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ABSTRACT
Explanations in Human-AI Interaction are communicated to human
decision makers through interfaces. Yet, it is not clear what conse-
quences the exact representation of such explanations as part of
decision support systems (DSS) and working on machine learning
(ML) models has on human decision making. We observe a need
for research methods that allow for measuring the effect different
eXplainable AI (XAI) interface designs have on people’s decision
making. In this paper, we argue for adopting research approaches
from decision theory for HCI research on XAI interface design.
We outline how we used estimation tasks in human-grounded de-
sign research in order to introduce a method and measurement
for collecting evidence on XAI interface effects. To this end, we
investigated representations of LIME explanations in an estimation
task online study as proof-of-concept for our proposal.

CCS CONCEPTS
•Human-centered computing→User interface design;Visu-
alization design and evaluationmethods; •Computingmethod-
ologies →Machine learning; Artificial intelligence.
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1 INTRODUCTION
Explanations in Human-AI interaction shall support humans in
making more informed decisions. The information comes from data
and the sense-making inner-workings of decision support systems
(DSS) running on machine learning (ML) models. The results and
ideally the sense-making process itself – an explanation of the
machine behaviour – are presented to decision makers through
human-machine interfaces. This is what we will refer to as explana-
tory interfaces.

The primary function of explanations is to facilitate learning
better mental models for how events come about [21]. The concept
of explaining machine behaviour is summoned under the term eX-
plainable Artificial Intelligence (XAI). Successful XAI systems must
provide meaningful explanations to people. An explanation is an
interaction between two parties, the explainer and the explainee
[22] with the goal to align mental models. Human explainers and ex-
plainees canmanage discrepancies between different mental models
by having conversations. Consequently, explanations in Human-AI
interaction must enable such conversations, too. Conversations
need a common ground and a common language. In Human-AI
interaction, such conversations would start with a representation
of the explanation.

Designers and developers of XAI systems and their interfaces
can draw on lessons from other sciences such as philosophy, cogni-
tive psychology, and social sciences that produced a rich body of
knowledge on how explanations work. Miller [22] gives a compre-
hensive overview. However, these accounts remain rather abstract
from a design point of view. In other words, the design space of
XAI interfaces is still largely unchartered. At the center is the ques-
tion how the way we represent machine behaviour and reasoning
as interfaces, i.e. specific design elements, affects human decision
making and behaviour. The concept of interacting with learning
systems is unprecedented and hence necessitates appropriate and
most likely novel HCI research methods and tools. XAI research
faces many challenges. One is identifying tasks, study designs, and
evaluation criteria that allow for human-centered, scalable, and
empirical research in the form of experiments to produce evidence
for grounding design decisions.

In this paper, we describe estimation tasks and recommend them
as a research approach intended to empirically study how different
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Figure 1: Flowchart of the Elements of an Estimation Task

representations of XAI, i.e. user interfaces, affect human decision
making. Estimation tasks are experiments in which participants are
asked to make an estimation based on a set of data before being
presented advice from a decision support system. Based on this
advice and the new information, participants then have the chance
to re-assess their first estimation and make a second one. Thus,
one can observe if people adhere to the system’s advice or not and
measure this effect.

In the remainder of the paper, we present related work, an outline
of the characteristics of such tasks, and finally an estimation task
online study (Mturk) comparing three different explanation designs
for a LIME explanation model [29]. Thus, we provide a proof-of-
concept example how HCI research can build upon established
experiment designs from decision theory research in order to gather
data on how different interface designs have an effect on human
decision making.

2 RELATEDWORK
Despite recent efforts fromHCI, e.g., [20] [4] [27], designing human-
centered explanatory interfaces for AI/ML remains a challenge. The
notion of explaining algorithmic decision making to humans –
generally referred to as eXplainable Artificial Intelligence (XAI)
[8] [12] [28] [24] – is continuing to move into the scope of recent
HCI research efforts. Recent publications cover most aspects of
the thinking behind the concepts of XAI and the need for human-
centered XAI design, e.g., [15] [27] [13] [2]. We focus on the design
of explanatory interfaces and its effects on decision making as
our research object. Examples of such interfaces for XAI are [23],
[13], [14], [17], [16], [18], and [31]. However, to the best of our
knowledge there is little evidence on how representing XAI as
interfaces affects human-decisionmaking due to a lack of evaluation
in the form of suitable empirical user studies on large enough
scales. Yet, such evidence is crucial for exploring the design space
of explanatory interfaces. Informed by approaches such as Cheng
et al. [4], El Shawi et al. [7] and others [35] [34] [19] [26], we
want to add another methodic perspective by proposing to build
upon established decision theory experiments from the behavioural
sciences and adopt these for human-grounded [6] HCI research on
XAI representations and interface design.

