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A B S T R A C T

Plug-in electric vehicles are seen as a promising option to reduce oil dependency, greenhouse gas
emissions, particulate matter pollution, nitrogen oxide emissions and noise caused by individual
road transportation. But how is it possible to foster diffusion of plug-in electric vehicles? Our
research focuses on the question whether e-mobility product service systems (i.e. plug-in electric
vehicles, interconnected charging infrastructure as well as charging platform and additional
services) are supportive to plug-in electric vehicle adoption in professional environments.

Our user oriented techno-economic analysis of costs and benefits is based on empirical data
originating from 109 organizational fleets participating in a field trial in south-west Germany
with in total 327 plug-in electric vehicles and 181 charging points. The results show that orga-
nizations indicate a high willingness to pay for e-mobility product service systems. Organizations
encounter non-monetary benefits, which on average overcompensate the current higher total cost
of ownership of plug-in electric vehicles compared to internal combustion engine vehicles.
However, the willingness to pay for e-mobility charging infrastructure and services alone is
currently not sufficient to cover corresponding actual costs. The paper relates the interconnected
charging infrastructure solutions under study to the development of the internet of things and
smarter cities and draws implications on this development.

1. Introduction

Increasing awareness of the transport sector’s significant contribution to climate change, oil dependency, particulate matter
pollution, nitrogen oxide emissions and noise particularly in urban areas has resulted in activities for road transport electrification.
Substituting internal combustion engine vehicles (ICEV) with plug-in electric vehicles (EV), i.e. full battery electric vehicles (BEV),
range extended electric vehicles (REEV) and plug-in hybrid electric vehicles (PHEV), seems a very promising step to cope with the
challenges of individual road transport and fits to the smart city paradigm, which has become one of the most important urban
strategies to foster green growth and to improve urban sustainability against the backdrop of climate change (March, 2016). A wide
range of definitions for the fuzzy smart city paradigm exist (Cocchia, 2014). Despite the risks accompanying hyper-connected so-
cieties (Rifkin, 2014), the common notion is that in smart cities information and communication technologies (ICT) are used to
increase citizens’ quality of life while contributing to sustainability (Cocchia, 2014; Yeh, 2017). Highly connected information
systems providing real-time digital platform services connecting citizens with urban infrastructures are key resources for smart cities.

Policy incentives and car manufacturers’ portfolio decisions have a positive influence on EV adoption (Langbroek et al., 2016).
Consequently, registrations of EV have been continuously increasing in industrialized countries on the global scale since 2008 (IEA,
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2017). Particularly countries subsidizing EV with pricing incentives and increased access to charging stations, i.e. electric vehicle
supply equipment (EVSE), have comparatively higher growth rates (Harryson et al., 2015; Mersky et al., 2016; Ny et al., 2017;
Sierzchula, 2014).

However, several barriers to widespread adoption of EV have been observed. Sierzchula et al. (2014) distinguish techno-economic
(e.g. prices and range limitations), consumer specific (e.g. consumer mobility patterns and attitudes), as well as contextual factors
such as the distribution of EVSE. Thus, further research on decreasing barriers is needed.

The commercial sector in Germany seems particularly promising for EV diffusion (Ketelaer et al., 2014). Vehicles in the com-
mercial sector perform longer trips than private vehicles (on average) and drive more regularly (on average). Both aspects are
advantageous for EV usage, as a higher mileage allows a faster amortization and a higher regularity permits to better cope with a
limited vehicle range (Gnann et al., 2015a). In addition to that, a large share of annual first registrations, i.e. 65% in Germany
(KBA, 2016), are due to commercial owners. Furthermore, in company fleets, which also include ICEV, EV can be easily replaced for
extraordinary long distance trips. Therefore, organizational fleets provide an important lever for the integration of EV into the vehicle
stock and thus for mass market introduction. Another driving factor is that organizations might be willing to pay somewhat more for
EV than for ICEV. As private users (Peters and Dütschke, 2014; Plötz et al., 2014) they might have a willingness to pay more (WTPM)
due to the recognized positive impact on their green image (Guth et al., 2017; Nesbitt and Davies, 2013; Nesbitt and Sperling, 2001).

