external body forces. As we do not consider the e�ect of gravity,
f = 0 in our case. We are looking for the steady state solution of the considered FPSI
problem. Thus, we can drop the time derivatives from the above equations (2.1).
Under the described assumptions the Navier-Stokes equations take the following form

ρ (ṽf · ∇) ṽf −∇ · (µ∇ṽf ) = −∇p̃f , ∇ · ṽf = 0 in Ω̃f . (2.2)

In order to close the system of equations (2.2), we have to impose boundary conditions.
In this section we discuss the boundary conditions on the external boundary of the
domain ∂Ω̃f = Γ̃wall∪Γ̃in∪Γ̃out. The interface conditions on ∂Ω̃pf we discuss in detail
in section 2.4. We distinguish between three di�erent parts of the external boundary
∂Ω̃f . With Γ̃in we denote an inlet, with Γ̃out an outlet and with Γ̃wall a supporting
structure. As the boundaries Γ̃in, Γ̃out and Γ̃wall have di�erent physical meanings
there is no overlapping between any of this regions.

When we consider simulations of a �lter element, the supporting structure is the
housing of the �lter element. When we perform simulations of an experimental setup,
the supporting structure consists of the walls of an optically clear channel. We consider
supporting structures made out of metal, plastic or other composite materials. These
are the materials used in the production of industrial �lters and in test�benches. In
addition we consider the casings to have no special coating and no specially generated
micro- or nano- structure that would give it special wetting properties or roughness.
For this reason on Γ̃wall we impose the no-penetration, no-slip boundary condition

ṽf = 0 on Γ̃wall. (2.3)

In this work we focus on the simulation of a part of a �ltering system, mainly the
�lter element. For example in the case of a car, the �ltering system is circulating the
motor oil using a pump of some kind. Usually the pump is placed not directly in front
of a �lter element, but it is connected to the �lter element via a tube or a system of
tubes. In this case we can neglect the direct e�ect of the pump on the �ow. Thus,
we consider a part of the tube as an inlet for the �lter element. If we choose the very
end of the tube to be the inlet for our simulation we should impose Poiseuille �ow
as an inlet condition. We chose a slightly di�erent approach. We take the inlet on



10 Chapter 2. Mathematical models

a distance from the �lter element and impose a given constant velocity as boundary
condition on Γ̃in.

ṽf = −vinñ on Γ̃in. (2.4)

We denote by vin the given magnitude of the inlet velocity. We use ñ to denote the
outer normal vector with unit length on the boundary of the domain. In this case the
domain of interest is Ω̃f and the boundary of interest is Γ̃in. As in the tube we have
channel �ow, Poiseuille �ow develops in this region. As long as the inlet is far enough
from the �ltering media, the boundary conditions (2.4) have no negative e�ects on
the overall accuracy of the simulation.

On the outlet Γ̃out we impose the `do-nothing' boundary condition (see [19])

µ
∂ṽf

∂ñ
− p̃f ñ = 0 on Γ̃out. (2.5)

In equation (2.5), ñ is once again the outer unit normal vector (this time for the
boundary Γ̃out). We consider outlets far enough from the �ltering media, so that
the �ow is laminar and stable near this boundary. Therefore, the velocity vector ṽf

does not change in the normal direction of ñ and the `do-nothing' boundary condition
simpli�es to the following equations

p̃f = 0,
∂ṽf

∂ñ
= 0 on Γ̃out. (2.6)

We consider a plain �ow region next to a deformable porous media. Therefore, the
domain ∂Ωf as well as the interface ∂Ωpf change with the de�ection of the porous
media. On the other side we consider the �lter casing to be rigid and we focus on
particular inlet and outlet regions. Thus the external boundary of the domain does
not change with the deformation of the porous media:

Γ̃wall ≡ Γwall, Γ̃in ≡ Γin, Γ̃out ≡ Γout. (2.7)

2.2 Fluid �ow through rigid porous media

Before describing models for �ow through deformable media, we �rst describe models
for �ow through rigid porous media (Ω̃p ≡ Ωp). We are interested in simulations of a
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whole �lter element. Modeling the �ow through porous media on micro level resolv-
ing the �lter �bers (or other micro structure) would be extremely computationally
expensive. Instead of resolving the micro structure, we use a homogenized macro-
scale model. Under the assumptions that we have for the �ow and the porous media,
the �ow through saturated porous media is usually described by the Darcy equation
coupled with the continuity equation (see [20]):

ṽp = −K
µ
∇p̃p, ∇ · ṽp = 0 in Ω̃p ≡ Ωp. (2.8)

The notations ṽp and p̃p stand for the e�ective �uid velocity and the e�ective pressure
in the porous media, respectively. We use µ to denote the e�ective �uid viscosity.
The notation K stands for the permeability of the porous media. The coe�cient K
is only dependent on the microstructure of the porous media. In the most general
case the permeability is a tensor. As we focus on isotropic materials, K is scalar in
our studies. For the numerical examples presented in this paper we consider uniform
materials and the permeability is considered to be constant within the porous media.
Instead of focusing on the permeability of the porous media one can also consider the
inverse coe�cient K−1. This coe�cient also has a physical meaning - the resistivity
of the porous material. The more permeable a material is, the less resistance it has
for the �uid �owing through it.

Although the Darcy equation is widely used in �ltration problems, this model has its
limitations. One particular limitation is on the type of boundary conditions one can
use. As we focus on dead end �ltration problems, the porous media has an area where
�uid is entering the media and another area where it is leaving it. On these areas
particular �ow, �uid pressure or a combination of them should be prescribed. In order
for the �ltering media not to be washed away by the �uid, it has to be �xed on some
other areas. On the latter areas the �ltering media is glued (or �xed in another way)
to a wall and then no-slip Dirichlet type of boundary conditions are to be prescribed
for the �uid velocity. Even for simple geometry like a cube, imposing these di�erent
boundary conditions would result in a mathematical problem with no solution if the
Darcy model is used. If periodic or symmetry boundary conditions are prescribed
instead of the no-slip boundary conditions such a problem has a solution. In this
case linear pressure and constant velocity would satisfy the system (2.8). For dead
end �ltration problems the requirements for boundary conditions are di�erent and
one can not satisfy all of the boundary conditions with such a low order model. For
such cases or when the �ltering media is highly porous, the Navier-Stokes-Brinkman
system of equations (see [20]) could be used instead of the Darcy system of equations
2.8.

ρ
∂ṽf
∂t

+ρ (ṽf · ∇) ṽf−∇·(µ∇ṽf )+µ̄K−1ṽp = −∇p̃f +−∇f̃ , ∇·ṽf = 0 in Ω. (2.9)
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Note, that the Navier-Stokes-Brinkman system of equations (2.9) could be used to
describe the motion of the �uid not only in the porous domain Ω̃p, but in the whole
domain of interest Ω as long as one speci�es the permeability also in the free �ow
domain Ω̃f . As in the free �ow region there is no �ow resistivity, we set the resistivity
K−1 as follows:

K−1 =

{
0 in Ω̃f ,

const 6= 0 in Ω̃p.
(2.10)

By µ̄ we denote the e�ective �uid viscosity in the porous region. In some studies
di�erent values are used for the e�ective �uid viscosity µ̄ and the �uid viscosity µ
(e.g. [21]). However, the numerical studies by Iliev and Laptev in [22] show that the
use of e�ective viscosity µ̄ = µ is preferable for �ltration problems. We use f̃ to denote
the density of the external mass forces acting to the system. As we do not take into
account the e�ect of gravity, f̃ = 0. As in section 2.1, we consider the steady state
of the system and we drop the time derivatives from the equation (2.9). Taking into
account the later remarks, the Navier-Stokes-Brinkman system of equations simpli�es
to:

ρ (ṽf · ∇) ṽf −∇ · (µ∇ṽf ) + µK−1ṽp = −∇p̃f , ∇ · ṽf = 0 in Ω. (2.11)

It should be noted that for �ltration problems the term µK−1 is usually very large
within the porous media. The permeability is often of order 10−10 or less. Therefore
the above system of equations (2.11) can be considered as a perturbation of the Darcy
system of equations (2.8), where the viscous and convective terms are omitted.

The boundary conditions that we impose to the system (2.11) are the same as in the
previous section 2.1. On the inlet we impose the given velocity boundary condition
(2.4), on the outlet we impose the `do-nothing' boundary condition (2.6) and the
wall of the supporting structure we impose the no-penetration and no-slip boundary
condition (2.3). The only di�erence is that in this section we extend the domain of
interest from Ω̃f to Ω. Naturally the boundary Γwall extends with the boundary of
Ω̃p which is in contact with the case of the �lter element.

2.3 Deformable porous media:�uid �ow and poroelasticity

In the works [24] and [25] Biot has derived the consolidation theory of poromechanics.
He has done that by taking two di�erent systems of equations describing di�erent
phenomenons and creating one coupled system describing both of these behaviors.
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Biot has used the linear theory of elasticity to describe the deformations of porous
media and the Darcy equation to describe �ow in porous region. The quasi steady
state Biot's system of equations reads as follows

− div σp = −µ̂∆up −
(
λ̂+ µ̂

)
∇ div up + α∇pp = 0 in Ωp, (2.12)

∂

∂t
(βpp + α div up)−

K

µ
∆pp = 0 in Ωp. (2.13)

The stress tensor σp has the following form:

σp = 2µ̂
(
∇up + (∇up)

T
)

+
(
λ̂ div up − αpp

)
I. (2.14)

With up we denote the vector �eld of e�ective displacements in the porous region and

with pp the e�ective pore pressure. The parameters λ̂ and µ̂ are the �rst and second
Lamé constants, α is the e�ective stress coe�cient and β is the inverse of the Biot's
modulus. It is important to note that this system describes the deformation in the
porous solid body due to the �ow through it and due to external forces, as well as the
e�ects of the movement of the solid structure to the �uid �ow.

As we consider the stationary solution of the system, the time derivative in the equa-
tion (2.13) vanishes. Thus, the equation (2.13) simpli�es to:

4pp = 0 in Ωp. (2.15)

In addition to the equations (2.12) and (2.15) one should also add closing boundary
or interface conditions. In this work we consider two setups for a deformable porous
media. In one scenario we consider an isolated porous media. In the other case
we consider the porous media as a part of a numerical simulation of a �lter during
�ltration regime.

Let us �rst consider the case of an isolated porous media. We use this setup to
compare reduced models for the displacement of porous media against the governing
Biot's system. In this case all of the boundaries δΩp of the domain Ωp are external
and we set boundary conditions. We consider part of the media to be clamped and
no �ow to go through this part of the boundary Γwall:

up = 0,
∂pp
∂n

= 0 on Γwall. (2.16)
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On the other part of the boundary Γpf ≡ δΩ \ Γwall we allow deformation. On Ωpf

we prescribe the normal component of the stress tensor (a particular load) as well as
the e�ective pressure:

σp · n = S (x) , pp = P (x) on Γpf . (2.17)

In our numerical studies of isolated porous media we consider S (x) and P (x) to be
a given constant or to be piecewise-constant.

The conditions (2.16) and (2.17) are only one class of boundary conditions that is
closing the system of equations (2.12), (2.15). We choose this particular type of
boundary conditions as we can express the boundary and interface conditions in the
case of FPSI in the same manner. The boundary condition (2.16) represents strong
clamping (or gluing) to a wall. We use this boundary condition on the part of the
�lter strongly clamped to the �lter casing. In the case of �lter simulation, Γpf is the
porous media-free �ow interface δΩpf . In the next section 2.4 we discuss in detail
how to set S (x) and P (x) in the case of FPSI ensuring conservation of mass and
conservation of momentum.

2.4 Interface conditions

The choice of interface conditions between �ow in a plain region and �ow in homog-
enized (macroscopic) porous media is a topic of continued research. Hanspal and
co-authors in [26] and Showalter in [27] consider cross-�ow �ltration. In this case,
in addition to the continuity of the velocity and the normal component of the stress
tensor, the Beavers-Joseph-Safmann conditions can be applied. In [28] Cao and co-
authors use more general Beavers-Joseph type conditions for a dynamic system. How-
ever the generalized Beavers-Joseph and the Beavers-Joseph-Safmann conditions can
be applied only in the case of �ow parallel to the �uid-porous media interface. In this
case it produces discontinuity of the velocity for cross-�ow �ltration regimes. In [29]
Bars and Worster formulate a single domain approach for analytically trackable cases
in order to avoid this discontinuity. Their approach, however, is limited to simple ge-
ometries. In [30] Marciniak-Czochra and Mikeli¢ suggest a di�erent type of interface
conditions imposing jump of the pressure. With Carraro and Goll in [31] they show
numerical results for a cross-�ow and speci�c 2D porous media consisting of periodical
circular or ellipsoidal obstacles. When ellipsoidal obstacles are used the authors show
the need of using a pressure jump interface law in the homogenized macroscopic mod-
els. However, for isotropic porous mediums such as the ones we consider, the pressure
is continuous along the plain �ow-porous medium interface (see [30]).

For the case of deformable porous media, much less research has been done. In the
work of Badia and co-authors in [14] and the works of Buka£ and co-authors in [15, 16],
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FPSI is considered in cases where the �uid �ow is parallel to the free �ow�porous
media interface. Also only one �uid�porous medium interface in considered. These
works follow the classical approaches for �uid�porous structure interface. As interface
conditions in addition to the continuity of the velocity of the �uid and continuity of
the normal component of the stress tensor, Beavers-Joseph-Safmann conditions are
applied. For dead end �ltration the porous medium has two separate interfaces of
in�ow and out�ow of �uid. On these interfaces and inside the porous medium the
�ow is predominantly normal to the interfaces. Thus, for deformable as well as for
non-deformable media in dead end �ltration the Beavers-Joseph-Safmann can not be
applied. In addition to the continuity of the �uid velocity and the normal component
of the stress tensor, we impose continuity of the �uid pressure.

We de�ne the Navier-Stoke-Brinkman system of equations (2.11) describing the �uid
�ow in the deformed con�guration. The porous medium displacement in Biot's model
(2.12) is de�ned in the initial con�guration. In order to write the interface conditions
for these two models de�ned in di�erent coordinates, we use the Arbitrary Lagrangian-
Eulerian (ALE) approach (see e.g. [12]). We make use of the transformation T
and more speci�cally its inverse T−1 to write the interface conditions in the initial
con�guration.

The �rst of the interface conditions that we impose is the conservation of mass. For
dead end �ltration this condition is satis�ed when the normal component of the �uid
velocity is continuous along the interface between the plain �ow region and the porous
medium ∂Ω̃pf . Let vf be the �uid velocity in the plain �uid region mapped in the
initial domain Ωf

vf = T−1 (ṽf ) . (2.18)

Let vp be the �uid velocity in the porous domain Ωp. From the assumption of Darcy
law in the porous domain we have:

vp = −K
µ
∇pp. (2.19)

Using the equations (2.18) and (2.19) we can write the mass conservation interface
condition on the interface in the non-deformed con�guration ∂Ωpf :

−K
µ
∇pp · n = vf · n on ∂Ωpf . (2.20)

To satisfy the continuity of the momentum we impose continuity of the normal com-
ponent of the stress tensor. Once again we make use of the ALE approach to write
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the equation in the initial con�guration. In order to do this we use the transformation
T−1 to map the �uid stress tensor σf from the deformed domain Ω̃f to the initial
domain Ωf . Let us use the following notations

pf = T−1 (p̃f ) , σf = T−1 (σ̃f ) . (2.21)

Using these notations we have:

σf = pf I + µ
(
∇vfF−1 + F−T∇vf T

)
. (2.22)

The continuity of the normal component of the stress tensor in the initial con�guration
reads:

σp · n = σf · n on ∂Ωpf . (2.23)

The last interface condition that we impose is the continuity of the pressure

pp = pf on ∂Ωpf . (2.24)

The equations (2.23) and (2.24) are consistent with the form of the equation (2.17).
Thus in the case of FPSI, the S (x) and P (x) should be chosen in the following
manner:

S (x) = σf · n, P (x) = pf . (2.25)

Note that for �ltering mediums with small permeability for some geometries (for
example initially �at �lters in large cages) the velocity is nearly constant along the
interface ∂Ω̃pf . In such cases the pressure pf is dominating in the �uid stress tensor
σf and the equations (2.23) and (2.24) become nearly identical.