Therefore, we build upon the standard setting of a judge-advisor
system [3]. In the judge-advisor system (JAS), the judge is the
decision maker who receives advice either from an advisor or a
computer system (e.g., a DSS), revises her judgment based on the
advice, and then makes a (final) estimation. Advice, as is often in
estimation tasks, refers to an uncertain or unknown fact that is rele-
vant for the decision and that needs to be estimated as accurately as
possible [30] [9]. As is the typical literature studying JAS settings,

we are interested in how the judge utilizes the advice, and espe-
cially whether there is advice discounting, i.e., under-utilisation of
the information. We apply the linear Bayes framework developed
by Bates and Granger [1] for measuring the impact of advice. The
framework is explicitly or implicitly used in most studies on ad-
vice taking (see, [32] [33] for references). In this framework, it is
assumed that the judge applies a linear Bayesian inference mech-
anism to combine his first estimation with the advice to his final
estimation. According to Goldstein [10], the linear Bayes approach
is particularly relevant in a situation where the judge faces a com-
plex task for which one cannot be expected to make a full prior
joint probability estimation, i.e., an estimation of the distributions
of both the first estimation and the advice. Instead, the linear Bayes
approach only expects the judge to form a prior belief about the
precision of his own and the advisor’s estimate to form a final esti-
mation. More specifically, the judge will revise her initial estimate
according to the linear belief adjustment formula (see Bates and
Granger [1], p. 453) as stated in our results section.

3 OUTLINE OF AN ESTIMATION TASK
In order to put this into perspective for HCI research purposes, we
include this section as a more general outline of the approach: An
estimation task is a task in which participants are asked to make an
estimation based on their personal or professional experience and a
set of data. Estimations simulate decision making under uncertainty,
i.e. participants can most likely not know the true outcome but are
required to approximate as closely as possible. As an incentive for
making quality estimations, participants are compensated with a
basic payoff which is supplemented by a bonus that is higher the
better the estimation is. Thus, participants have an incentive to
take into account as much additional information as possible.

We present an estimation task experiment which serves as a gen-
eral example for how estimation tasks can be used in HCI research
on explanatory interfaces and their effect on decision making. Such
estimation task experiments follow a simple pattern: First, partici-
pants are asked to make an estimation based on information (data).
Participants are then presented advice from a decision support
system (an ML model performing the same task). The advice is
constituted by the estimation of the ML model (a number) and an
explanation of the estimation in the form of an interface often a
diagram, e.g., depicting the influence (weight) certain attributes
have on the ML-generated advice. Based on this advice and the in-
formation from the explanation, participants then have the chance
to re-assess their first estimation and make a second one.

By presenting different interface designs across different treat-
ments as independent variable in a between-subject study, we can
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Figure 2: Three different XAI diagram designs used as treatments in the study presented from left to right: Standard LIME
graph (BASIC), ABOVE/BELOW(C1), PIE CHART (C2).

compare how different designs have an effect on participants’ de-
cision making. In other words, we observe if people adhere to the
system’s advice or not and record this effect using weight of advice
(WOA) as measurement. By comparing the WOA of different de-
signs we can make empirical statements about the quality of each
design regarding its influence on participant’s decisions which gives
also an indication regarding trust. Generally, it is assumed that due
to overconfidence a higher WOA, i.e. adhering to the system’s ad-
vice, leads to better overall decision making performance [25]. We
may then build upon this evidence to describe a design space for
XAI interfaces. We argue that this research approach and study
design can contribute to satisfying the demand for more informed
design decisions in XAI interface design in particular and Human-
AI interaction in general. The next chapter gives a detailed account
serving as a proof-of-concept example.