The research question how acceptance of EV can be fostered in order to increase sales numbers of EV have been subject to many
research activities during the last years. E.g. reviews are provided by Hjorthol (2013) and Rezvani et al. (2015). More specifically,
Wikström et al. (2014) focus on commercial fleets, Koetse and Hoen (2014) on company car drivers and Sierzchula (2014) on fleet
managers.

Furthermore, new mobility concepts and business models could transform the technological advantages of EV into value added for
the customers (Giordano and Fulli, 2011; Kley et al., 2011; Steinhilber et al., 2013). A function-oriented business model or product
service system (PSS) (Tukker, 2004) is a combination of products and services in a system that provides functionality for consumers
and reduces environmental impact (Goedkoop et al., 1999). In PSS tangible artefacts and intangible services jointly fulfill specific
customer needs (Cook et al., 2006). Supported by the rapid advance of ICT technologies during the last years, many types of PSS
became more economical and practical (Roy, 2000). As technology has taken its toll on human life and is present everywhere
(Carpanen et al., 2016) the Internet of Things paradigm evolved combining physical and digital components to create PSS and to
enable novel business models (Wortmann and Flüchter, 2015). E-mobility business models and therefore e-mobility PSS have ex-
perienced increasing attention during the last years (Laurischkat et al., 2016). While business models or services in the automotive
industry in general are the subject of many scientific contributions (Williams, 2007), only few authors have focused on business
models for EV (see Wells (2013) for a review). EV and corresponding infrastructure increase complexity of business model approaches
for multimodal mobility platforms (Willing et al., 2017).

Yet, there are some qualitative studies on business models for EV. Bohnsack et al. (2014) study the evolution of EV business
models. Kley et al. (2011) present a systematic instrument describing business models for EV charging. Cherubini et al. (2015)
identify the main sub-systems of the PSS in the electric car industry, i.e. vehicle, on-board electronics, infrastructure and energy. They
attribute the following actors and roles to these sub-systems: Automobile manufacturers define the PSS value proposition and cor-
responding product-service bundle pricing strategies. Electronic system companies develop advanced navigation systems. Public
institutions are considered being key actors fostering e-mobility infrastructure solutions. They decide on incentive schemes, can push
forward implementations of alternative transport systems and can run advocacy campaigns to inform and acquaint citizens. Both,
energy providers and public institutions are considered being responsible for the location and availability of charging points, their
ease of use and corresponding standardizations. Stryja et al. (2015) provide an overview of existing e-mobility services, classify them
and provide a framework to characterize and describe services in the context of EV usage. However, research on PSS is still dominated
by conceptual work and additional empirical research is required (Beuren et al., 2013).

Beyond that, specific case studies evaluate costs and benefits of EV. Kosub (2010) applies the technique of cost-benefit analysis to evaluate
the choice of an organization to incorporate hybrid vehicles into a vehicle fleet. Piao et al. (2014) compare lifetime net present values of costs
and benefits between EV and ICEV to answer the question whether it is beneficial to purchase EV from a private and societal point of view.
Costs and benefits of EV compared to ICEV were already studied profoundly, particularly with total cost of ownership (TCO) approaches
(ESMT, 2011; McKinsey, 2010; Mock, 2010; NPE, 2011; Peters et al., 2012; Pfahl et al., 2013; Plötz et al., 2012; Thiel et al., 2010). Some
approaches are based on individual driving profiles (Gnann et al., 2015a; Gnann et al., 2012; Neubauer et al., 2012) and some were extended
by also considering non-monetary factors as WTPM for EV (Gnann et al., 2015b; Plötz et al., 2014). Madina et al. (2016) change the
perspective and focus on TCO assessments of EVSE business models instead. In addition to costs Nurhadi et al. (2017) consider sustainability
effects in their assessment of current car specific business models (i.e. purchasing, sharing, leasing and taxiing).