2.5 Summary

To summarize, the full FPSI model for simulation of a deformable �lter consist of
the Navier-Stokes-Brinkman system of equations (2.11), the Biot system of equations
(2.12), (2.15) and the interface conditions (2.20), (2.23) and (2.24). The boundary
conditions which we impose on the �uid �ow are the inlet boundary condition (2.4),
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the outlet boundary condition (2.6) and the no-slip boundary condition (2.3). Note
that the interface conditions which we impose depend on the solutions of the Biot's
system and the Navier-Stokes-Brinkman. Thus, the full model is a nonlinear system.

If we consider alone the Biot's system of equations, we impose the boundary conditions
(2.16) and (2.17).
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Chapter 3

Approximate models

Solving the 3D Biot model requires signi�cant computational e�orts. In many of the
industrial oil and air �lters the �ltration media is thin (see Fig. 1.1). In such cases the
porous structure can also be modeled as a poroelastic plate or a poroelastic shell in
order to increase the computational e�ciency of the FPSI framewok. In this chapter
we describe how to incorporate poroelastic plates and shell in the FPSI framework. In
subsection 5.2.2 we demonstrate how using such plate or shell models can substantially
decrease the computational time.

Let us denote by h the thickness of the porous media. We consider h to be constant
and also to be small comparing to a characteristic length L. For di�erent domains we
de�ne the characteristic length in a di�erent matter. In Chapter 2 all of the equations
are de�ned on domains with the same dimensionality. If we consider Ω to be a 3D
domain, all of its sub-domains are also 3D. If we consider a plain-strain example and a
2D cross-section of a 3D body, the domain Ω is 2D and all of its sub-domains de�ned
so far are also 2D. In this chapter instead of de�ning the elasticity equations on the
3D/2D domain Ωp, we de�ne the elasticity equation on the 2D/1D middle surface
Ω̂p of the domain Ωp. As we consider dead end �ltration the interface ∂Ωpf consist
of two separate parts - the one is a boundary in the inlet region and the other is
boundary in the outlet region of the �lter element. We de�ne Ω̂p as the set of points
in the domain Ωp on equal distance from the two parts of the interface Ωpf . Let n

be a vector, normal to Ω̂p. We can de�ne the region of the porous media in the way
Ωp = Ω̂p ×

{
−h

2 ,
h
2

}
. Let ε = h

L be a small parameter. Therefore we consider a thin
porous media.
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3.1 Decoupling of the pressure equation in the Biot's

system

Let us �rst discuss the Biot's model. As we are interested in the steady state of
the system, the pressure equation simpli�es to (2.15). For thin porous media we can
analytically determine the e�ective pressure pp. To illustrate this, let us consider a
thin and �at porous media. Let us consider an orthonormal coordinate system Oxyz

in which Ω̂p is in the plane {z = 0}. As the �ltering media is thin, its z-dimension
is small. Let us rescale the z-dimension by de�ning z = εz̄. Now in the coordinate
system Oxyz̄ the porous media has comparable dimensions in all directions. The
equation (2.15) in Oxyz̄ has the following form:

∂2pp
∂x2

+
∂2pp
∂y2

+
1

ε2

∂2pp
∂z̄2

= 0 in Ωp. (3.1)

If we multiply by ε2 and perform asymptotic analysis on the equation (3.1), we drop
all of the terms of order ε2. This leads to pp being a linear function in z-direction.
In the general case, pp is linear in the direction which is locally normal to Ω̂p. This
can be shown by rewriting equation (2.15) in local coordinates and performing the
same asymptotic analysis. The boundary conditions (2.17) de�ne pp on Ωpf . Taking
into account the linearity of pp, we can compute it analytically in terms of the given
function P (x). When considering FPSI, we can compute pp in terms of the pressure
pf . Thus, the pressure decouples from the displacement in the poroelastic model. We
use this decoupling to write an approximation of the Biot's system which we solve
numerically signi�cantly more e�cient. Within the porous media the displacement
and the �uid �ow decouple. However, in the FPSI framework both the displacement
and the �uid �ow in the porous media are coupled to the �uid velocity in the plain
�uid region. Thus, the �uid �ow and porous media displacement in the porous media
are not independent in the FPSI problem.

3.2 Poroelasticity: shell model

A rigorous derivation of the poroelastic �exural three-dimensional shell model from
the Biot's system through asymptotic analysis was done by Mikeli¢ and Tamba£a in
[42]. However, as we are interested in the equilibrium state of the system and the
elastic part from the Biot's system decouples from the �ow part, we are free to choose
a di�erent type of shell model to represent the displacements in the porous media.
Instead of �exural shell we use a Naghdi type (see [32] and [33]) of shell described in
detail by Zang in [34]. This type of shell describes not just the normal and tangential
displacements w and u but also the rotation θ of the line perpendicular to the middle
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Figure 3.1: Normal and tangential displacement as well as the rotation of a cross
section in the framework of cylindrical elastic shell

surface. Without the Kircho� hypothesis of small rotation θ this model could be used
for a wider area of applications. The Naghdi-type shell model also accounts not just
for the �exural energy, but also for the membrane and shear energy. This results in
membrane and shear deformation along with the �exural de�ection - see Fig. 3.2.
In this work we present the cylindrical elastic shell, also referred to as cylindrical
elastic beam. It is worth noting that poroelastic beam models (without them being
cylindrical) have also been derived. In this more simple case even large deformation
cases are considered. For example in [35] Li and co-authors derive a mathematical
model for large de�ection of poroelastic beams. Further work was done by Yang and
Wang in [36]. Going back to the cylindrical poroelastic shell model let θ be the rotation
of the line perpendicular to the middle surface, u be the tangential component of the
displacement of a point of the middle surface and w be the normal component of this
displacement (see Fig. 3.1). Following the derivations in [34] for shorter notations let
us de�ne the functions ρ, γ and τ the following way:

ρ (θ, u, w) = θ′ + b
(
u′ − bw

)
, γ (u,w) = u′ − bw, τ (θ, u, w) = θ + bu+ w′. (3.2)

Using the above notations, the weak formulation of the Naghdi elastic shell model
presented in [34] is the following:

1

3
h2 (2µ+ λ∗)

∫ L

0
ρ (θ, u, w) ρ (φ, ψ, ζ) dx

+ (2µ+ λ∗)

∫ L

0
γ (u,w) γ (ψ, z) dx+

5

6
µ

∫ L

0
τ (θ, u, w) τ (φ, y, ζ) dx

= f0 (φ, ψ, ζ) + h2f1 (φ, ψ, z) ,∀ (φ, ψ, ζ) ∈ H.

(3.3)
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Figure 3.2: Schematic illustration of �exural, membrane and shear deformation

The �rst, second and third integral terms in the left hand side of the equation (3.3)
are respectively the �exural, membrane and shear energies. The functions φ , ψ and ζ
are test functions respectively for the rotation θ and the displacements u and w. The
test functions are de�ned in the Hilbert space H =

[
H1

0 (0, L)
]3
. For more details see

[34]. The right hand side is de�ned by the loading functionals f0 and f1 :

f0 (φ, ψ, ζ) =
5

6

∫ L

0
p1
oτ (φ, ψ, ζ) dx− λ

2µ+ λ

∫ L

0
p2
oγ (ψ, ζ)

+

∫ L

0

[(
p1
e + q1

a − 2bp1
0

)
ψ +

(
p2
e + q2

a + p2
0
′
)
ζ
]
dx,

f1 (φ, ψ, ζ) = −1

3

∫ L

0

[(
bq1

a + 3bp1
e − q1

m

)
φ+ bq1

mψ + bq2
mζ
]
dx

− λ

3 (2µ+ λ)

∫ L

0

(
p2
e + bp2

o

)
ρ (φ, ψ, ζ) dx− 1

6
b

∫ L

0
p1
eτ (φ, ψ, ζ) dx.

(3.4)

With b we denote the curvature of the middle surface of the porous media and with
h its thickness. In the case of cylindrical shell we choose the characteristic length L
to be the length of middle line. That is why we use the letter L to de�ne the middle
surface on the reference domain [0, L]. To de�ne the boundary conditions for the
poroelastic displacements p2

0 and p
2
e, we distinguish between the interfaces in the inlet

and outlet region ∂Ωpf = ∂Ωpf+ ∪ ∂Ωpf−. We use the notations σf+ = σf on ∂Ωpf+,
σf− = σf on ∂Ωpf−, n+ = n on ∂Ωpf+ and n− = n on ∂Ωpf−. Let t+ and t− be
unit vectors perpendicular to n+ and n− respectively. Also let the couples n+, t+ and
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n−, t− be positively oriented. Let us write the normal component of the stress tensor
in local coordinates on the inlet and outlet interfaces.

σf+ · n+ = f+
n

1

1− bh
n+ + f+

t

1

1− bh
t+,

σf− · n+ = f−n
1

1 + bh
n− + f−t

1

1 + bh
t−.

(3.5)

Using the local coordinates we de�ne p2
0 and p2

e in the following way:

p2
0 =

f+
n − f−n

2
, p2

e =
f+
n + f−n

2h
. (3.6)

The functions q
{1,2}
{a,m} are rescaled integrals of the body force densities acting on the

elastic structure (for more details see [34]). In dead end �ltration the gravity e�ects are

usually negligible and we consider in our studies q
{1,2}
{a,m} = 0. In [34] for the derivation

of the Naghdi elastic shell model (3.3) it is assumed for the functions p
{1,2}
{o,e} and q

{1,2}
{a,m}

to be indebpendent of the thickness of the media h. As we do not consider mass

forces, the assumption is valid for q
{1,2}
{a,m}. The assumption on the boundary forces

implies small forces which would lead to small deformations. In chapter 5 we test
numerically how restrictive are the assumptions of small forces and thin porous media
for deformable porous �lters.

To build a discretization of the equations (3.3) we use the strong formulation of the
problem. To obtain the strong formulation we consider �rst the set of test functions
{(φ, 0, 0) ∈ H}.
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(3.7)

We perform integration by parts on the terms with the derivative φ′.

∫ L

0

(
θ′ + bu′ − b2w

)
φ′dx =

[(
θ′ + bu′ − b2w

)
φ
]∣∣L

0

−
∫ L

0

(
θ′ + bu′ − b2w

)′
φdx,

(3.8)
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∫ L

0
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e + bp2
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p2
e + bp2
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)
φ
]∣∣L

0
−
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0
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e + bp2

o

)′
φdx. (3.9)

As we have chosen the test space H such that φ (0) = φ (L) = 0, the �rst terms in the
right-hand side of the equations (3.8) and (3.9) drop out. Using (3.8) and (3.9) the
equation (3.7) is equivalent to
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As each function φ ∈ H satis�es the equation (3.10) we have
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(3.11)

By performing the same procedure for the sets of functions {(0, ψ, 0) ∈ H} and {(0, 0, ζ) ∈ H},
from equation (3.3) we derive the following two equations
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The system of equations (3.11), (3.12) and (3.13) is the strong formulation of the
Nagdi elastic shell model described in [34]. All of the ODE equations derived above are
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de�ned on the open interval (0, L). In order to close the system of the equations (3.11),
(3.12) and (3.13) we have also to prescribe boundary conditions. As we have three
equations of second order respectively for σ, u and w we should prescribe two boundary
conditions for each of these parameters. We impose the following no displacement
boundary conditions:

θ (0) = θ (L) = 0, u (0) = u (L) = 0, w (0) = w (L) = 0. (3.14)

3.3 Poroelasticity: plate model

An heuristic derivation of a poroelastic plate model can be found in [39] and [40]. A
mathematically rigorous derivation of this poroelastic plate model, based on asymp-
totic homogenization method, was later done by Mikeli¢ in [41]. The rigorous poroe-
lastic plate model reads as following:

D∆2w − αB∆M = f+
n + f−n +

h

2
∇ ·
(
f+
t1 − f

−
t1 , f

+
t2 − f

−
t2

)
in Ω̂p, (3.15)

(
γ +

α2B

2G

)
∂

∂t

(
pp +

2

h
N

)
− K

µ

∂2pp
∂z2

= αBz
∂

∂t
∆w in Ωp. (3.16)

As in the elastic shell model, with w we denote the normal component of the dis-
placement. In this model the Kircho� hypothesis is assumed. This means that the
rotation of the line, perpendicular to the middle surface, is negligibly small. It is also
presumed the tangential displacement to be negligible in comparison to the normal
displacement w. The functions f±t1 , f

±
t2 , f

±
n are the e�ects of the boundary condition

(2.17). The parameters D, B, N and M are de�ned as follows:

D =
h3G

6 (1− ν))
, B =

1− 2ν

1− ν
, N = −1

2

∫ h
2

−h
2

ppdz, M = −1

2

∫ h
2

−h
2

ppzdz. (3.17)

The parameter D is the �exural rigidity of the plate, B is the elasticity parameter
rescaling the Poisson's ratio ν, N is the e�ective stress resultant andM is the bending
moment to the variation in the e�ective pore pressure across the plate thickness. In the
above form of the poroelastic plate equations the deformation is de�ned on the middle
surface Ω̂p. However, the pressure equation is still de�ned in the full-dimensional
domain Ωp. The system (3.15), (3.16) is an integro-di�erential system of equations
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and it is coupled both ways. The equation (3.15) has the bending moment M which
is an integral term of the e�ective pressure pp. The equation (3.16) incorporates the
Laplacian of the deformation w. As we are interested in the steady-state solution of
the above system, we can drop the terms with a time derivate in them. In this case
the equation 3.16 has the following form:

∂2pp
∂z2

= 0 in Ωp. (3.18)

Again as discussed in section 3.1, when we consider the steady state solution, the
displacement and the pressure equations decouple and the pressure is a linear function
with respect to z. Thus, we can calculate the integral in M using the interface
conditions for the pressure:

M = −h
2

24

(
f+
n − f−n

)
. (3.19)

Thus the equation (3.15) becomes the biharmonic equation:

D∆2w = −h
2

24
αB∆

(
f+
n − f−n

)
+f+

n +f−n +
h

2
∇·
(
f+
t1 − f

−
t1 , f

+
t2 − f

−
t2

)
in Ω̂p. (3.20)

If the poroelastic medium is uniformly loaded and the functions f
{+,−}
{n,t1,t2} are constant,

the biharmonic equation further simpli�es to:

D∆2w = f+
n + f−n in Ω̂p. (3.21)

We would like to note that in the papers of Taber [39] and [40], the right-hand side
of the above equation is the di�erence of the two loads instead of their sum. This is
only due to the choice of the normal vectors on the boundaries of the porous media.
We follow the notations of Mikeli¢ and use normal vectors in direction outside of the
porous region Ωp. In this case the normal vectors on the two opposite sides of the
porous media have opposite directions. Taber, however, poses the same boundary
conditions using normal vectors in the direction of the z-axis. In this case the normal
vectors on the two opposite sides of the porous media have the same direction. This
di�erence in the orientation of the normal vectors leads to the di�erent sign in the
equation (3.21).