4 METHOD
We ran a between-subject online study using Amazon’s MTurk
platform and SoPHIE1 software for experiment design. The task
in this study was to estimate the final grade of a student based on
a list of attributes. The procedure followed the process described
beforehand (Figure 1). The study had three treatment conditions
(Figure 2: The original LIME diagram was the baseline treatment
(BASIC); C1 ABOVE/BELOW was the second treatment; C2 PIE
CHARTwas the third treatment (see Figure 2). The different designs
serving as treatments were developed in a series of remote design
workshops with experts and users. The designs were developed as
to emphasise different anticipated effect mechanisms and be suffi-
ciently different. For instance, while BASIC and ABOVE/BELOW
visualise absolute relations, PIE CHART visualises relative relations
between weighted attributes. BASIC and ABOVE/BELOW are dif-
ferent in so far as the latter visualises all possible attributes and
increases informational depth.

For the online study, we recruited participants on MTurk. Par-
ticipants were presented an introduction to the task before they

1https://www.sophielabs.com

were asked to estimate the final grade of students based on a list
of attributes. We ran three rounds with one estimation task (i.e.,
one student) in each round. The data we used for this study was
from a real secondary school in Portugal [5]. To make an estima-
tion, participants were given information such as academic and
personal characteristics also called attributes. This data was col-
lected by using school reports and questionnaires regarding the
performance in Mathematics. Participants were explicitly asked to
base their estimation on this information. The estimation had to
be an integer between 0 (worst score) and 20 (best score). After
the first estimation participants were presented the advice of an
ML system and an explanation (LIME) in text form and a diagram.
The advice in the form of text and the treatment specific graphic
representation (diagram) depended on the treatment group partici-
pants were randomly assigned to. We asked participants to study
these and then make a second estimation in which they could either
adjust their first estimation or not. Participants were granted a basic
compensation of US $0.50. Additionally, participants could receive
a bonus payment of up to US $3.60 to give an incentive for quality
estimations. The bonus was calculated as follows: In each round,
both the first and second estimation were evaluated. The system
compared the predictions with the true value and calculated the
deviation. If a participant hit the true value, she received 20 points
for this prediction. Each variance reduced the score accordingly (for
example, an estimate of 16 with a true value of 13 gave exactly 17
points). After three rounds, all points were added up and converted
into US $ with 10 points = US $0.30. Since participants estimated
twice in each of the three rounds, they could earn a maximum of
120 additional points = US $3.60. Hence, the exact amount of a
bonus depended on the quality of participants estimations. It took
15 minutes on average to complete the study for each participant.
We designed the estimation task in this way for various reasons.
In our design, we would know that the correct estimate would be
an integer between 0 and 20, which considerably reduces noise in
the data. Moreover, the task was a true estimation task in the sense
that participants were aware that they cannot possibly know the
answer but have some information to form an estimate. Finally,
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Table 1: Values and mean of estimations over all three treatments (between-subject; n=20 per treatment)

Sample Mean Estimation Round One Model Prediction Mean Estimation Round Two True Value

Student One 10.23 8.95 8.75 8
Student Two 10.60 9.47 9.74 5
Student Three 11.14 10.12 11.16 13

the questions were related to each participant’s personal world of
experience, which we expected to ensure that the participant could
easily understand the task.

5 RESULTS
A total of 60 participants took part in the online experiment. Three
sessions were performed with 20 participants in each session. Par-
ticipants were randomly assigned to one treatment condition, either
PIE CHART, ABOVE/BELOW or BASIC. For the analyses, we have
a total of 180 observations from 20 participants per treatment. Since
we focus on how participants apply advice from a ML system, we
use the weight of advice (WOA) as a measure for how much partic-
ipants adhere to the advice [1].

WOApi = (st
pi
2 − est

pi
1 )/(advicei − est

pi
1 ) (1)

with.

est
pi
1 = first estimate of participant p in round i (2a)

est
pi
2 = second estimate of participant p in round i (2b)

advicei = advice from ML system in round i (2c)
WOA measures the weight the participant assigns to the advice

she receives form the ML system, and 1-WOA is accordingly the
weight she places on her own initial estimate. Specifically, WOA
takes a value of 0 if a participant adheres completely to her first
estimate and WOA of 1 if she shifts completely to the advice from
the ML system. The measure is not defined in case the advice is
exactly equal to the first estimation (advicei = est

pi
1 ). In a post-

experimental questionnaire, we collected additional data on par-
ticipants’ motivations to make good estimations, and we asked
participants about their perceptions of the graphical representation
of the advice.