However, to the best of our knowledge no studies published so far analyze costs and benefits of e-mobility PSS (i.e. EV, EVSE and services)
from a bottom-up user perspective based on empirical data. Consequently, we intend to fill this gap by analyzing actual costs and benefits of
organizations who adopted e-mobility PSS in an e-mobility field trial. Based on these results we conclude on the question whether e-mobility
PSS can support EV adoption.

This paper is structured as follows: In Section 2 the framework and data used to evaluate costs and benefits of e-mobility PSS is
described. In Section 3 the results of the cost benefit analysis are presented. In Section 4 methodological aspects and results are
discussed. The article ends with a summary, a conclusion, and an outlook in Section 5.

A. Ensslen et al. Transportation Research Part A xxx (xxxx) xxx–xxx

2



2. Methods and data

In order to evaluate e-mobility PSS in organizational fleets (i.e. EV, EVSE and e-mobility services) cost-benefit analysis is applied.
Organization-specific costs per vehicle for using e-mobility PSS are assessed and compared to the organization-specific WTPM in
order to calculate corresponding net benefits. Section 2.1 describes the methodological framework to evaluate costs and benefits of
the PSS. Section 2.2 describes the data collected during an e-mobility project in south-west Germany between 2013 and 2015. The
project included a large-scale fleet trial with 109 organizations owning 327 EV as well as a regional charging network with 181
interconnected charging points (Sachs et al., 2016).

2.1. Framework to evaluate costs and benefits of PSS

We now turn to the methodology, which is used to evaluate net benefits of e-mobility PSS. As costs for EV and ICEV differ, we
analyze the difference of costs and a potential WTPM. Data on costs are combined with data on user perceptions by applying cost-
benefit analysis based on the following main Eq. (1):

= + + + + ∀u u u u u COE i,i
PSS

i
EV

i
EVSE

i
CON

i
SB

i (1)

Net benefits of PSS ui
PSS are determined for every organization i by adding net benefits of EV ui

EV , EVSE ui
EVSE, hardware con-

nectivity services ui
CON , service bundles ui

SB (cf. Table 1) and the organizations’ average compensation of expenses for participating in
the field trial COEi (cf. Section 2.2). Thereby ui
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EVSE , ui

CON and ui
SB represents the average difference of cost and WTPM for EV
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(cf. Eq. (2)).
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While all cost parameters are determined by average cost values derived from scientific studies (Plötz et al., 2013), parameters on
WTPM are survey based. All parameters have equal weights as WTPM, costs for the vehicles, EVSE and services have monetary units
that are directly capable of being totaled.

The average TCO difference between EV and ICEV for a company is calculated in Eq. (3):

∑= − ∀
=
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TCO TCO TCO TCO iΔ 1 min( , ) min( , ) ,i
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k
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k
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k
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k
Gasoline

k
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1 (3)

Here, the difference between the cheapest EV (BEV, PHEV) and the cheapest ICEV (Gasoline, Diesel) is determined for all vehicles
considered of being substituted by EV k of company i, then summed up and divided by their number K (Eq. (3)).

For all vehicles K , TCO is estimated for all vehicle types by Eq. (4).

= + ∈ ∀TCO a a with r BEV Diesel Gasoline PHEV r{ ; ; ; } ,r r
capex

r
opex (4)