In order to close the biharmonic equation we need to prescribe boundary conditions
to the system. For the purpose of di�erent numerical experiments we impose di�erent
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boundary conditions. Let the boundary of the domain of interest Ω̂p consist of three
parts - Γweak, Γstrong and Γsymm. We impose weak support boundary conditions
on Γweak, strong support (clamping) boundary conditions on Γstrong and symmetry
boundary conditions on Γsymm:

w =
∂2w

∂n2
= 0 on Γweak,

w =
∂w

∂n
= 0 on Γstrong,

∂w

∂n
=
∂2w

∂n2
= 0 on Γsymm.

(3.22)

As the boundaries Γweak, Γstrong and Γsymm have di�erent physical meanings, there is
no overlapping of any of these regions. The weak support boundary condition allows
for the plate to rotate. However, no displacements are allowed. This represents a
hinge bond or a plate which is supported only from one side by a �xed body. The
strong support boundary condition is the result of a plate being supported from two
sides by �xed bodies. We use the symmetry condition to simulate a small part of a
large �lter element. In order to use Finite Elements Method (FEM) to numerically
solve the biharmonic equation (3.21) we also consider the weak form of this equation:

D

∫
Ω̂p

∆2wζdz =

∫
Ω̂p

(
f+
n + f−n

)
ζdz,∀ζ ∈ Ĥ. (3.23)

The test function ζ is de�ned in the Hilbert space Ĥ where

Ĥ =

{
z ∈ L2

(
Ω̂p

)
: z = 0 on Γ0;

∂z

∂n
= 0 on Γn;

∂2z

∂n2
= 0 on Γn2

}
. (3.24)

The boundary parts Γ0, Γn and Γn2 we de�ne in the following way:

Γ0 = Γweak ∪ Γstrong, Γn = Γstrong ∪ Γsymm, Γn2 = Γweak ∪ Γsymm. (3.25)

Let us divide the equation (3.23) by the constant D and apply two times iteration
by parts for the �rst integral. As on the boundary ∂Ω̂p the test functions along with
their derivatives vanish, we are left with the following equation

∫
Ω̂p

∆w∆ζdz −
∫

Ω̂p

f+
n + f−n
D

ζdz = 0, ∀ζ ∈ Ĥ. (3.26)
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By applying integration by parts, we transfer some of the derivatives from the dis-
placement w to the test function ζ. In the weak formulation of the poroelastic plate
model, we impose the boundary conditions (3.22) weakly in the following matter:

∫
Ω̂p

∆w∆ζdz + C1

∫
Γ0

wdz + C2

∫
Γn

∂w

∂n
dz + C3

∫
Γn2

∂2w

∂n2
dz

−
∫

Ω̂p

f+
n + f−n
D

ζdz = 0,∀ζ ∈ Ĥ.
(3.27)

The constants C1, C2 and C3 are penalization parameters.

3.4 Summary

To summarize, the approximate 3D-2D (or 2D-1D) model consist of �ow part, elastic
part, interface conditions and boundary conditions. The �ow part is the Navier-
Stokes-Brinkman system of equations (2.11). The elastic part is either the elastic
shell model (3.11), (3.12) and (3.13) or the poroelastic plate model (3.20). We impose
the interface conditions (2.20), (2.23) and (2.24). The boundary conditions which we
impose on the �uid �ow are the inlet boundary condition (2.4), the outlet boundary
condition (2.6) and the no-slip boundary condition (2.3). When using the elastic shell
model, we impose the boundary conditions (3.14). When using the poroelastic plate
model, we impose the boundary conditions (3.22).
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Chapter 4

Numerical algorithm

In Chapter 2 and Chapter 3 we described mathematical models for FPSI in the context
of dead end �ltration. In this chapter we show how we solve the mathematical models
numerically. First we discuss the general strategy of the framework that we create.
Then we discuss in detail the discretization techniques. In the last section of this
chapter we describe the computational grids in use along with the strategy for grid
stretching without remeshing.

4.1 Solving the coupled system

In his work [12] Richter describes the main techniques used to solve FSI problems. The
main challenge in this multi-physics problem is the di�erent con�gurations in which
the �uid equations of motion and the displacement equations are de�ned. While the
deformation equations are given naturally in the initial (non-deformed) con�guration,
the �uid �ow is naturally de�ned in the deformed con�guration. In the context of
FPI, the equations written in original con�guration are also referred to as Lagrangian
formulation of a problem. To the equations written in the deformed con�guration one
might refer to as Eulerian formulation. There are two main strategies to solve FSI
problems.

One approach is the fully Eulerian formulation of the problem. In this case the
elasticity equations are de�ned on the deformed domain. This requires mapping of
the domain Ωp to Ω̃p. In this case the solution of the elasticity problem is giving such a
mapping and the elasticity equations become highly non-linear. For more information
on the fully Eulerian approach see [23].
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Figure 4.1: Initial shape of a single pleat

The other main approach is to use the Arbitrary-Lagrangian-Eulerian approach (ALE).
In this method, a transformation T is used to map the initial reference domain Ωf

onto the deformed domain Ω̃f (see Fig. 2.1). Then the inverse mapping T−1 is used
to write the interface condition in the initial Lagrangian con�guration. In dynamic
systems using the initial domain as a reference domain imposes a limitation on the
robustness of the method. In such cases the domain at a previous time is used as a
reference domain and it is changing with the dynamics of the system. However, we
are interested in the steady state solution of the system and using the initial domain
as a reference domain does not limit the performance of the method.

While the fully Eulerian approach is more robust for large displacements, the ALE
approach has the bene�t of introducing non-linearities only in the interface conditions.
From mathematical point of view both of the methods describe the FSI problem
accurately. The practical di�erence is in the numerical methods which are used in
order to solve the resulting system of equations. For the FPSI problem we use the
ALE approach. This allows us to reuse previously developed numerical algorithms
which solve e�ciently the �ow subproblem as well as the elasticity subproblem. In
addition, we can use di�erent models for the elasticity without the need to transfer the
equations in di�erent con�guration. For particular con�gurations and small de�ection
of the porous media we can also use an approximation of T−1 which does not require
additional computational time.

Let us now discuss the general FPSI framework based on the ALE approach. To help
illustrate the algorithm we use as an example the de�ection of a single porous pleat
in a rectangular channel - see Fig. 4.1. In this example the blue colored domain
represents the plain �uid region, while the red colored domain represents the initial
con�guration of a the porous media � a single pleat. For this experiment we set the
left side of the rectangular domain to be inlet, the right one to be outlet and the
top and bottom sides to be supporting structure with the no-penetration and no�slip
boundary condition. Due to �uid �ow from the left to the right side of the channel
the pleat is de�ecting - see Fig. 4.2.

The FPSI numerical framework we use is the following:

1. We start with a given initial geometry � e.g. Fig. 4.1. On this domain we create
a boundary- and interface- capturing grid (see e.g. Fig. 4.4).
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Figure 4.2: The shape of the single pleat after displacement

2. Having a grid resolving the plain �ow domain as well as the porous medium,
we numerically solve the Navier-Stokes-Brinkman system of equations (2.11)
with the inlet boundary condition (2.4), the outlet boundary condition (2.6)
and the no-slip boundary condition (2.3). At this stage we treat the porous
media as rigid. On the �rst iteration we solve the �ow problem on the initial
(non-deformed) domain. On every other iteration we solve the �ow problem on
the deformed domain.

3. Now that we have solved the Navier-Stokes-Brinkman system of equations, we
have numerically calculated the �uid velocity ṽf (see Fig. 6.1 and Fig. 6.2)
and the �uid pressure p̃f (see Fig. 5.17 and Fig. 5.18). Using these values we
can calculate the �uid stress tensor σ̃f . This tensor is de�ned in the deformed
con�guration. In order to calculate the stress tensor σf we need to apply the
transformation T−1. In the most general case we have to numerically solve an
equation to �nd the transformation T and then numerically invert this transfor-
mation in order to use T−1. One can use the Poisson's equation or a biharmonic
equation to extend the deformation of the domain Ωp on the domain Ωf and �nd
a mapping T . In our particular case this is not needed. As we focus on porous
media with low permeability, in close proximity to the interface ∂Ω̃pf the �uid
�ow is orthogonal to the interface. Also, the magnitude of the �uid velocity is
nearly constant along ∂Ω̃pf . Therefore, we can approximate the stress tensor
with the dominating pressure term σf ≈ pfI. Using this approximation we only

need to map the �uid pressure p̃f from the interface Ω̃pf to the interface Ωpf .
As we deform the grid using the elasticity deformation, this mapping we obtain
in a trivial way.

4. After we have calculated the normal component of the stress tensor σf , we use
it as the given force S (x) to solve the elasticity equations. In the general case
one can solve the Biot's system of equations (2.12), (2.15) with the boundary
conditions (2.16) and (2.17). In this work we use the plate model or the shell
model instead. For summary of the equations and the boundary conditions
governing the poroelastic plate and shell models see section 3.4. The e�ect
of the �uid �ow on the displacement of the porous media is covered either by
interface conditions in the case of the Biot system or through the right-hand-side
of poroelastic plate and shell systems.
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5. From the plate and shell models we get as a result the displacement of the
middle surface Ω̂p. In order to reconstruct the full porous domain Ω̃p, we use the
assumption that the thickness of the media does not change with the de�ection
of the porous material. For each (numerical) point of the deformed domain
middle surface we calculate the normal vector. On the distances −h

2 and h
2

we have the (numerical) position of the interface ∂Ω̃pf in the inlet- and outlet-
regions, respectively.

6. After calculating the displacement of the porous media up we update the com-
putational domains Ω̃p and Ω̃f (see Fig. 4.2). This captures the e�ect of the
displacement on the �uid �ow. In the general case we have to numerically solve
an equation in order to update the computational grid for the plain �uid region
Ω̃f . One can once again use the Poisson's equation or a biharmonic equation to
�nd the mapping T and use this mapping to move the grid vertices. Alterna-
tively one can also create a new grid (remesh), but this approach is even more
computationally expensive. We use special grids which allow us to update the
grid using interpolation. In section 4.3 we discuss in detail the construction of
these special grids.

7. After we have updated the grid (see Fig. 4.7), we go back to step 2. We repeat
the steps 2. to 6. until convergence. Convergence is achieved when there is no
change in domains Ω̃p and Ω̃f from one iteration to the next one.

As we use an iterative approach to solve the equations describing FPSI, we write
independently the discretizations of the �ow equations and the elasticity equations.
This allows us to use di�erent solvers for the algebraic systems that we obtain from
the discretization of the two systems of equations. We even use a special approxi-
mation in order to avoid additional computations for the mapping T and its inverse.
An alternative approach would be to use a monolithic discretization. Although the
monolithic solvers are known to be more stable, they do have their disadvantages.
In a monolithic discretization the algebraic system of equation is much larger as it
is incorporating in the same time the �uid velocity and pressure, the e�ective pore
pressure, the displacement of the porous media and the coupling mapping T . Such a
matrix also has a di�erent structure from the matrices of the independent �ow and
elasticity problem. There is no guarantee that solvers which work well for the sub-
problems would also give accurate solutions of the large monolithic system. Although
the monolithic system solves the �uid problem and the deformation problem together,
it does solve a non-linear problem (as the interface conditions depend on the solution
of the system). Therefore, one would have to perform Newton iterations in order to
accurately solve the system. Thus, the monolithic discretizations are more stable, but
they generally require more computational time and a more complex solver for the
linear system of equations.
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4.2 Discretization

In this section we discuss in more details how we discretize the di�erent systems of
equations.

4.2.1 Discretization of the Brinkman system of equations

In order to accurately capture the local conservation of mass in the Navier-Stokes-
Brinkman system of equations, we use the Finite Volume Method (see e.g. [53] and
[54]) to discretize the �ow problem. Although solving the incompressible Navier�
Stokes system of equations is not an easy task, this is a classic problem and FV
numerical schemes are well studied and used in wide area of applications (see e.g.
[55] and [56]). However, the Darcy term in the Navier-Stokes-Brinkman system of
equations creates an additional complexity. The permeability of the �ltering media
in oil �lter elements is often of order 10−10 while we set the permeability of the plain
�uid domain to in�nity. This creates a jump in the �ow resistivity K−1 of 10 orders
of magnitude through the interface Ω̃pf .

In the framework of FPSI we increase the numerical complexity of the problem even
further. Even if we have an initial grid with good properties, after the deformation
of the porous media the updated computational grid can have stretched elements. To
ensure a robust discretization of the equations with a large jump of the permeability on
complex (rough) grids, we use multipoint �ux-approximation method (MPFA). This
method was originally proposed for a scalar equation by Aavatsmark in [37]. It was
modi�ed for the Stokes-Brinkman problem in [38] by Iliev and co-authors. The main
problem that MPFA solves is the approximation of the �uid �ux∇ṽf . When using FV
on a general quadrilateral grid the pressure and velocity variables are de�ned in the
center of the quadrilateral elements (see Fig. 4.3). The line connecting the centers
of two adjacent grid elements in the general case is not perpendicular to the edge
which these two elements share. Thus, using only two elements to approximate the
�ux through a particular edge leads to an inaccurate numerical solution. The MPFA
method gives accurate approximation of the �ux through an edge by using multiple
elements to perform the approximation of such terms. While the pressure and velocity
variables are still de�ned in the centers of the primary grid (in Fig. 4.3 with red),
a second so called dual grid is used (in Fig. 4.3 with blue) in order to approximate
the �ux on the edge of a dual element. As a result the discretization scheme is more
accurate and robust.

To obtain the steady state solution of the Navier-Stokes-Brinkman system of equa-
tions, we solve the dynamic system of equations (2.9) until the steady state is achieved.
However, we use the time variable as a stabilizing parameter instead of considering it
as a physical time. This is why we call the discrete time steps �ctitious time steps.
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Figure 4.3: Schematic illustration of primary and dual cells in MPFA. Figure from
[37]

For the �ctitious time discretization we use a Chorin-type projection method. This
method is a fractional-time-step method. For each time step we �rst compute the �uid
velocity in an intermediate �ctitious time using an implicit scheme for the velocity
and using the pressure from the previous time step. As a second step, we compute the
pressure correction on the next �ctitious time step using the obtained fractional time
step velocity. We use this pressure to correct the intermediate solution for the �uid
velocity to the numerical solution on the next time step. For this reason the method
is also called a pressure correction method. For more information on the MPFA and
the Chorin-type method we use, see [37].

The linear systems at each �ctitious time step we solve with a robust algebraic multi-
grid method available in a commercial software. We use the implementation of the
SCAI Fraunhofer institute - see [43], [44] and [45] or visit the SCAI SAMG web page
[46].