Figure 3 presents descriptive data on WOA for all three treat-
ments and estimation rounds .2 It shows that adjustments of par-
ticipants are on comparable levels for both treatments BASIC and
PIE CHART, but lower for the ABOVE/BELOW treatment (0.7737,
0.5461, 0.5959 vs. 0.7107, 0.5557, 0.5715 and 0.5142, 0.4999, 0.4523
respectively). This treatment effect is statistically significant be-
tween the PIE CHART and ABOVE/BELOW treatment aggregated
over all three rounds of estimation (t-test, t(38) = 2.2018, p = 0.035
two-sided). In contrast, the comparisons of the other two treat-
ments are not significant (all p-levels above 0.05). An analysis of
estimations errors (deviation from est

pi
1 and estpi2 to the true value)

revealed no significant results between treatments. Likewise, there
are no significant effects in the PEQ Likert Scale ratings concerning
usefulness of advice and graphic. However, the free text answers
2Since outliers in the data would considerably influence the analysis, outliers below 0
and above 1 were changed to values of 0 and 1 respectively.

showed predominantly positive feedback, although we should also
listen to the seven participants (11%) that stated that they did not
take the visualisation into consideration at all or even regarded it
as distracting and not useful. In summary, we observed selective
and/or adaptive adjustments for treatments BASIC and PIE CHART
while adjustment remains constantly low with ABOVE/BELOW
treatment. We found there are in fact significant effects between
treatments. We conclude that the exact form of visually represent-
ing (LIME) explanations is relevant for the design of explanations
in Human-AI interactions.

6 DISCUSSION
From the results of the study we conclude that the exact form of
visually representing (LIME) explanations has an effect on deci-
sion making in Human-AI interactions and thus must be further
investigated.

We found a significant effect between treatments, i.e. different
designs of the explanation interface. This stands in contrast to
relevant other research on the topic, in this case Cheng et al. (2019)
who found that "users’ trust in algorithmic decisions is not affected
by the explanation interface or their level of comprehension of the
algorithm" through a similar study design but not using estimation
tasks or WOA. Hence, it seems evident that more research is needed
on the research object as well as on the methods we use.

Our contribution is to propose an approach for gathering empir-
ical data and evidence that is informed by the behavioural sciences
in general and decision theory in particular. In near future work,
our goal is to describe a design space for explanatory interfaces
grounded in this evidence. It shall address designers and developers
and inform design decisions concerning explanatory interfaces in
decision support systems.

While conducting this research we became aware of a limitation
that needs to be addressed in future studies. While online (MTurk)
studies are generally an appropriate research tool [11] they also
have weaknesses in the context of design research. While allowing
for fast and large-scale data collection as well as – and this is
important by the time this paper is written amidst a global pandemic
– safe research with human beings, remote online studies lack the
possibility to observe and immediately question closely what people
are doing and thinking (think aloud methodology). In retrospect, we
came to the conclusion that further observational and qualitative
data would have been helpful to even better analyse which parts
of the explanation design people really focus on. In future work,
it will be interesting to compare online studies with lab studies on
the matter using the same study design, i.e., estimation tasks.

In conclusion to our research and for the design space to take
shape, the following issues need to be addressed in future research:
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Figure 3: Descriptive data on WOA for all three treatments

• A taxonomy of proxy tasks should be developed based on
knowledge from other disciplines, especially behavioural sci-
ences and decision theory, and the learnings of the research
presented here as to facilitate empirical human-grounded
HCI research in Human-AI interaction that can meet the
challenges described previously

• Study designs and experimental set-ups need to be developed
further to even better observe effects in the design element
(input) and decision making (output) relation

• More thought should be given to qualitative data and user
observations (think aloud) to gain a deeper understanding
which elements of explanatory interfaces are relevant to
user’s cognitive processes in decision making which calls for
lab studies and/or the comparison of lab and online studies

• The complexity of representations must be gradually in-
creased from static to interactive XAI interfaces as the goal
are interactive explanations

7 CONCLUSION
In this late breaking work paper, we made a case for empirical
research on the design of explanatory interfaces as part of decision
support systems. We introduced estimation tasks for studying the
effects of interface design on human decision making and as a proxy
for decision making in more specialised domains. We described
an online study on the effects of different representations of a
LIME explanation model as a proof-of-concept for our proposal.
We observed a significant effect between different designs and
concluded that XAI representations as interfaces have an effect
on decision making in Human-AI interactions and thus must be
further investigated as to produce evidence as a basis for future
design decisions. We intend to proceed with this research by means
of the method we described and communicating the results as a
design space for explanatory interfaces.
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