In Eq. (4) capital expenditures ar
capex and operating expenditures ar

opex are determined for all vehicle types r . Capital expenditures are
calculated with the net present value method with residual values (cf. Eq. (5)):
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Here, Ir
veh is the vehicle purchase price and SPr

veh equals the residual value for the vehicle at the end of usage timeT veh. The formula is
completed by the interest rate ̃i . Residual values for the vehicle at end of use T veh, SPr

veh are determined as in Plötz et al. (2014).
Operating expenditures are calculated as depicted in Eq. (6).
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A part of the operating expenditures is mileage dependent. Annual vehicle kilometers travelled by vehicle k (VKTk) are derived
from vehicle driving profiles collected with GPS-trackers during this study’s field trial (all trips of a vehicle within a certain ob-
servation period, cf. Section 2.2). The range of an EV determines the feasibility of trips that can be covered by BEV and the electric
driving share of PHEV. This largely affects the economics compared to ICEV. It is thus necessary to consider individual driving
(e.g. Gnann et al., 2015a). In order to calculate operating expenditures (ar

opex) annual vehicle kilometers travelled (VKT )k , are
multiplied with mileage dependent costs such as fuel costs for electricity or conventional fuels (Eq. (6)). Electricity costs consist of the
specific electric consumption cr

el [kWh/km], the electricity price kel [€/kWh] multiplied by the share of electric driving sk r
el
, . Con-

ventional fuel costs consist of the specific consumption value cr
conv [liter/km] and the fuel price kconv [€/liter] and are multiplied by

the share of conventional driving −s(1 )k r
el
, . Finally, annual costs for operations and maintenance kr

O M& are considered. The formula is
completed by the mileage independent vehicle registration tax kr

tax (Eq. (6)). While the annual vehicle kilometers travelled are
estimated based on an extrapolation of the distance driven in the driving profile, the share of electric driving of a PHEV is determined
in an EV simulation (Plötz et al., 2014). All cost parameters considered are taken from Plötz et al. (2014) and Gnann et al. (2015a).
We consider an interest rate ̃i of 5% (Pfahl, 2013) and an average vehicle holding time for new vehicles of 3.8 years
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(KBA; Gnann et al., 2015a) which will be considered equal to the investment horizon T veh. The assumptions for battery and energy
prices are shown in Table A.1, all vehicle parameters in Table A.2.

The costs for EVSE and services consist of capital expenditures for EVSE TCOi
EVSE as well as operating expenditures for con-

nectivity ci
CON and a service bundle ci

SB. By using the annuity factor aEVSE, EVSE specific capital expenditures are calculated by
considering organization specific EVSE investments Ii

EVSE and the number of EV per organization ni
PEV as follows (Eq. (7)):

= ∀TCO
a I

n
i

·
,i

EVSE
EVSE

i
EVSE

i
PEV (7)

In addition to the hardware connectivity services sCON different e-mobility services compose two different service bundles, SB1
and SB2 (Table 1). Customized service bundles SBopti are constructed in addition, i.e. service bundles consisting only of charging
platform and additional services with − >wtpm c 0i s

SER
i
s

, .
Hardware connectivity services sCON grant permission to the charging network and guarantee EVSE connectivity and main-

tenance.
SB1 represents the service bundle which was in addition to the hardware connectivity services sCON provided in the field trial

(Table 1). It is composed of the following charging platform services: a map-based display of charging points and display concerning
their current availability (s1), a billing service for charging at the own organizations’ EVSE (s3), a service managing the provision of
own EVSE in a regional charging network (s a4 ) and a service managing charging activities at other organizations’ EVSE within a
regional charging network (s a5 ). Furthermore, consultancy services for EV and EVSE (s a7 ) complete SB1. More detailed information is
available in Sachs et al. (2016). SB2 represents a fictitious, more extensive service bundle that could potentially be provided to e-
mobility PSS adopters in the future (Table 1). In addition to the services of SB1, this service bundle includes the possibility to reserve
charging points (s2), provides access to a supra-regional charging network (s b4 and s b5 ), includes a mobility guarantee (s6) and
consultancy services by one provider instead of several different providers (s b7 ). A detailed description on how the relevant services of
this study were chosen by Ensslen et al. (2017).

WTPM for the service bundles wtpmi
SB are calculated based on WTPM for single service components wtpmi

s using linear, additive
utility functions (Weddeling et al., 2010). WTPM for single services are aggregated in order to calculate WTPM and net benefits of the
service bundles considered.