4.2.2 Discretization of the Biot's system of equations

To validate the accuracy and validity of the poroelastic plate and shell models, we
numerically solve the Biot's system to use as a reference solution. For this simulations
we make use of the commercial software COMSOL Multiphysics version 4.2. This
software provides implementation of the Finite Element Method for discretization.
We use linear elements for the pressure and quadratic elements for the displacement
�eld. It is important to note that for certain geometries, boundary conditions and
computational grids, it is necessary to use higher order elements for the displacement
�eld in order to avoid non-physical locking e�ects. To avoid such locking e�ects we
use triangular prism elements instead of tetrahedral elements - see Fig. 4.12. The
resulting linear algebraic system of equations we solve using the iterative Generalized
Minimal Residual method (GMRES) implemented in COMSOL Multiphysics.
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4.2.3 Discretization of the linearly elastic shell system of equations

To discretize the system of equations (3.11), (3.12) and (3.13) we use a Finite Dif-
ference (FD) discretization. We use a grid {xi, i = 1, 2, ..., n} and the notation Fi :=
F (xi) for every function in the discretization. Let us denote hi = xi − xi−1 for
n = 2, 3, ..., n. We describe in detail the discretization of the equation (3.11). The
equations (3.12) and (3.13) we discretize in the same manner. As ε, µ, λ and λ∗ are
constants we will omit them from the discretization of the separate terms. In the
left-hand side of equation (3.11) we have the following terms containing derivatives:

θ′′i ≈
(
θi+1 − θi
hi+1

− θi − θi−1

hi

)
1(

hi+1+hi

2

) , i = 2, 3, ..., n− 1, (4.1)

(
bu′
)′
i
≈
(
ai
ui+1 − ui
hi+1

− ai−1
ui − ui−1

hi

)
1(

hi+1+hi

2

) , i = 2, 3, ..., n− 1, (4.2)

(
b2w

)′
i
≈
b2i+1wi+1 − b2i−1wi−1

hi + hi+1
, i = 2, 3, ..., n− 1, (4.3)

w′i ≈
wi+1 − wi−1

hi + hi+1
, i = 2, 3, ..., n− 1. (4.4)

For the terms without derivatives we do not use any averaging. The values ai are
an approximation for bi+0.5 = b (xi + 0.5hi+1). We use the harmonic mean for an
approximation.

ai =
2bibi+1

bi + bi+1
, i = 2, 3, ..., n− 1. (4.5)

We approximate the right-hand side terms containing derivatives in the following
matter:

(
p2
e

)′
i
≈
p2
e(i+1) − p

2
e(i−1)

hi + hi+1
, i = 2, 3, ..., n− 1, (4.6)

(
bp2

o

)′
i
≈
bi+1p

2
o(i+1) − bi−1p

2
o(i−1)

hi + hi+1
, i = 2, 3, ..., n− 1. (4.7)
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In order to ensure the Dirichlet boundary conditions (3.14) we impose:

θ1 = θn = 0, u1 = un = 0, w1 = wn = 0. (4.8)

To solve the resulting linear system of equations we use the direct solver of the com-
mercial software MATLAB version R2013.

For one example in this work we provide an additional numerical solution of the
poroelastic shell model using COMSOL Multiphysics version 4.2. In this case we use
a FEM discretization with second order element. As in the FEM method we use
the weak formulation of the poroelastic shell model (3.3), we impose the boundary
conditions also weakly by penalization terms. This allows us to impose more boundary
conditions and to test a particular hypothesis. In order to solve the resulting linear
system of equations we use the Multifrontal Massively Parallel Sparse direct Solver
(MUMPS) implemented in COMSOL.

4.2.4 Discretization of the poroelastic plate equation

For the discretization of the biharmonic equation 3.20 we once again make use of the
commercial software COMSOL Multiphysics version 4.2. We use the Finite Element
Method to discretize the equation (3.27). As we discuss in section 3.3, we impose
the boundary conditions weakly. We use the quintic Argyris triangular elements in
order to avoid locking e�ects near the boundary. These elements have six degrees of
freedom in each vertex and one degree of freedom per edge of a triangular element.
The choice of the degrees of freedom allows for C1 continuity of the solution with C2

continuity at the vertices of the triangular elements. These elements were described
by Argyris in [47] and initially called TUBA elements. In this work they were used
to solve plate bending problems. When interested in the steady state solution, the
elastic and poroelastic Kircho� type plate models di�er only in the right-hand side
of the biharmonic equation. When the plates are uniformly loaded, the right hand
sides of the biharmonic equations for elastic and poroelastic media only di�er by a
factor. For this reason we are using the quintic Argyris triangular elements to solve
the poroelastic plate equation.

4.3 Computational grids

In this section we discuss the computational grids that we use in order to discretize
the di�erent systems of equations. For visualization we use the commercially available
software COMSOL Multiphisics version 4.2 and the open-source software ParaView
version 4.1.0 64-bit.
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Figure 4.4: Initial grid for a rectangular channel

4.3.1 Computational grids for the Brinkman system of equations.

Flat media

In this work we consider two di�erent types of geometries on which we solve the
Navier-Stokes-Brinkmamn system of equations. The �rst geometry is a section of a
rectangular channel (see 5.19). For this simple geometry we use a Cartesian grid to
mesh the initial domain Ω. A segment of such a Cartesian grid near the porous media
is shown in Fig.4.4. With blue color we represent the free �ow region and with red
color the poroelastic media.

As discussed in 4.1, we deform this grid with the deformation of the porous media.
Let us �rst discuss the inlet region. For the grid vertices on the inlet we consider no
change in their coordinates. After we obtain the numerical solution of the elasticity
problem, we know the deformation of the grid nodes inside the porous media. In the
case of initially �at �ltering media we use the poroelastic plate model. It provides the
displacement of the middle line. In this model we assume the Kircho�'s hypothesis.
This means that the line perpendicular to the middle surface stays perpendicular after
displacement. Thus having the position of the middle surface and calculating the
normal vector, we can obtain the position of all of the grid nodes after displacement.
Let us focus on a vertical line of grid nodes in the upper plain �ow region. We set
the most top node not to have any displacement and the most bottom one to have
a given deformation (obtained from the elasticity solution). The grid displacements
of the grid nodes in between we obtain by linear interpolation between the two �xed
values. Note that this is only a simple calculation and it does not require solving
of an additional system. Such a method can be referred to as grid stretching. The
displacements of the outlet region we handle the same way. In Fig. 4.5 we show how
the grid from Fig. 4.4 is being stretched with the deformation of the porous media.

4.3.2 Computational grids for the Brinkman system of equations.

Poroelastic pleat

The second geometry which we consider is a single poroelastic pleat in a rectangular
channel - see Fig. 4.1. For this more complex geometry we create a special boundary-
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Figure 4.5: Deformed grid for a rectangular channel

Figure 4.6: Initial grid for a channel with a pleated �ltering media

and interface- �tted grid - see Fig. 4.6. Firstly we discuss how we handle the change
of the domain with the deformation of the porous media and then we will discuss how
we construct the numerical grid itself.

The geometry of a single pleat (see Fig. 4.6 and Fig. 4.1) is more complex than a
�at �ltering media. However, in Chapter 5 we demonstrate that under uniform load,
the deformation of the pleat is primarily in the straight part of the pleat. Next to the
straight parts of the pleat we use a Cartesian grid. Thus, we can once again apply the
our strategy for grid stretching that we use for initially �at �ltering media. We move
only points inside the Cartesian region having in mind the symmetry of the domain
and the loads. In this con�guration we �x the top and the middle vertical lines of
vertices. After calculating the displacement of the nodes in the top straight part of the
�ltering media, we interpolate them between the top and the middle line to update
the position of the vertices in the grid. In a similar manner we �x the middle and the
bottom line of vertices. Then, knowing the displacement of the vertices in the bottom
half of the porous media, we interpolate them between the middle and bottom vertical
lines in order to obtain the new position of the bottom half of the grid vertices. An
example of a grid after displacement of the porous media takes place is presented in
Fig. 4.7.

In Fig. 4.8 we show only a section of the grid presented in Fig 4.7 in order to give
a more detailed representation of the computational grid. The porous media that we
consider is in a shape of a pleat with constant thickness along its length. When the
�ltering media is with small permeability, the �ow through it is primarily perpendic-
ular to the surface of the pleat. In order to accurately capture such �ows we use a
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Figure 4.7: Deformed grid for a channel with a pleated �ltering media

Figure 4.8: Detailed view of a deformed grid for a channel with pleated �ltering
media

locally orthogonal grid for the �ltering media. In the straight parts we use a Cartesian
grid. In the tip of the pleat (sector of a circular domain) we use a regular cylindrical
grid (see Fig. 4.8). In the regions of free �ow next to the straight parts of the �ltering
media, we also use a Cartesian grid.

The subregions that are not trivial to mesh are around the tip of the pleat. Let us
�rst discuss the sub-domain outside of the circular part of the �ltering media. For
each eighth of a circle we have a quadrilateral sub-domain with three straight sides
and one curved concave side. In these curved-boundary quadrilateral sub-domains we
use locally Cartesian grids.

Let us now discuss the sub-domain inside the circular part of the �ltering media (see
Fig.4.9). For each fourth of a circle we have a topologically triangular domain with
two straight sides and one curved side. In order to create the grid in this region we
consider multiple grid layers. In the most outer layers we create a locally orthogonal
grid next to the curved interface. As we create the layers closer to the center of the
circular sub-domain, we reduce the number of the quadrilateral elements. In Fig. 4.9
we have 8 elements in the most outer layers for a quarter circle. Using a layer with
diamond-type elements we reduce the elements in a layer from eight to four. Near
the center of the circle we use a diamond-type grid element to reduce the four grid
elements in a layer to one. In a more general scenario we start with an even number
of elements in the most outer layer. We reduce them to one using multiple layers
containing diamond-type grid elements. In Fig. 4.6, Fig. 4.7 and Fig. 4.8 we also
introduce additional layers to control the number of elements that a vertex has (dual
connectivity of a vertex). In the latter grids the dual connectivity of each vertex is
between three and �ve. This restriction on the number of dual elements is not always
required and for some examples we do not create these additional layers.
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Figure 4.9: Deformed grid in the inner region of a tip in a single pleat

We also extend the grid generation to more complex geometries of multiple pleats.
In Fig. 4.10 we demonstrate a domain which has 60 pleats and is resembling a cross
section of a �lter of the same type as the industrial oil �lter presented in the left side
of Fig. 1.1. In this geometry we consider the domain around a single pleat to be a
sector of a circle rather than a rectangular box. In this case some of the rectangular
sub-domains are now quadrilateral subregions with one or two curved boundaries. In
Fig. 4.11 we present a segment of the grid that we have created to perform numerical
simulations on the domain presented in Fig. 4.10. One result of these numerical
experiments we present in section 6.2.

4.3.3 Computational grids for the Biot's system

We use the solutions of the Biot's system as a reference solution for the poroelastic
plate and shell models. As computational grids for the Biot's system when comparing
with the poroelastic plate model, we use triangular prism grid elements - see Fig. 4.12.
The choice of this grid elements (and FEM elements) is partially in order to avoid
numerical locking e�ects. On the other side with this geometry we have a triangulation
of the top circle of the domain. We use this triangulation as a grid in the numerical
solutions of the poroelastic plate model. The use of such similar grids helps us with
the control of the approximation errors. The grid shown in Fig. 4.12 is with a low
number of elements - 1800. This grid we use only for ease of visualization. For accurate
numerical experiments we use grids with as much as 70 000 prism elements.

When we use the Biot's system as a reference solution for the elastic shell models, we
perform 2D simulations for plain strain simulations (we set all of the derivatives in
one direction to 0). We perform such experiments on a geometry of circular segment
(see Fig. 4.13) and 2D pleat cross-section (see Fig. 4.14). For the latter examples we
use triangular grids ensuring at least 3-4 elements through the thickness of the media.
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Figure 4.10: Cross-section of a round �lter housing with 60 pleats

Figure 4.11: Segment of a grid for a �ltering media with 60 pleats
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Figure 4.12: Grid consisting of triangular prism elements

Figure 4.13: Triangular grid for a circular arch

If one would have only two layers of triangular elements, there might be a vertex in
which two boundary conditions are imposed weakly. If such a vertex exists, one can
observe decrease of the accuracy of the solution or numerical instability.

4.3.4 Computational grids for the linearly elastic shell model

We use two di�erent grids to discretize the middle line of a thin poroelastic body. For
greater numerical accuracy we use regular grids with a large number of points. We
make use of those grids to test the accuracy and the validity of the poroelastic shell
model.

For more practically relevant simulations we use a di�erent discretization approach.
We take the initial grid from the �ltering media for the �ow problem. It is locally
orthogonal and it is resolving the middle surface of the porous media. Instead of using
these grid nodes, we use the center points of each line as a grid point for the elasticity
grid. This allows us to transfer the pressure and the normal component of the stress
tensor from the �ow simulation to the elasticity problem with no need of interpolation.
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Figure 4.14: Triangular grid for a 2D pleat

4.3.5 Computational grids for the poroelastic plate model

As we discussed in subsection 4.3.3, we use as a grid for the poroelastic plate model
a triangulation inherited from the grid used in the Biot's system. As we consider a
cylindrical domain, we can use the triangulation of the top of the cylinder as a grid
for the middle surface.
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Chapter 5

Numerical validation

In this chapter we test the accuracy and the validity of the di�erent mathematical
modes we use. We also measure the accuracy of the numerical algorithms. Whenever
possible, we make use of available analytical solutions. However, most of the problems
are very complex and no analytical solutions are available. In these cases we use
numerical solutions of the governing equations or numerical solutions on very �ne
grids as reference solutions. At the end of this chapter we preform the ultimate
validation, testing numerical solutions against a physical experiment.

For visualization of the results in this chapter we use the commercially available
softwares COMSOL Multiphisics version 4.2 and MatLab version R2013 as well as
the open-source software ParaView version 4.1.0 64-bit.

5.1 Validation and range of validity of the mathematical

models

In this section we perform numerical experiments to validate the accuracy and validity
of the mathematical models we use. As we use the approximate poroelastic plate and
shell models it is very important to show when they give accurate solutions and when
not. While plates and shell models in linear elasticity have been analytically and
numerically studied, in poroelasticity such studies have not been done yet.

5.1.1 Validation of the shell model

In this subsection we validate the linearly elastic shell model against the governing
3D Biot's system. We consider a material with the mechanical properties of Young's
modulus E = 500KPa and Poisson's ratio ν = 0.33. As presented in section 4.2.3,
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we use a FD discretization for the linearly elastic model. We have developed a C++
code to build the matrix and the right-hand of the linear system of equations and
we use the MatLab direct solver. As presented in subsection 4.2.2, we use a FEM
discretization for the Biot's system. We build the linear system of equations and we
solve it in COMSOL (using the build in MUMPS direct solver). In this section we
consider a 2D plain-strain system. We exclude the derivatives in one spatial direction
from the Biot's equation assuming that the media is in�nite in this direction. Also
no strain or stress is generated from bending with respect to this chosen direction.
The resulting Biot's system is two-dimensional. The resulting elastic shell model is a
cylindrical shell (also known as a cylindrical beam). In this section we focus on the
model e�ects and not on the discretization errors. For this reason we consider only
very �ne Cartesian grids for the linearly elastic shell.

Uniformly loaded pleat

Let us �rst consider a relevant geometry for �ltration processes. We present numerical
simulations for the geometry of a single pleat - see Fig. 5.1 left. We consider a pleat
with thickness h = 1 cm, straight part of 40 cm and inner radius of the tip r = 1 cm.
We �x the pleat in the left and right straight parts. In the Biot's system we consider
a uniform load along the inner side of the pleat. In Fig. 5.1 left we present with a
blue line the boundary Γ1 on which we apply load. Let the rest of the boundary (the
outer side of the pleat) be Γ2. As boundary conditions in the Biot's system we use

S (x) =

{
10 Pa n, x ∈ Γ1

0 Pa n, x ∈ Γ2

, P (x) =

{
10 Pa, x ∈ Γ1

0 Pa, x ∈ Γ2

. (5.1)

On the outer boundary of the pleat we have S (x) = 500 Pa n and P (x) = 500 Pa.
This represents no load and no resistance. Thus we have uniform load along the pleat.

In the shell model the latter conditions are accounted for in the right-hand side of the
system of equations. For the Biot's system we use a triangulation with 1746 elements.
For the linearly elastic shell model we use a Cartesian grid with 3000 grid points.
The numerical results from the Biot's system are presented in Fig. 5.1 middle. The
colors represent the magnitude of displacement. Dark blue color stands for smallest
displacements and dark red stands for the largest displacements. Once again we
consider loads leading to displacements of the order of the thickness of the media. For
such cases the use of the Biot's system based on linear elasticity is justi�ed. For larger
displacements one might need to make use of non-linear elasticity models. The x-axis,
y-axis and the magnitude of displacement are displayed in cm. We can see how the
displacement of the media are largely in the straight part of the pleat. We use this
e�ect to update the computational �ow grid in the case of FPSI without the need of
remeshing.
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Figure 5.1: left - pleat geometry, middle - displacement obtained using the linear
elasticity model, right - displacement obtained using the linearly elastic shell model

The numerical results from the shell model are presented in Fig. 5.1 right. The blue
dashed line represents the initial position of the pleat's middle line and the thick red
line represents the position of the pleat's middle line after deformation. In this case
the numerical result for the linearly elastic shell model shows the same deformations
as the Biot' system.

This example shows good agreement between the numerical results obtained with the
shell model and the Biot's system.

Uniformly loaded circular arch

Let us also consider the deformation of a circular arch (see Fig. 5.5). We consider this
geometry as the curvature of the middle line of the porous media is a constant. In
this case the shell model simpli�es and we can focus on the physical behavior of the
system. We do not have to consider errors coming from the discretization of terms
with varying coe�cients. Let the arch have inner radius r = 1.9 cm and thickness
h = 0.1 cm. Let the arch be �xed at the bottom straight sides. We consider a uniform
load on the inner boundary of the circular arch. We present this inner boundary Fig.
5.5 with a blue line and denote this sector with Γ1. Let us denote the rest of the
curved boundary (the outer boundary of the circular arch) with Γ2. In the Biot's
system we consider the following loads:



48 Chapter 5. Numerical validation

Figure 5.2: Circular arch. The blue line represents the boundary under load

S (x) =

{
500 Pa n, x ∈ Γ1

0 Pa n, x ∈ Γ2

, P (x) =

{
500 Pa, x ∈ Γ1

0 Pa, x ∈ Γ2

. (5.2)

On the outer boundary of the circular arch we have S (x) = 500 Pa n and P (x) =
500 Pa. This represents no load and no resistance. Thus we have uniform load along
the circular arch.

In shell model the above conditions come in the right-hand side of the system of
equations (see section 3.2). As computational grid for the Biot's system we use trian-
gulation with 1481 elements. For the shell model we use a Cartesian gird with 1000
points.

The results obtained from the shell model we present in the left side of Fig. 5.3. The
axes are displayed in cm. The blue dashed line stands for the initial position of the
middle line of the arch domain. With the thick red line we show the obtained middle
surface after displacement.

The numerical results from the Biots's system are presented in the right side of Fig.
5.3. The colors represent the magnitude of displacement. Dark blue color stands
for small displacements and dark red color stands for the largest displacements. We
should note that with the given material properties and boundary loads, we observe
displacements of the order of the material thickness h. These are considered to be
small displacements and the linear elasticity model, which the Biot's system is based
on, is valid. With linear elasticity one can simulate accurately some type of large
(nonlinear) displacements. In the general case, however, nonlinear models are re-
quired to accurately capture nonlinear e�ects in large displacements. The axis and
the magnitude of displacement are displayed in cm.

Like in the previous example, we obtain the same results from the numerical solutions
of the shell model and the Biot's system.
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Figure 5.3: Initial and deformed state of a circular arch. Left - results obtained from
the shell model, right - results obtained from the Biot's system

Non-uniformly loaded pleat

Let us now consider the geometry of a single pleat under a di�erent loading. Instead
of uniform load, we load only the middle third of the pleat's left side - see Fig. 5.4
left. We present the boundary under load Γ1 with a blue line. Let the rest of the
boundary be Γ2. In the Biot's system we consider the following boundary conditions:

S (x) =

{
2 Pa n, x ∈ Γ1

0 Pa n, x ∈ Γ2

, P (x) =

{
2 Pa, x ∈ Γ1

0 Pa, x ∈ Γ2

. (5.3)

In the linearly elastic shell model the latter conditions are accounted for in the right-
hand side (see. section 3.2).

We present the numerical results from the Biot's system in the middle of Fig. 5.4.
The colors represent the magnitude of displacement. Dark blue color stands for the
minimal displacements and dark red stands for the maximal deformation. The axis
and the magnitude of displacement are displayed in cm. With the particular material
properties and loads, we observe displacements of the order of the poroelastic pleat's
thickness h.

The numerical results from the linearly elastic shell models are presented in Fig. 5.4
right. The blue dashed line represents the initial position of the pleat's middle line and
the thick red line represents the position of the pleat's middle line after deformation.

In this example the numerical results for the Biot's system and the shell model give
di�erent results. The Biot's system captures the de�ection of the pleat's tip, while
the shell model shows no deformation of this region. The Biot's system captures the
de�ection of both the left and the right side of the pleat, while the shell model gives
no deformation of the right side of the pleat.
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Figure 5.4: left - pleat geometry, middle - displacement obtained using the linear
elasticity model, right - displacement obtained using the linearly elastic shell model

Non-uniformly loaded circular arch

To better understand the e�ect of a non-uniform load, let us consider the deformation
the more simple domain of a circular arch. We consider the same arch geometry as
presented in the earlier example in this section. In this example, however, we consider
a non-uniform load on the outer boundary of the circular arch. We consider non-zero
load in a 45◦ sector as shown in Fig. 5.5 with a blue line. Let us denote this sector
with Γ1 and the rest of the curved boundary with Γ2. In the Biot's system we consider
the following loads:

S (x) =

{
50 Pa n, x ∈ Γ1

0 Pa n, x ∈ Γ2

, P (x) =

{
50 Pa, x ∈ Γ1

0 Pa, x ∈ Γ2

. (5.4)

In shell model the above conditions come in the right-hand side of the system of
equations (see section 3.2). As computational grid for the Biot's system we use trian-
gulation with 1481 elements. For the shell model we use a Cartesian gird with 1000
points.

The numerical results from the Biots's system are presented in Fig. 5.6. The colors
represent the magnitude of displacement. Dark blue color stands for small displace-
ments and dark red color stands for the largest displacements. We should note that
with the given material properties and boundary loads, we observe displacements of
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Figure 5.5: Circular arch. The blue line represents the boundary under load

Figure 5.6: Displacement of a circular arch using the Biot's system

the order of the material thickness h. These are considered to be small displacements
and the linear elasticity model, which the Biot's system is based on, is valid. With lin-
ear elasticity one can simulate accurately some type of large (nonlinear) displacements.
In the general case, however, nonlinear models are required to accurately capture non-
linear e�ects in large displacements. The axis and the magnitude of displacement are
displayed in cm. The Biot's system preserves the length of the poroelastic material.

The results obtained from the shell model we present in the left side of Fig. 5.7. The
axes are displayed in cm. The blue dashed line stands for the initial position of the
middle line of the arch domain. With the thick red line we show the obtained middle
surface after displacement. As one can see this result is very di�erent from the Biot's
numerical solution presented in Fig. 5.6. The displacements that we observe are only
towards the center of the arch. The length of the middle surface is decreased after
deformation. There are two possible explanations for this phenomenon.

The �rst possibility is an inaccurate choice of boundary conditions. We set the dis-
placement and the rotation of the boundary points to zero. For linearly elastic (non-
porous) bodies which are strongly clamped, two boundary conditions are being set in
the approximate plate models. Besides the zero displacement of the boundary point,
the displacements in normal (to the boundary) direction are set to zero. Instead of
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Figure 5.7: Displacement of a circular arch using the linearly elastic shell model.
Left - FD, right - FEM

the last condition we set the rotation of the boundary point to zero. We perform two
tests in order to clarify if our choice of boundary conditions a�ects the shape of the
numerical results.

The �rst experiment we perform is to change the shell models in a small neighborhood
of the boundary points in the numerical scheme. We add penalization terms C̃1θ,
C̃2u, and C̃3w to the three equations of the elastic shell model in its strong form. By
choosing large enough constants C̃1, C̃2 and C̃3, we set the boundary conditions of
zero displacement through the equations. We add the condition of zero displacement
in normal to the boundary direction by a boundary condition. The numerical results
show the �rst few points next to the boundary point not to have any displacement.
However, we do not see any change in the shape of the media after the displacement.

The second experiment we perform is to use COMSOL to obtain a numerical solution
of the linearly elastic shell model using FEM. We use the weak formulation 3.3 of
the shell model and we impose all of the necessary boundary conditions weakly. We
present the results of the COMSOL simulation in the right side of Fig. 5.7. With
the green line we show the initial position of the middle line. With the blue line we
present the position of the middle line after deformation. The solutions obtained with
the FD and FEM discretization match perfectly. For the solution presented in the
right side of Fig. 5.7 we use quadratic Lagrangian FEM elements on a mesh with
100 grid points. In order to solve the linear system of equations we use the MUMPS
direct solver build in COMSOL. We have also performed numerical experiments using
elements of order one, three, four and �ve. We do not observe any change in the
solution. We should note that one should carefully choose the penalizing constants
in order to obtain a stable solution. This is especially important when using higher
order elements. For this geometry and boundary loads we use the penalizing constants
C̃1 = C̃2 = C̃3 = 107.

The numerical experiments show that the di�erence in the shape of the solutions of
the Biot's system and the shell model are not due to inaccurate representation of the
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boundary conditions. The only possibility left is that for this geometry, boundary
conditions and boundary loads, the solution of the linearly elastic shell model does
not converge to the solution of the governing elastic system in the Biot's equations.
The convergence of the shell model to the governing model depends highly on the
particular choice of geometry, boundary conditions and forces applied (see [34]).

The examples presented in this section show a limitation of the shell model.

5.1.2 Validation of the plate model

In this section we test the validity of the poroelastic plate model against the Biot's
system.

Di�erent media thickness

In this subsection we validate the numerical solutions of the poroelastic plate model
(3.20) against the governing Biot's system (2.12), (2.13). In subsection 5.2.2 we
demonstrate the accuracy of the poroelastic plate solver. However, the poroelastic
plate and shell models are an approximaiton of the Biot's system. Even when the
discretization errors of the solution are small, we could have a large error from the
model. For large values of the thickness of the media h the approximation models are
not accurate. It is important to understand when exactly the thickness of the media
is large enough to accumulate a visible error. For linear elasticity and linearly elastic
shell models studies have been made. The studies show that for media with thickness
less than 4% of the characteristic body length (in our case R), the shell model gives
accurate solutions. For elastic media with thickness more than 4% of the characteristic
length the di�erences between the shell model and the linear elasticity is large. This
is due to a term containing

√
h which is omitted in the asymptotic derivation of the

linearly elastic shell models. The Biot's system is a more complex one and although it
is based on linear elasticity it is important to see if this estimation holds for poroelastic
bodies. This is why we perform numerical experiments comparing numerical solutions
of the shell model we use against Biot's system for bodies with increasing thickness.
We are also interested in the accuracy of the poroelastic plate for thin media and loads
leading to displacements which we expect to observe in industrial �ltering media.

For the Biot's system we consider a cylindrical poroelastic body (see Fig. 5.8 right).
The poroelastic plate system is de�ned on the middle surface of the domain of interest
which is a circle in this case (see Fig. 5.8 left). We uniformly load the elastic body.
This results in a cylindrical symmetry for the system. On Fig. 5.9 we present one set
of numerical solutions of the shell model and the Biot's system for a particular set of
physical parameters and loads. One can see that the numerical solutions also have
cylindrical symmetry. For this reason we present a comparison of the displacements
obtained from the two models on a shared diameter - see Fig. 5.8.
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Figure 5.8: left - diameter in the circular 2D domain, right - diameter in the central
surface of the 3D domain

Figure 5.9: left - deformation of a thin cylinder obtained using the poroelastic plate
model, right - deformation of a thin cylinder obtained using the Biot's system

In all of the examples in this subsection we consider as a geometry a cylinder with a
radius R = 2.5 cm. As mechanical parameters we use Young's modulus E = 106 Pa
and Poisson's ratio ν = 0.33. As relative errors we consider the following norms:

L̂∞ =
‖ωplate − ωBiot‖L∞

‖ωBiot‖L∞

, L̂2 =
‖ωplate − ωBiot‖L2

‖ωBiot‖L2

. (5.5)

Let us consider di�erent thicknesses of the reference 3D body of a thin circular cylinder.
In table 5.1 we present the relative errors for a medias with thicknesses h = 2%R,
h = 4%R and h = 8%R. For these examples we use the following load:

S (x) =

{
0.103079 Pa n, x ∈ Γ+

0 Pa n, x ∈ Γ−
, P (x) =

{
0.103079 Pa, x ∈ Γ+

0 Pa, x ∈ Γ−
. (5.6)

Using the relation (5.9) we chose the pressure drop in such a way that the amplitude
of the displacement is around 0.1h.

From table 5.1 one can see how the model error from the approximate plate model
increases with the increase of the thickness h. In Fig. 5.10 we compare the solutions
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h 2%R 4%R 8%R

L̂∞ 3.0039× 10−4 3.9880× 10−3 2.4414× 10−2

L̂2 2.4468× 10−3 7.2843× 10−3 3.1715× 10−2

Table 5.1: Relative di�erences between the plate model and the 3D solution for
di�erent thicknesses h

Figure 5.10: Comparison of the displacement of the middle line for Biot's system and
the poroelastic plate model. The thickness of the media is: left - 2%R, right - 8%R

of the two di�erent models for the thinnest porous media with h = 2%R on the left
and h = 8%R on the right. With the blue line we present the solution of the 3D
Biot's system and with the dashed red line we show the solution of th poroelastic
plate model. There is no visible di�erence between the solutions for the media with
thickness of 2%R. For media with thickness of 4%R we also do not observe visible
di�erence between the two models. For the thicker media with h = 8%R there is clear
di�erence between the two solutions. However, the solution of the poroelastic plate
model resembles accurately the shape of the Biot's solution. In particular industrial
applications, an average (or maximal) error of 1 − 2% (or even more) is within the
accepted tolerance as long as the shape of the solution is similar. In such cases the
poroelastic plate equations can be used instead of the Biot's system to obtain in timely
e�cient manner accurate solution.

Di�erent amplitude of displacement

Let us now consider media with constant thickness h = 2%T . We apply di�erent loads
giving di�erent amplitudes of displacement. From the relation (5.9) we can see that
doubling the pressure drop will result in displacement with two times larger amplitude.
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Figure 5.11: Comparison of the displacement of the middle line for Biot's system
and the poroelastic plate model. The amplitude of deformation is 8h

Clearly this is valid only for the poroelastic plate model and the solution of the Biot's
system may di�er. In table 5.2 we present the relative error of the poroelastic plate
model for numerical experiments with di�erent amplitudes.

|ω (0)| 2%h 10%h 50%h 100%h

L̂∞ 1.0009× 10−5 3.0039× 10−4 1.1023× 10−3 1.8050× 10−3

L̂2 3.7971× 10−4 3.7953× 10−4 3.8689× 10−4 4.1400× 10−4

Table 5.2: Relative di�erence between the plate model and the 3D solution for
amplitudes of displacement |ω (0)|

For the smallest displacement we apply the loads presented in equation (5.6). For
all of the other displacements we increase the load on the boundary Γ+ accordingly
(see (5.9)). For deformations with an amplitude as large as h the poroelastic plate
model is giving very accurate results. For these cases there is no visible di�erence
between the poroelastic plate model and the Biot's system. We do not consider larger
displacements in our studies of dead end �lters. In other applications one might
experiance larger deformations. In Fig. 5.11 we present the numerical solutions of the
Biot's system and the poroelastic plate model for displacements with amplitude of 6h.
With the continuous blue line we present the solution of Biot's system and with the
dashed red line the solution of the poroelastic plate model.

From Fig. 5.11 one can see that for larger loads (leading to larger displacements)
the approximate poroelastic plate model is not giving an accurate solution. However,
the plate model is giving a solution with the same shape as the Biot's system. For
particular industrial applications this model might be accurate enough.
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5.2 Numerical validation of the numerical algorithms

In this section we test the accuracy of the numerical algorithms and the discretization
schemes we use. As reference solutions we use available analytical solutions.