Operating expenditures are calculated by summing up service costs, i.e. adding cost of service bundle ci
SB and costs for con-

nectivity ci
CON . Parameters and equations for the calculations of costs for EVSE and services are provided in Table A.3.

With the additional information on organizations’ benefits available, i.e. the survey-based information on WTPM for EV, EVSE
and e-mobility services as well as the data on the compensation of expenses granted wtpm wtpm wtpm wtpm COE( , , , , )i

EV
i
EVSE

i
CON

i
SB

i , net
benefits of the whole e-mobility PSS can be evaluated.

2.2. Description of datasets

All organizations interested to get involved in the project’s field trial were asked to participate in a voluntary fleet analysis
involving a detailed analysis of driving patterns by logging driving profiles in order to find out about their fleets’ electrification
potentials. 45 of the interested 234 organizations volunteered to participate. 109 participated in the field trial, i.e. decided to
purchase at least one EV, project specific EVSE as well as additional hardware connectivity services. 26 organizations are represented
in both subsamples, i.e. provided driving profile data and participated in the field trial (Fig. 1).

As this study focuses on early EV adopting organizations we did not expect the organizations’ distributions concerning industrial

Table 1
E-mobility services: Hardware connectivity, charging platform and additional services.

Service category E-mobility services Consideration of services

Hardware connectivity services Permission to charging network; guarantee of EVSE connectivity and maintenance sCON x

Service bundle

SB1 SB2
Charging platform services Map-based display of charging points and display concerning their current availability s1 x x

Reservation of charging points s2 x
Billing service for charging at the own EVSE s3 x x
Provision of own EVSE… … in a regional charging network s a4 x x

… in a supra-regional charging network s b4 x
Usage of other organizations’ EVSE… … within a regional charging network s a5 x x

… within a supra-regional charging
network

s b5 x

Additional services Mobility guarantee (a rental car is delivered to the workplace or to the employees if
needed)

s6 x

EV and infrastructure consulting by … … different providers s a7 x
… the same provider s b7 x
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sectors and size to be representative for south-west Germany. We are positively surprised that industrial sector distributions of
participating organizations represent the number of employees in the different industrial sectors in Baden-Württemberg fairly well.
38% of the participating organizations belong to the manufacturing sector, 14% to the wholesale and retail sector, 13% to public
administration, 8% to information and communication and 6% to the construction sector. Less than 5% of the population are
represented in the remaining sectors (Table B.1). Differences can be observed concerning organizations’ sectoral distributions
compared to Germany’s new car registrations (Table B.1). About 80% of the organizations in this study employ less than 250 persons,
i.e. are small and medium-sized enterprises. This share is comparably high, as only about 50% of employees in Baden-Württemberg
work for organizations employing less than 250 persons (Table B.2).

The fleet managers and decision makers in the participating organizations are on average 45 years old (SD=12), are pre-
dominantly male (about 85%) and are well educated. About half of them have completed academic studies and about 30% have a
degree at university entrance level or a master craftsman diploma. 50% have a technical, about 40% a commercial background. On
average, the respondents have been employed for 16 years in their organizations (SD=12) and have an experience level with fleet
management activities of 10 years on average (SD=10). Half of them dedicate more than 10 h per month to fleet management
activities, 25% four hours or less and 25% more than 20 h (Ensslen et al., 2017).

Field trial participation came along with a monthly compensation of expenses. Constrained by the real costs for EV the parti-
cipating organizations received up to 500 Euros monthly (w/o VAT) per BEV or REEV and 350 Euros monthly (w/o VAT) per PHEV in
order to compensate for additional costs of project specific EVSE, for the still existent economic disadvantages of EV and for providing
data. Due to this setup collecting the substantial amount of high quality organization-specific information was possible.

An overview on the specific datasets used for the assessment of WTPM, costs and net benefits of EV, EVSE and the services
considered is provided in Table C.1.