5.2.1 Validation of the Navier-Stokes-Brinkman solver

The Navier-Stokes problem (2.1) is a classical problem and analytical solutions are
available for some classes of geometries and �ow characteristics (see e.g. [57]). How-
ever, for general complex geometries no exact solutions are available. The Navier-
Stokes-Brinkman problem is even more complex and no exact solutions have been
derived for this model. In order to evaluate the accuracy of the numerical methods
which we apply to solve the Navier-Stokes-Brinkman system of equations we make
use of the following form of the Darcy's law (see [20])

Q =
KA (pp

+ − pp−)

µh
. (5.7)

With Q we denote the total �uid discharge - the volume of �uid which is passing
through a �xed cross-seciton with a surface area of A per unit of time. Woth pp

+ we
denote the e�ective pore pressure on the inlet side of the porous media on the surface
δΩ̃pf and with pp

− the the e�ective pore pressure on the outlet side of δΩ̃pf . We
apply the Darcy's law for the full thickness of the porous media h. In general it is also
valid for an arbitrary pressure drop along a given length. As we consider dead-end
�ltration, all of the �uid going through the inlet Γ̃in is passing through the porous
media. Thus for a �xed porous media the total �uid discharge through the interface
of the porous media is equal to the total �uid discharge on the interface. As we
prescribe a given velocity on the inlet Γ̃in as a boundary condition (see (2.4)), we can
calculate Q on the interface from the given inlet velocity. Having the thickness of the
media and the permeability, we then analytically predict the pressure drop through the
porous media. Recall that we consider porous media with small permeability K and
continuous pressure along the interface δΩ̃pf . Therefore, the dominating pressure drop
in our system is along the porous media. For this reason we compare the analytically
predicted pressure drop along the porous media with the numerically obtained total
pressure drop from the inlet to the outlet.

Di�erent computational grids for a long pleat

Our aim is to create an e�cient framework. We use special grids (see subsection
4.3.2) and advanced discretization techniques (see subsection 4.2.1) in order to solve
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e�ciently and in a robust manner the Navier-Stokes-Brinkman system of equations.
It is very important to test the accuracy of the solution on di�erent numerical grids.
In this subsection we present numerical experiments for two geometries consisting of a
single pleat in a rectangular domain. We consider a long pleat in this subsection and
a short one in the next subsection. Both short and long pleats are used in industrial
designs of �lter elements. In order to see the e�ects of the grid on the accuracy of the
solution, we �x all of the other parameters - the inlet velocity, the physical parameters
of the �uid, the porous media parameters and the solver con�guration.

As the �rst example we consider a pleat with a length of its straight part of 20 mm
and thickness h of 0.5 mm. To describe the circular regions of the pleat we prescribe
the inner radius r of the circular sector to 0.4 mm. To get the radius of the middle
line we have to add the half thickness h

2 . In this case the middle line has a radius
of 0.65 mm. The inverse of this middle radius is the local curvature of the middle
surface which we use in the poroelastic shell model. We position the pleat at an equal
distance of 2 mm from the inlet and from the outlet of the domain Ω. We consider
a �uid with a viscosity of 3.31 × 10−6 kg

mm s and a density of 2.8 × 10−6 kg
mm3 . We

set the inlet velocity vin to 300 mm
s . In this numerical experiment we consider porous

media with permeability of 3.4×10−5 mm2. Remember that we consider the e�ective
viscosity of the �uid inside the porous media to be equal to the �uid viscosity in a
plain �uid region. For this set of parameters, the Darcy's law gives us an analytical
pressure drop ∆pan = 0.86125548 kPa (we round the analytical value to its 8th digit
after the decimal point). In our numerical scheme we consider the �ctitious time step
τ = 104 s.

We have developed an algorithm for grid generation which allows for variation of the
grid layers next to the inlet and outlet regions. We can also change the number of
points on the straight and round parts of the pleat as well as the grid layers inside
the porous media. For the numerical setups presented in this setup the grid regions
which a�ect the solution the most are inside and around the porous media. For this
reason we set the layers of elements next to the inlet and outlet regions to six and
vary only the other parameters. Let us denote with S the number of grid vertices on
the straight part of the pleat, with T the number of grid vertices along the thickness
of the porous media and with A the number of grid nodes on a quarter circle of the
�lter tip. With Ntotal we denote the total number of grid cells for the particular grid.
In table 5.3 we present the numerically obtained maximal pressure pmax in Ω and the
minimum pressure pmin for di�erent grids. We also show the relative error Erel (see
equation (5.8)). We consider grids with very few elements as well as very �ne grids.

One can see from table 5.3 that all grids give relative di�erence between the numerical
pressure drop and the analytical prediction of less than 0.5%. For the �uid velocity
no analytical solution is available. In Fig. 5.12 we present the numerically obtained
pressure �eld and velocity magnitude for the grid in table 5.3 with the smallest number
of elements. In Fig. 5.13 we present the same data for a grid with an intermediate
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number of elements S = 20, Ntotal = 780. In Fig. 5.14 we present the numerical
solution for the �nest grid from table 5.3. In all of these �gures the pressure is given
in kPa and the velocity magnitude is given in mm

s . The inlet is on the left side of the
channel and the outlet is on the right one. As one can see the velocity solutions are
very similar.

Erel =

∣∣∣∣∣(pmax − pmin)−
(
p+
p − p−p

)
an(

p+
p − p−p

)
an

∣∣∣∣∣ (5.8)

S T A Ntotal pmax [kPa] pmin [kPa] Erel

5 4 4 310 0.864032 1.1300× 10−8 3.223805× 10−3

5 4 4 336 0.864013 1.2300× 10−8 3.201745× 10−3

7 4 4 388 0.863979 1.1100× 10−8 3.162267× 10−3

10 4 4 466 0.863931 3.4000× 10−8 3.106535× 10−3

10 5 4 500 0.864050 5.5045× 10−8 3.244705× 10−3

20 5 7 780 0.863940 7.6677× 10−8 3.116985× 10−3

50 5 7 2 444 0.864424 1.1347× 10−8 3.678955× 10−3

71 5 9 3 424 0.864609 1.1054× 10−8 3.893758× 10−3

133 5 9 5 904 0.864568 1.1049× 10−8 3.846153× 10−3

201 7 9 9 488 0.864661 1.6986× 10−8 3.954135× 10−3

Table 5.3: Numerically obtained pressure drop and relative error. Di�erent grids for
a long pleat

An important result from the performed experiments is the accuracy of the solution
on the grid with the fewest number of elements. With only 310 elements for the full
domain and with only three grid elements along the straight part of the pleat we
are able to obtain very accurate results. We achieve this accuracy as a result of the
special boundary- and interface- �tted grid we use as well as the MPFA used in the
FV discretization. The custom grid allows us to capture accurately the curved parts
of the domain while in the same time using small number of elements for more regular
regions. If one would use a Cartesian grid, a very �ne grid would be needed in order
to capture accurately the curved parts of the domain. This would result in a very
large number of elements overall. However, the custom quadrilateral grids we use
have stretched elements. Without special discretization techniques such an accurate
solution is not possible.

While using as little as three elements along the straight part of the pleat gives ac-
curate pressure drop and velocity magnitudes, this is not a practically useful grid for
FPSI. Firstly, the three elements can not capture accurately the deformation of the
�ltering media. Secondly, the �ltering media can not deform much, as this would
lead to extremely stretched elements. We get accurate solutions for all of our grids
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Figure 5.12: Pressure and velocity magnitude for a grid with very few elements. A
long pleat

Figure 5.13: Pressure and velocity magnitude for a grid with a medium number of
elements. A long pleat

with elements twenty times longer in one direction, comparing to the other. For
particular geometries, �uid �ows and solver parameters we can also obtain accurate
solutions with elements which are �fty times longer in one direction. If the elements
get stretched further we can not obtain accurate solutions anymore. This is due to
the e�ect of the grid quality on the condition number of the linear algebraic system
we got from discretization. The SAMG solver we use is a very robust one, but it still
has its limitations.

Di�erent computational grids for a short pleat

Let us now consider a di�erent geometry of a short pleat in a rectangular channel.
We reduce the length of the pleat's straight side from 20 mm to 5 mm. We do not
change any of the other geometrical or physical parameters. We also consider the
same �ctitious time step. In this case, as the same amount of �uid is going through a
smaller area of a the porous media, we have an increase in the pressure drop through
the media's thickness. In this example the Darcy's law gives an analytical pressure
drop of 2.69578659 kPa. In subsection 5.2.1 we present multiple grids to see the
e�ect of changing each of the grid parameters. Due to the small di�erence in the
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Figure 5.14: Pressure and velocity magnitude for a very �ne grid. A long pleat

accuracy of grids with similar number of elements, in this subsection we vary the grid
parameters more rapidly. The maximum and minimum pressure drop along with the
relative di�erence between the numerical solution and analytical prediction we present
in table 5.4.

S T A Ntotal pmax [kPa] pmin [kPa] Erel

8 4 4 390 2.72857 2.2672× 10−8 1.216098× 10−2

30 4 5 962 2.72652 2.2672× 10−8 1.140054× 10−2

90 5 7 4 032 2.73108 1.3599× 10−8 1.309206× 10−2

150 7 8 7 244 2.73171 3.4048× 10−8 1.332576× 10−2

Table 5.4: Numerically obtained pressure drop and relative error. Di�erent grids for
a short pleat

In this numerical example the di�erence between the numerically obtained pressure
drop and the analytical prediction is around 1%. To monitor the accuracy of the
velocity we plot the velocity magnitude for di�erent grids. We consider the solution
on the �nest grid as a reference solution. We present the pressure �eld and velocity
magnitude for the roughest and �nest grids from table 5.4 in Fig. 5.15 and Fig.
5.16, respectively. In these �gures the pressure is presented in kPa and the velocity
magnitude is given in mm

s . The inlet is on the bottom of the channel and the outlet
is on the top of the channel.

The velocity magnitudes have the same characteristics in the two cases presented.
Although we present selected �gures in this work, we monitor the accuracy of the
numerical solutions with respect to pressure and velocity in all numerical experiments
we perform.

Di�erent viscosity and permeability

So far we have presented the accuracy of the numerical solutions of the Navier-Stokes-
Brinkman equations for di�erent grids on two di�erent geometries. In table 5.5 we
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Figure 5.15: Pressure and velocity magnitude for a grid with very few elements.
Short pleat

Figure 5.16: Pressure and velocity magnitude for a very �ne grid. Short pleat
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demonstrate the accuracy of the solution for sets of viscosities and permeabilities. We
choose the geometry and grid presented in Fig. 5.13. We consider an inlet velocity
of 300 mm

s , a �uid density of 2.8 × 106 kg
mm3 and a �ctitious time step τ = 105 s.

We vary the permeability and the viscosity by the same factor so that we preserve
the analytical prediction of the pressure drop

(
p+
p − p−p

)
an

= 0.86125548 kPa (see
equation (5.7)).

µ
[

kg
mm s

]
K
[
mm2

]
pmax [kPa] pmin [kPa] Erel

3.31 10−7 3.4× 10−6 0.863946 1.49× 10−9 3.124508× 10−3

1.1 10−6 1.13× 10−5 0.863870 1.1× 10−9 3.036265× 10−3

3.31 10−6 3.4× 10−5 0.863937 3.31× 10−9 3.114059× 10−3

9.93 10−6 1.02× 10−4 0.863930 9.71× 10−9 3.105931× 10−3

3.31 10−5 3.4× 10−4 0.863897 7.66× 10−9 3.067614× 10−3

Table 5.5: Numerically obtained pressure drop and relative error. Di�erent viscosity
and permeability

As one can see from the data in table 5.5, varying the permeability and the viscosity
does not a�ect the accuracy of the solution.

Di�erent density

The last parameter that we vary is the �uid density ρ - see table 5.6. For this numerical
setup we consider the geometry and grid presented in Fig. 5.13. We set the inlet
velocity to 300 mm

s , the viscosity to 3.31× 10−6 kg
mm s and the permeability to 3.4×

10−5 mm2. For this set of parameters the analytical prediction of the pressure drop
of
(
p+
p − p−p

)
an

= 0.86125548 kPa.

ρ
[

kg
mm3

]
τ [s] pmax [kPa] pmin [kPa] Erel

1 10−8 103 0.864020 2.17× 10−9 3.209872× 10−3

1 10−7 103 0.863987 1.18× 10−8 3.171556× 10−3

1 10−6 105 0.863948 1.18× 10−9 3.126273× 10−3

5 10−6 105 0.863926 −1.33× 10−5 3.100729× 10−3

7.5 10−6 105 0.863933 8.87× 10−9 3.108857× 10−3

1 10−5 105 0.863935 1.18× 10−8 3.111179× 10−3

Table 5.6: Numerically obtained pressure drop and relative error. Di�erent density

As presented in table 5.6 we achieve good accuracy with di�erent values of the �uid
density. With the change of the density we vary also the �ctitious time step τ . Re-
member that we use the �ctitious time step as a stabilizing parameter. In order to
achieve accurate results we have to choose the τ depending on the inlet velocity, the
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permeability of the porous media and the �uid density. In this section we have shown
consistent accuracy of the solution independent of changes in the geometry, the grid
and the physical parameters. The e�ect of the �ctitious time step on the accuracy of
the solution is outside the scope of this work.

5.2.2 Validation of the elasticity solver

In subsection 5.1.2 we tested the validity of the elastic plate model (3.20) against
Biot's system. In this section we measure the accuracy of the linear elasticity solver
against an analytical solution of the Biharmonic equation. We also compare the
computational time required to solve the discretized plate model in comparison with
the discretized Biot's system.

Validation against an analytical solution

Westphal, Andrä and Schnack have derived in [48] an analytical solution for the
Biharmonic equation with a constant right hand side on a circular domain. The
solution is in the form of a series. Up to the knowledge of the author no analytical
solutions have been derived for the more complex cases of non-uniform load or/and
more complex geometries. Having the solution in a form of a series makes it hard
to use the L2 or the L∞ norm to validate our numerical solutions. However, the
analytical displacement of the center of the circular domain can be easily obtained.
Let us consider the normalized displacement at the center point 0:

w (0) =
64D

R4
(
f+
n − f−n

)w (0) . (5.9)

With R we denote the radius of the circular domain. For the normalized displace-
ment the analytical solution gives w (0) = 1. In table 5.7 we present a comparison
between a series of numerical solution and the analytical value of 1 for the normalized
displacement in the center point. We consider a cylindrical domain with a radius
R = 2.5 cm and a thickness h = 0.05 cm. We use a material with Young's modulus
E = 2×105 Pa and Poisson's ratio ν = 0.33. We load the poroelastic body uniformly

S (x) =

{
9 Pa n, x ∈ Γ+

0 Pa n, x ∈ Γ−
, P (x) =

{
9 Pa, x ∈ Γ+

0 Pa, x ∈ Γ−
. (5.10)

In table 5.7 we present the number of elements in the di�erent triangulations, the
Degrees of Freedom (DOF) of the discretizations, the numerical normalized displace-
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ments ω (0) and the numerical errors. To obtain the triangulations we use the build-in
COMSOL package. As one can see, the use of Argyris type of elements in the FEM
scheme leads to degrees of freedom about six times more than the elements in use.
As a numerical error we consider the di�erence between the analytical and numeral
values of the normalized displacement in the center point. Due to the shape of the
solution this is comparable to the error in sup norm.

Triangles DOF ω (0) Error

7 516 34 439 0.9942 0.0058
16 446 74 909 0.9990 0.0010
28 702 130 355 0.9996 0.0004
44 190 200 345 0.9998 0.0002

Table 5.7: Convergence of the numerical scheme due to the mesh size

The data in table 5.7 shows superlinear numerical grid convergence. We use the results
from this comparison to the analytical solution to control the discretization error in
similar and more complicated geometries.