The vehicle driving profile dataset is available for the subsample of 45 organizations, who have not necessarily decided to
participate in the field trial at the point of time the data was collected. The dataset consists of profiles of all trips of a vehicle within at
least three weeks of observation which were collected with GPS-trackers for ICEV to test potential replacements by EV. Several
information about the company (such as the number of employees, the main company site or the size of the city) as well as the vehicle
(vehicle size, usage type, main overnight parking or number of users) was collected in a short survey. This dataset contains driving
profiles of 223 commercially licensed vehicles of 45 organizations participating in the project. The 223 vehicle driving profiles were
collected over an average observation period of 23.1 days (SD: 5.8 days) with an average daily mileage of 56.6 km (SD: 39.7 km). At
night, the vehicles are mainly parked at the company site (90%) with a dedicated parking spot (54%). Most of the vehicles are fleet
vehicles which are used by several users (70%) (Table B.3). Similar to the sample of organizations participating in the field trial, most
of the 45 companies which volunteered to provide GPS tracks have less than 250 employees and are mostly located in small cities
below 100,000 inhabitants.

Survey data on WTPM for EV, EVSE and e-mobility services was collected between five and nine months before the end of the
field trial (between April and August 2015). Organizations had experienced e-mobility PSS for quite some time. Survey data includes
organization specific information on WTPM for EV wtpmi

EV , EVSE wtpmi
EVSE, basic hardware connectivity services wtpmi

CON as well as
charging platform and additional services s, wtpmi

s. The following survey questions were answered by the organizations participating
in the field trial:

(i) wtpmi
EV : “How much would your organization be willing to pay for a BEV and a PHEV?”

(ii) wtpmi
EVSE: “Which monthly extra charge (price reduction) would your organization be willing to pay (expect) for the non-

monetary characteristics of a charging station?”
(iii) wtpmi

s:” What is the maximum price that your organization is willing to pay for the following services?”

The detailed questions asked in the survey are provided in Appendix E.
Invoices of project specific interconnected EVSE installed were collected between May 2014 and July 2015 by mail.

Fig. 1. Overview on subsamples used.
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Information available on organizations’ investments for project specific interconnected EVSE (Ii
EVSE) is then used to calculate costs of

project specific EVSE TCOi
EVSE.

Different cost parameters are used for EV and service specific cost calculations (Appendix A). As the e-mobility services con-
sidered were partly tested within the project, actual cost parameters for a large part of the services (sCON , s1, s3, s a4 , s a5 ) are used. For
the services not actively tested within the project (s s s, ,b b4 5 6) or free of charge within the project context (s s,2 7) plausible assumption
were made during a stakeholder workshop (Ensslen et al., 2017).

3. Results

In order to evaluate costs and benefits of e-mobility PSS we first analyze EV (Section 3.1). Second, we analyze EVSE and cor-
responding connected e-mobility services (Section 3.2). Third, the results concerning costs and benefits of EV, EVSE and e-mobility
services are combined in order to calculate net benefits of the whole e-mobility PSS (Section 3.3). Sensitivity analysis are conducted
to analyze effects of parameter variations on TCO and overall net benefits (Section 3.4).

3.1. Costs, WTPM and net benefits of EV

We first have a look at the TCO differences of the vehicles (Eq. (2)). For this reason, we compare annual TCO for the cheapest EV
with those of the cheapest ICEV. We observe that in 2015, annual TCO are about 800 € higher for most users (∼70%) and hardly
amortizable with current prices and driving behavior (Table E.1). Thus in 2015, based on the driving profiles analyzed EV cannot be
paid off. Positive TCO seem only possible in selected use cases (Schücking et al., 2017). These cost differences do not include the costs
for EVSE which might be considerable (Section 3.2). However, the significant additional EV specific costs might be compensated by
companies’ WTPM for an environmental or marketing effect.

We therefore analyze stated price premiums (WTPM) organizations are willing to pay for non-monetary values of EV based on
survey data described in Section 2.2. wtpmi

EV which is representing annual WTPM for the organizations’ EV is calculated by mul-
tiplying the organizations’ EV specific WTPM with the annuity factor. According to the results, a large part of the organizations
participating in the field trial is willing to pay considerably more for an EV than for an ICEV. About 50% of the organizations are
willing to pay more than 5000 € additionally for an EV compared to the respective ICEV, i.e. 1477 annually. 75% of them are willing
to pay at least a premium of 2000 €, i.e. 591 € annually (Table E.1). These results point out that (early) commercial EV adopters are
likely to be willing to pay considerably more for EV beyond what is expected from a pure economic point of view.

Comparing costs and stated WTPM for EV shows that on average WTPM for EV is higher than the additional costs of EV compared
to ICEV ( >wtpm TCOΔi

EV
i
EV ) resulting in positive net benefits (Table E.1). The advantages of EV seem to outweigh corresponding

disadvantages, particularly unfavorable TCO differences, range limitations and high charging times.

3.2. Costs, WTPM and net benefits of EVSE and e-mobility services

Results on organizations’ costs for EVSE and e-mobility services are presented in Table E.2. Participating organizations’ average
investments for interconnected EVSE per EV (Ii

EVSE) are 4585 € (w/o VAT). Costs for EVSE connectivity and maintenance
(ci

CON ) amount to 46 €/a on average. Average annual costs per EV for SB1 are 884 €/a, costs for SB2 1172 €/a. Average annual costs
for organizations’ customized service bundles SBopti are 323 €/a. As net benefits of different charging platform and additional
services are negative for many organizations, they are not considered in SBopti. TCOi

EVSE represent the major cost component of
products and services additional to EV. The costs for connectivity services (ci

CON), charging platform and additional services provided
within the project (SB1) are comparatively low compared to the annual amortization rates for EVSE. This is also the case for
SB2. However, according to the results concerning customized service bundles SBopti, costs for services should be considerably
reduced, as only some of the services show positive net benefits for the users.

The results on surveyedWTPM for EVSE and e-mobility services (Table E.2) show that the field trial participants are on average
willing to pay an annual surcharge of 789 €/a for the non-monetary values of EVSE (wtpmi

EVSE). On average organizations are willing
to pay 205 €/a for connectivity services (wtpmi

CON ). Results concerning WTPM for charging platform and additional services com-
posing the service bundles considered show that the organizations are willing to pay somewhat more for SB2 (on average 913 €/a)
than for SB1 (on average 725 €/a) and SBopti (on average 763 €/a).

Net benefits of EVSE and e-mobility services are negative for most organizations (Table E.2). Average net benefits of con-
nectivity services (ui

CON) and customized service bundles (SBopti) are positive. About 85% of the organizations show positive net
benefits for the customized service bundles SBopti. However, net benefits of EVSE and corresponding services ( + +u u ui

EVSE
i
CON

i
SB)

without considering EV are negative for between 75% and 85% of the organizations (Table E.2). Net benefits of EVSE and organi-
zation specific customized service bundles show higher net benefits than the pre-defined service bundles (Fig. 2).

3.3. Net benefits of e-mobility PSS

After analyzing components of the PSS individually, net benefits of e-mobility PSS are now evaluated as a whole. The monetary
incentives granted are also considered. According to Table E.3 the organizations participating in the field trial on average received
2050 €/a (SD: 510 €/a) per EV participating. Visual tests show that net benefits of the e-mobility PSS components are
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normally distributed. Expected values of the sum of net benefits are calculated by summing up expected values of net benefits of
EV, EVSE, e-mobility services and monetary incentives (Eq. (8)).