Computational e�ciency of the reduced models

In our comparison with the Biot's system, the plate model has shown to be accurate
for variety of plate thicknesses and deformation amplitudes. When the plate model is
applicable it is important to know how much computational time we save by using it.
The Biot's system is a second order system of PDEs with four unknowns de�ned on a
3D domain. This problem is reduced to a forth order PDE with one unknown de�ned
on a 2D domain. The unknowns and the domain of interest are reduced which reduces
the degrees of freedom in the discretized problem. On the other hand the order of
the system is increased. In terms of �nite elements this is a requirement for smoother
elements of higher order and leads to an increase in the degrees of freedom.

Let us consider the same geometry, material parameters and loads as in the comparison
of poroelastic plate model against an analytical solution. In table 5.8 we describe the
setting of the numerical experiments and the computational time required to obtain
a solution. For the Biot's system we use a grid with four layers of triangular prisms.
We use the triangulation of the base of the cylinder as the triangulation of the domain
of for the plate problem. For this setting the degrees of freedom in the approximation
of the poroelastic plate model are 12.9 times less than the degrees of freedom in
the discretization of the Biot's system. Note that using four layers of prisms gives
an accurate solution for the simple geometry of a thin poroelastic cylinder. In more
complex geometries one might need more prism layers to achieve an accurate numerical
solution. In such case the DOF will decrease even more.
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We perform the study of the computational e�ciency on a single processor using a
single core. The discretization of the poroelastic plate model gives a small number of
DOF. We use a direct solver to solve the linear system resulting from the discretization
of the poroelastic plate equation. The build in MUMPS solver in COMSOL shows
its full potential when used on clusters with large and very large number of cores.
However, due to its robustness we use it for also for this numerical experiment set on
a single core.

The discretization of the Biot's system leads to a much larger algebraic system of
equations. Due to memory restrictions, using a direct solver is not feasible for such
a large system. To solve this system, we use the GMRES (Generalized Minimal
Residual) solver build in COMSOL with a geometric multigrid preconditioner.

Plate model Biot's system

Mesh Elements Triangles Triangular prisms
Type of �nite elements C1 Argyris type P2-P1
Number of �nite elements 16 980 67 920
Degrees of freedom 74 909 967 898
Solver Direct - MUMPS Iterative - GMRES
Computational time 9s. 725s.

Table 5.8: Setting of the numerical experiments.

The computational times for the two numerical experiments in table 5.8 show a large
increase of the computational e�ciency when using the approximate poroelastic plate
model instead of the Biot's system. In this particular experiment we gain a speedup of
eighty times. This example demonstrates the potential of poroelastic plate and shell
models. For more complex domains requiring signi�cantly more elements we expect
even further improvement in the computational time when poroelastic plate and shell
models are used.

5.2.3 Validation of the iterative algorithm for FPSI

In the previous sections of this chapter we have tested the accuracy of the �uid �ow
solver and the elasticity solver independently. In this section we test the convergence
of the iterative algorithm coupling the two systems.

Validation of the linearly elastic shell model

Let us consider the initial geometry and the initial grid presented in Fig. 4.6. In
Fig. 4.1 we show the same initial geometry without the computational grid for more
clear representation of the domains of interest. Let us consider a �uid with viscosity
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Figure 5.17: Pressure in the initial state

Figure 5.18: Pressure after displacement

µ = 3.31 × 10−6 kg
mm s and density ρ = 8.2 × 10−7 k

mm3 . We consider a poroelastic
material with permeability K = 1 × 10−6 mm2, Young's modulus E = 2 × 105 Pa
and Poisson's ratio ν = 0.33.

In Fig. 5.17 we present the pressure distribution in the initial (non-deformed) con�g-
uration. The pressure is given in kPa.

The pressure drop through the �ltering media is 9.80010 × 10−3 kPa. We use this
pressure drop to determine the load in the poroelastic shell model. The numerical
solution of the poroelastic shell models gives us the displacements in the nodes on the
middle line of the porous material. Using the assumption of thickness preservation,
we reconstruct the displacements in all of the computational nodes in the porous
material. In Fig. 4.2 we present the position of the pleat after deformation.

Having the displacements of the porous media, we stretch the grid (without remesh-
ing). The resulting grid in the deformed con�guration is presented in Fig. 4.5. A
more detailed view of the right side of this grid is presented in Fig. 4.8. With the
updated grid we run again the �uid solver in order to update the velocity �eld and
the pressure distribution. In Fig. 5.18 we present the pressure distribution in the
deformed con�guration. The pressure is given in kPa.

The pressure drop through the �ltering media after it has been deformed is 9.79378×
10−3kPa. This decrease is expected as the deformation of the porous media leads to
increase in the �ltration area. However, the decrease in the pressure drop is very small.
Although the deformation of the pleat is substantial, the pressure had decreased by
0.64%.
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We use the updated value of the pressure drop to numerically obtain the displacements
of the porous media. As in the previous iteration, we use the poroelastic shell model.
First we determine the displacements of the grid nodes in the middle surface. Then
we reconstruct the domain and we stretch the computational grid. The change in the
domain is so small, that in the third iteration of the �ow solver we once again obtain
a pressure drop of 9.79378× 10−3kPa.

Note that only two iterations are required to obtain the steady state solution of the
FPSI problem. The third iteration we perform only to validate the convergence of
the iterative scheme. We observe such a fast convergence for a wide range of inlet
velocities, �uid parameters and material parameters in the problem of a single poro-
lastic pleat in a rectangular channel. This demonstrates the e�ciency of the iterative
approach we use to solve the FPSI system of equations in the case of a single pleat in
a rectangular channel. It should be noted that for more complex con�gurations (e.g.
multiple pleats in a complex domain) we do not expect always to have convergence
within two-three iterations.

Validation of the poroelastic plate model

We have shown very fast convergence of the iterative scheme we use for the case of
a single poroelastic pleat in a rectangular channel. However, we achieve convergence
within the accuracy of the grid so fast, that we can not observe the rate of convergence.
For the more simple problem of an initially �at porous media in a rectangular channel
we can use a much �ner grid to reduce the discretization error as close as possible to
the machine error.

Let us consider a channel with a width of 30 mm and a length of 70 mm with a
porous media in the middle of the channel with a thickness of h = 1.2 mm (see Fig.
5.19 left). Let us consider a �uid with dynamic viscosity of 2.8 mPa s and density of
830 kg

m3 , a porous material with permeability of 3.36× 10−11 m2 and �exural rigidity
D = 7.0308 mm3 Pa and an inlet velocity of 1.5 cm

s . All of the variables are chosen
to match a physical experiment which we present in the next section 5.3.

In order to achieve maximal accuracy we use a Cartesian grid for the �uid �ow prob-
lem. We use a grid with 300 × 700 grid elements and we measure the pressure drop
with sixteen digits of accuracy.

In the left side of Fig. 5.19 we present the position of porous material before and
after displacement takes place. In the right side of this �gure we present the pressure
distribution before and after deformation.

As one can see in Fig. 5.19, the deformation of the porous media is small. The
change in the pressure drop is less than 1%. However, using a very �ne grid and
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Figure 5.19: Initially �at media in a channel before and after deformation. Left -
geometry, right - pressure �eld

saving the numerical data with very high accuracy allows us to capture the di�erence
in pressure drop and �lter deformation through multiple iterations. As a converging
criteria we use the relative (to the previous iteration) change in the displacement of
the central point in the �ltering media. In Fig. 5.20 we present the relative change
of the deformation of this point within ten iterations. We start with an iteration of
number zero and present the convergence for the iterations one to nine. The x-axis
of the plot is Cartesian and the y-axis of the plot is logarithmic. Fig. 5.20 shows
superlinear rate of convergence of the iterative method.

5.3 Numerical validation against a physical experiment

So far we have shown the validity of the approximate mathematical models, testing
them against the governing equations, and the accuracy and e�ciency of our numer-
ical methods. However, if the governing system of equations does not resemble the
behavior of real physical systems, the framework that we have developed can not be
applied in practical applications. For example, the Biot's system has been developed
to simulate the behavior of river beds. The materials used in dead end �ltration
are paper-like (consisting of woven or non-woven �bers) and it is very important to
understand if the Biot's system can be used to accurately simulate such a di�erent
porous material. The Navier-Stokes-Brinkman system of equations have shown to be
an accurate representation for �ltration processes with non-deformable media, but no
studies have been done to validate this model for deformable media. For this reasons,
a very important part of our study is to validate our numerical framework against a
physical experiment. In this section we perform this validation.
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Figure 5.20: Numerical convergence of the iterative method

5.3.1 Experimental setup

To accurately measure the deformation of a �lter during �ltration is not an easy task.
Industrial oil �lters often have a metal housing. This does not allow to optically
monitor the displacement of the �ltering media in an industrial �lter. There are
di�erent approaches to overcome this problem. One approach is to create a test
bench with optically clear materials. In the physical experiments performed by the
LMFA laboratory in Lyon, France, this approach has been used.

Along with an optically clear housing for the �lter, also an optically clear synthetic
oil has been used. This oil has dynamic viscosity of 2.8 mPa s and density of 830 kg

m3

at room temperatures. These values are in the range of dynamic viscosities and �uid
densities of motor oils at operating temperatures. Using such an oil gives an accurate
representation of industrial �lters.

In this test bench a rectangular channel with an initially �at porous media has been
used - see Fig. 5.21. We should note that clamping the porous material is also a
complicated task. If the porous media is clamped weakly, leaks might occur. Due
to weak clamping the �lter may detach from the housing. If the porous media is
very strongly clamped, the material �bers may break and the �lter will no longer be
attached to the housing. In the production of industrial oil �lters with initially �at
�ltering media, special machines are used to bend the metal housing with the �ltering
media in order to achieve strong, but non-destructive clamping. For the physical
experiments presented in this paper, rubber bands have been used to prevent leaks
and to ensure strong clamping. The rubber band in black color and the white �ltering
media can be seen in the left side of Fig. 5.21.

High quality cameras are used to optically measure the displacement of the porous
media - see Fig. 5.22. A laser with a cylindrical optical element is used to illuminate
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Figure 5.21: The rectangular channel in the physical experiments performed by the
LMFA laboratory in Lyon, France. The photo is courtesy of LMFA

the porous media with a planar sheet of light - see the left picture in Fig. 5.22. A
mirror is used in order to fully illuminate deformed �ltering media. A camera situated
above the channel captures an image of the illuminated part of the porous media - see
Fig. 5.22 left.

Two lenses can be mounted on the high quality camera. A lens with small magni�ca-
tion factor (see Fig. 5.22 middle) can be used to capture a photograph of the �ltering
media's full width. A sample photograph captured with this lens is shown in the left
side Fig. 5.23. Two images are given - the initial non-deformed state of the �lter and
the deformed position of the �lter. It should be noted that this picture is only for
illustrative purposes. For the validation of numerical against physical experiments,
we consider displacements of the order of the porous media thickness h. In such case
the de�ection of the porous media can not be captured accurately with such a wide
lens.

To capture accurately small displacements of the porous media, a lens with high
magni�cation factor is being used - see Fig. 5.22 right. Sample images photographed
with this lens are shown in the right side of Fig. 5.23. Due to the rough surface of
the porous media there is no sharp edge in the picture. An image processing software
is used to determine the mean displacement in a small area captured by the camera.
The shape of the �ltering media after deformation is measured by multiple photos in
di�erent small regions of the �lter.
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Figure 5.22: The cameras used in the physical experiments performed by the LMFA
laboratory in Lyon, France. The photos are courtesy of LMFA

The de�ection of the porous media clearly depends on the �uid �ux through the
material. The oil in the test bench is circulated by a pump. The �uid �ux is measured
in the pump outlet. To minimize the turbulence created by the pump, the �uid is run
through multiple grids in a large container before it enters the porous media. The test
bench also allows to measure the �uid pressure 3.5 cm before and after the porous
media. The width of the channel is 3 cm.

The physical experiment provides the de�ection of the porous media in multiple points
from a cross-section. In the results presented in this work only the central cross-section
is being considered. We perform numerical simulations for the same cross-section.
The width of the channel in the numerical simulation is 3 cm likewise the width of
the channel in the physical experiment. For the numerical experiment we consider
a channel with length of 7 cm with the porous media in the middle of the channel.
This way we can resemble accurately the pressure drop measured in the physical
experiments.

5.3.2 Parameter identi�cation

In order to compare the physical experiments to our numerical studies we have to
know the properties of the porous material. The permeability of the �ltering media
is measured and controlled by the �lter manufacturers. Usually the pressure drop



5.3. Numerical validation against a physical experiment 73

Figure 5.23: Sample deformations measured by the LMFA laboratory in Lyon,
France. The photos are courtesy of LMFA

through the media is measured for a given �uid �ux. Then using the Darcy law,
the media permeability is calculated. The �ltering material used in the physical
experiments in LMFA has permeability K = 3.36× 10−11 m2.

Measuring the mechanical properties of a saturated porous media is a complex prob-
lem. Standard test benches measuring the mechanical properties of di�erent materials
do not allow for a wet material to be measured. The liquid would simply leak out
of the porous material. Note that a saturated �ltering media can have mechanical
properties di�erent in orders of magnitude comparing to the same media when it is
not saturated. Usually the saturated materials are much stronger. Thus, measuring
the mechanical properties of the saturated porous media is a very important problem.

In this work we focus on the development of a numerical framework to solve the
direct problem of �lter de�ection due to �uid �ow. We can perform multiple direct
simulations to solve the inverse problem - to �nd the mechanical parameters of porous
material given its de�ection. We have all of the parameters except of the �exural
rigidity D. Note that for the initially �at �ltering media we use the poroelastic plate
model and the �exural rigidity is the only mechanical coe�cient in the equation. From
D only the ratio between the Young's modulus and Poisson's ratio can be determined.
To calculate both of these mechanical parameters additional information is needed.
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Figure 5.24: Initially �at media in a channel before and after deformation. Velocity
magnitude

For inlet velocity vin = 12.0889 mm
s , taking the displacement in the central point of the

�lter, we determine the �exural rigidity of material to be D = 7.0308 mm3 Pa. The
numerically obtained media displacement and pressure distribution are presented in
Fig. 5.19. In Fig. 5.24 we present the velocity magnitude before and after deformation.
The velocity magnitude is given in mm

s .

Fig. 5.24 shows the 3.5 cm before the �ltering media to be enough for Poiseuille �ow
to be established. For faster �ows the inlet should be placed even further from the
media to ensure no arti�cial numerical e�ects on the �ow from the inlet boundary
conditions.

5.3.3 Comparison of physical and numerical results

For a more accurate representation, in Fig. 5.25 we present the comparison between
the physical and the numerical experiments in an area close to the �ltering media.
With the white squares we present the displacement of the porous media measured
in the physical experiment. With the horizontal multicolored lines we present the
numerical position of the porous media after de�ection. The colors represent the
numerically obtained pressure. We also plot the streamlines and the �uid pressure in
the plain �ow regions.

Fig. 5.25 shows very good agreement between the numerical and physical experiments.
Note that we have used a measurement in only one point to determine the mechanical
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Figure 5.25: Comparison of the numerical and physical experiments for smaller
displacement

Figure 5.26: Comparison of the numerical and physical experiments for larger
displacement

parameters of the media. As now we have all of the physical parameters of the system,
we can compare the numerical and physical results for di�erent inlet velocities resulting
in di�erent amplitudes of de�ection. In Fig. 5.26 we present a comparison between
physical and numerical results for inlet velocity vin = 15.8544 mm

s . Once again we
present the data from the physical experiments with white squares.

Comparing Fig. 5.25 and Fig. 5.26 one can see an increase in the pressure drop with
the increase of inlet velocity. This is a behavior predicted by the Darcy law. Even
for the larger magnitude of displacement the numerical results accurately capture the
deformation of the porous media due to the �uid �ow through it. Note that for the
second example we have not used any measurement to calculate any parameters.

In table 5.9 we compare the numerically obtained pressure drop and maximal displace-
ment of the �ltering media against physical experiments for di�erent inlet velocities.
The inlet velocity is given in mm

s , the pressure drop through the �ltering media is
given in Pa and the maximal displacement (the displacement of the center point) is
given in µm.

Table 5.9 also shows very good agreement between the physical and numerically ob-
tained results. Note that in the physical experiment, the camera is moved manually
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Inlet velocity Numerical Physical Numerical Physical
vin

[
mm
s

]
pressure drop pressure drop max. displ. max. displ.

3.6553 245.271 272.9862 73.5855 73.9
7.6630 513.186 510.1056 153.9650 145.4
12.0890 809.473 793.0548 242.8558 240.8
15.8544 1064.68 1093.9374 319.4223 328.2

Table 5.9: Pressure drop in Pa and maximal displacement for di�erent inlet
velocities in µm. Numerical results and measurements from a physical experiment

along a rail to take photographs of di�erent regions. The di�erences between the
physical and numerical results are all within the accuracy of the experimental test
bench.

From the results in this section, we can determine that the mathematical models we
use accurately describe the physical phenomenon of FPSI in the case of dead end
�ltration.
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Chapter 6

Applications

In section 5.3 we have shown one application of the FPSI framework we have devel-
oped. We can use the e�cient framework to perform parameter identi�cation for the
mechanical properties of saturated porous materials. In this chapter we show further
applications of the numerical algorithms developed in this work.

6.1 Determining the e�ects of deformation in �ters

In subsection 5.2.3 we have performed numerical simulations for the de�ection of a
poroelastic pleat in a rectangular channel. In Fig. 5.17 and Fig. 5.18 we have the
pressure distribution before and after the de�ection of the pleat. The di�erence in the
pressure drop is not large which is the reason for the fast convergence of the iterative
scheme we use. If one considers only this result, it might seem that the deformation
of the porous media does not a�ect the �uid �ow substantially.

Let us now consider the velocity �eld of the �uid before and after deformation takes
place. In Fig. 6.1 and Fig. 6.2 we present the velocity magnitude in the initial and in
the deformed con�guration, respectively. In both of the �gures the velocity magnitude
is given in mm

s .

Figure 6.1: Velocity magnitude in the initial state
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Figure 6.2: Velocity magnitude after displacement

The comparison of Fig. 6.1 and Fig. 6.2 shows a signi�cant change in the �uid �ow
with the deformation of the porous media. The magnitude of the deformation is only
of the order of the small thickness of the media. However, the distance from the
straight part of the pleat to the top and bottom parts of the channel is also of this
order. Thus, even a small change in the position of the porous media can lead to a
large change of the �ow distribution.

In �ltration processes the �ow distribution determines the path of the solid pollutant
particles. A change in the �uid �ow may lead to a part of the �ltering media not
being used for �ltration of the pollutant. Such large velocities as in Fig. 6.2 may
even lead to solid particles being washed out from the porous media. This numerical
experiment shows us how important it is to incorporate the �uid deformation in the
numerical simulation of dead-end �ltration processes.

In this section we present the de�ection of a singe pleat. This is just an illustration.
In industrial �lters many pleats are being used in a �lter cartridge (see Fig. 1.1 left).
This is done to increase the �ltration area and to decrease the pressure drop through
the �lter. Increasing the �ltering area increases the �ltration e�ciency and the life
capacity of the �lter. The decrease in pressure drop allows smaller and more power
e�cient pumps to be used to circulate the oil. Using many pleats in a �lter cartridge
leads to small distances between the straight parts of di�erent pleats. Thus, we expect
the deformation of pleats in a �lter cartridge to have similar e�ect as in the example
presented in this section.

By including the �lter deformation in pleated �lter e�ciency simulations, one can
accurately determine the optimal number of pleats in a �xed housing.

6.2 Simulation of a round pleated cartridge

In subsection 4.3.2 we have presented the algorithm we use to create interface- and
boundary- capturing quadrilateral grids. So far we have presented numerical simu-
lations of a single pleat in a rectangular channel. As shown in Fig. 4.11, we have
extended the grid generation algorithm to round �lter cartridges with multiple pleats.
In Fig. 4.10 we show the full computational domain for the cross-section of a round
pleated �lter cartridge. In this section we present a numerical simulation for this
domain.
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Figure 6.3: Pressure distribution (left) and velocity magnitude (right) for a
cross-section of a �lter with 60 pleats

We consider a narrow inlet at the top side of the �lter housing. This is representative
for a cross-section near a pipe inlet on the side of a cylindrical �lter housing. As an
outlet we consider the inner circular boundary of the domain. In Fig. 6.3 we present
the pressure distribution and the velocity magnitude for one set of physical param-
eters and inlet velocity. We have used synthetic (non-physical) �uid and material
parameters to demonstrate qualitatively the behavior of such �lters.

On the left side of �gure 6.3 we present the pressure distribution in the inlet and
outlet region of the �lter element cross-section. With yellow we present the �ltering
media. With colors from red (high pressure) to blue (low pressure) we present the
pressure distribution in the inlet region of the porous media. The pressure near the
inlet is high and it is decreasing towards the lower side of the �lter. In the outlet
region we present the pressure distribution with colors from green (high) to purple
(low). In the outlet region the pressure distribution has a radial symmetry. This leads
to a non-uniform load of the �lter pleats.

As the shell models have shown to be inaccurate for non-uniform load, we have not
performed numerical simulations for the deformation of the pleats in this example. In
this case the governing Biot's system should be used to determine the deformation of
the �ltering media.

In the right side of Fig. 6.3 we present the numerically obtained magnitude of the
�uid velocity. As we use porous media with small permeability, the �ow distribution
along the �ltering media is close to uniform. This leads to a fast �uid �ow near the
inlet and slower �uid �ow in the part of the �lter further away from the inlet.
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Figure 6.4: Bending of a �lter under extreme loading conditions. The photo is
courtesy of IBS Filtran

The example presented in this section shows how we can use the grid generation
algorithm developed in this work to simulate physically relevant domains.

6.3 Poroelastic plates in complex geometries

In section 5.3 we have shown the accuracy of the poroelastic plate in FPSI simulations
for simple domains. In this section we demonstrate how the poroelastic plate model
can be used in more complex domains.

In Fig. 6.6 we present the de�ection of an initially �at �ltering media due to extreme
operating conditions. The media in this �gure is being supported by a rib structure
like the one presented in the right side of Fig. 1.1. Due to a fatal break in an
automatic car transition the �lter has been clogged with contaminant. This clogging
has increased the pressure drop through the �lter which leads to the de�ection of the
porous material. Although the de�ection of the porous material is comparable to the
small thickness of the material, the channels underneath the �lter have been reduced,
which changes the operation of the �lter element. In extreme cases the de�ection of
the porous media might even lead to a rupture. The supporting ribs in such �lters are
placed along the stream lines of the oil in order to reduce the resistance of the �lter
element. The example presented in Fig. 6.6 shows that monitoring the de�ection of
the porous media is also an important factor for the positioning of the rib structure.

In Fig. 6.6 we present a numerical simulation of the deformation of porous media
supported by a rib structure similar to the one presented in Fig. 6.6. Comparing
the two �gures one can see similar qualitative behavior. To numerically obtain the
displacement of the porous media we used the poroelastic plate model. Using the
assumption of thickness preservation, we reconstructed the 3D porous media which
we present in Fig. 6.6. On the left and right side of the domain we have used the
strong clamping boundary condition to represent the strong clamping of the �lter
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Figure 6.5: Numerical simulation of bending of a �lter under extreme loading
conditions

Figure 6.6: Numerical simulation of bending of a �lter under extreme loading
conditions. View from top

housing. In the near and further boundary of the domain we have used symmetry
boundary conditions to demonstrate that we can simulate a part of the �lter housing
and obtain qualitatively accurate results. As the ribs support the porous media only
from one side, we use weak clamping boundary conditions on the rib edges.

In Fig. 6.6 we present the displacement of the porous media by using a red to blue
color legend. The red color stands for large deformation and the blue color stands for
small deformation.

Fig. 6.6 shows that a nearly uniform distribution of the ribs can lead to regions with
large deformation and regions with small deformation. As we use the approximate
poroelastic plate model to calculate the deformation of the porous media, we obtain the
numerical result within seconds. Such a fast simulation can be used by a production
engineer to �nd a better placement for the ribs concerning the mechanical stability
of the �ngering media. For even further improvement of the �lter operation, this fast
method can be used in a multi-criteria optimization considering both the de�ection
of the porous media and the resistance of the ribs for the �uid �ow.
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The results presented in this section show how the poroelastic plate model can be
used for industrial problems.
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Chapter 7

Summary

This thesis provides an e�cient numerical framework for the �uid-porous structure
interaction (FPSI) in the context of dead-end �ltration. The main contributions of
this work are the following:

• Formulation of mathematical models which accurately represent the physical
phenomenon of FPSI in dead-end �ltration.

• Incorporation of poroelastic plate and shell models in the FPSI mathematical
models.

• Development of a robust customized numerical algorithm for the mathematical
models describing these FPSI problems.

• Validation of the approximate mathematical models.

• Validation of the numerical methods used to solve the mathematical models.

• Validation of the numerical framework against a physical experiment.

• Application of the numerical framework and the numerical methods for indus-
trially relevant simulations.

In the formulation of the mathematical models for FPSI in dead-end �ltration an im-
portant modeling aspect has been resolved. In previous works on FPSI modeling only
�ows parallel to the plain �uid-porous media interface have been considered. In this
work we have posed interface conditions resolving accurately the FPSI phenomenon
for �ows predominantly perpendicular to this interface. Also instead of using the
Darcy model, the Navier-Stokes-Brinkman system of equations has been used in order
to increase the robustness and accuracy of the numerical methods based on the FPSI
mathematical models.
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To increase the computational e�ciency for the simulations of thin �lters, poroelastic
plate and shell models have been incorporated in the mathematical models. It should
be noted that this work is also the �rst to numerically validate the poroelastic plate
and the linearly elastic shell models against the governing Biot's system. We have
demonstrated the bene�ts of the approximate models and also their limitations.

In the comparison with physical experiments we have shown the mathematical models
and the numerical algorithms to be accurate in the simulation of real-life systems. We
have demonstrated how the FPSI numerical framework can be used to identify the
mechanical properties of a saturated porous media, which is an important practical
application. We have also demonstrated the increase in the �lter simulation accuracy
when the �lter deformation is accounted for. We have shown how the grid generation
techniques developed in this work and the numerical algorithms we use can be applied
in the simulation of pleated and initially �at industrial �lters.

Due to the advanced modeling and numerical techniques used in this work, the result-
ing FPSI framework is robust and computationally e�cient.

The boundary- and interface- capturing Navier-Stokes-Brinkman solver we use is lim-
ited to 2D. The work in this thesis can be extended by adding 3D functionality to the
�ow solver. In a general 3D geometry, a general linearly elastic shell should be used
instead of the cylindrical elastic shell we have presented. The grid generation tech-
niques developed in this work can be used to create 3D grids for �lters with cylindrical
symmetry. Such a development of a general 3D framework would allow for accurate
simulations of �lters which incorporate non-symmetrical inlets and outlets.

Another way to further develop the studies of this thesis is to include equations de-
scribing the particle deposition in the FPSI framework. The deformation of the �lter
takes very short time. Thus, it has a clear e�ect on the �uid �ow and therefore on the
deposition of particles. For long periods of time the deposition of the contaminant on
the �lter can lead to a change in the �uid �ow. Thus, for more accurate long-time
simulations of dead end �lters, a two-way coupling between the �lter deformation and
the particle deposition should be included.
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Nomenclature

Ω total computational domain
∂Ω the external boundary of Ω

Ωp, Ω̃p porous media domain before and after deformation, respectively

∂Ωp, ∂Ω̃p the boundaries of Ωp and ∂Ω̃p, respectively

Ωf , Ω̃f free �uid �ow domain before and after deformation

∂Ωpf , ∂Ω̃pf �uid-porous structure interface respectively before and after de-
formation

Ω̂p the middle surface of porous media

∂Ω̂p the boundary of Ω̂p

Γweak part of ∂Ω̂p with supported weakly

Γstrong part of ∂Ω̂p with supported strongly

Γsymm symmetrical part of ∂Ω̂p

T mapping of Ωf on Ω̃f

F gradient of the mapping T
ṽf �uid velocity in the deformed con�guration
p̃f �uid pressure in the deformed con�guration
µ dynamic viscosity of the �uid
µ̄ e�ective dynamic �uid viscosity in the porous region
ρ �uid density
t time variable

Γ̃wall no-slip boundary

Γ̃in inlet boundary

Γ̃out outlet boundary
K permeability of the porous domain
σp stress tensor of a porous material
up vector of displacements in the porous media
pp e�ective pore pressure in the porous media

λ̂ �rst Lamé constant
µ̂ second Lamé constant
α e�ective stress coe�cient
β the inverse of the Biot's modulus
x a point in Ω
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n normal vector
S (x) given vector function
P (x) given scalar function
I identity operator or identity matrix
Oxyz orthonormal coordinate system
x, y, z point components in Oxyz
z̄ rescaled z-component
h thickness of the porous media
ε a small parameter
θ rotation of the line, perpendicular to the middle surface of a 2D

elastic or poroelastic media
u tangential component of the displacement of the middle surface

of a 2D elastic or poroelastic media
w normal component of the displacement of the middle surface of

a 2D or 3D elastic or poroelastic media
b curvature
L length of the middle line in a cylindrically symmetric poroelastic

media
φ test function for θ
ψ test function for u
ζ test function for w
H Hilbert space in which the test functions φ, y and z are de�ned

in the case of poroelastic shell

Ĥ Hilbert space in which the test function z is de�ned in the case
of the poroelastic plate

ρ (θ, u, w) function describing �exural deformation
γ (u,w) function describing membrane deformation
τ (θ, u, w) function describing shear deformation
f0,1 (φ, y, z) e�ective boundary loads and mass forces in the elastic shell

model
σf stress tensor in the plain �uid domain
σf+, σf− stress tensor in the plain �uid domain on the positive and neg-

ative interface, respectively
n+,n− normal vector on the positive and negative interface
t+, t− tangential vector on the positive and negative interface

p1,2
0 , p1,2

e rescaled interface loads in the elastic shell model

q1,2
0 , q1,2

e rescaled e�ective mass forces in the elastic shell model
D �exural rigidity
B elasticity parameter
N e�ective stress resultant
M bending momentum
ν Poisson's ratio
xi point in a regular grid
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n number of points in a regular grid
θi, ui, wi approximation in xi for θ, u and w, respectively
ai approximation of b in xi(
p2

0,e

)
i

approximation of p2
0 and p2

e in xi
Γ0 Γweak ∪ Γstrong

Γn Γstrong ∪ Γsymm

Γn2 Γweak ∪ Γsymm

Γ1 boundary under load
Γ2 boundary under no load
r radius of a circular domain
w analytical solution for w

L̂2 L2 norm

L̂∞ L∞ norm
Q total �uid discharge
A surface area
p+
p e�ective pore pressure on the inlet side of the porous media

p−p e�ective pore pressure on the outlet side of the porous media

Ntotal total number of grid cells
pmax maximal numerical pressure
pmin minimal numerical pressure
Erel relative error
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Acronyms

FPSI Fluid-Porous Structure Interaction
FSI Fluid-Structure Interaction
NURBS Non-Uniform Rational B-Splines
ALE Arbitrary Lagrangian Eulerian
FDM Fictitious Domain Method
FV Finite Volume
FD Finite Di�erence
FEM Finite Element Method
MPFA Multi- Point Flux Approximation
MUMPS Multifrontal Massively Parallel Sparse
GMRES Generalized Minimal Residual
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