+ + + + = + + + +E u u u u COE E u E u E u u E COE[ ] [ ] [ ] [ ] [ ]i
EV

i
EVSE

i
CON

i
SB

i i
EV

i
EVSE

i
CON

i
SB

i
1 1 (8)

The standard errors (SE) of the expected values of the whole PSS are calculated as follows (Eq. (9)):

+ + + + = + + + +SE u u u u COE SE u SE u SE u u SE COE[ ] [ ] [ ] [ ] [ ]i
EV

i
EVSE

i
CON

i
SB

i i
EV

i
EVSE

i
CON

i
SB

i
1 2 2 1 2 2 (9)

Fig. 3 shows that EV specific TCO disadvantages are on average compensated by organizations’ WTPM for EV. Expected net
benefits of EV E u[ ]i

EV amount to 716 €/a. Expected net benefits of EVSE are negative for more than 75% of the organizations
participating with = −E u[ ] 589€/ai

EVSE . Net benefits for connectivity services, charging platform and additional services are rather
balanced ( + = −E u u[ ] 2€/ai

CON
i
SB1 ). Expected net benefits of the e-mobility PSS without considering monetary incentives are

126 €/a. Adding the expected value of the compensation of expenses per EV (2050 €/a) results in expected positive net benefits of
2176 €/a. Hence, negative net benefits of the e-mobility PSS of many organization are largely overcompensated by the monetary
incentives provided (Fig. 3).

Fig. 2. Net benefits of EV and service bundles including EVSE and connectivity.

Fig. 3. Average net benefits of the e-mobility PSS provided in the project.
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3.4. Sensitivity analysis

Our sensitivity analysis focuses on parameters potentially influencing TCO calculations as corresponding cost parameters might
heavily change in the future and regional aspects might influence some of the parameters.

Fig. 4 shows the effects of parameter variation on TCO calculations and consequently e-mobility PSS specific net benefits.
Sensitivities within the range of 25% are highest for battery price, followed by interest rate, fuel prices and electricity price.

4. Discussion

This study deals with the analysis and evaluation of e-mobility PSS based on an approach that combines techno-economic and
user-behavioral aspects in order to answer the central research question whether e-mobility PSS in company fleets can support EV
adoption. Section 4.1 discusses and critically reflects methodological aspects of our research. In Section 4.2 results are discussed.

4.1. Discussion of methodology

In order to combine the techno-economic analysis of e-mobility PSS with non-monetary benefits, we conducted a survey with
participants of a field trial with EV and let them estimate the non-monetary value of e-mobility PSS including different service
bundles. The TCO approach is often criticized as being inconclusive for a vehicle purchase decision (ESMT, 2011; McKinsey, 2010;
Mock, 2010; NPE, 2011; Peters et al., 2012; Pfahl et al., 2013; Plötz et al., 2012; Thiel et al., 2010), yet it was repeatedly stated by
organizations that it is the most important aspect in a commercial vehicle buying decision (Dataforce, 2011). However, this does not
necessarily mean that organizations really calculate TCO in their vehicle buying decisions. They might rather use perceived estimates
in their decision-making processes. Though the vehicle buying decision is complex (Ensslen et al., 2016) and may include several
decision making steps (Klöckner, 2014), the focus of this study is to analyze net benefits of e-mobility PSS as a whole. Therefore, the
approach applied combining techno-economic assessments with behavioral aspects seems reasonable.

The design of the questionnaire allowed the fleet managers and decision makers of commercial vehicle users to set non-monetary
values of EV, EVSE and e-mobility services in relation to their actual costs. As we asked the fleet managers about WTPM for EV, EVSE,
and corresponding services, they tried to monetarize the benefits. However, do these monetarized benefits appropriately represent
the real benefits of the e-mobility PSS? The large spread in the net benefits (Fig. 3) shows that corresponding perceptions vary
significantly between organizations. Consequently, the results should be interpreted carefully.

The participating organizations represent a very special early adopter group that received expense compensations for partici-
pating. The survey sample consists of early EV adopters so it is difficult to draw conclusions about future adopters of EV who will
enter the market later and might have different motivations. For example, the average WTPM for e-mobility PSS might be lower when
an early majority (Rogers, 1962) is about to enter the market and it is also expected to decrease with increasing market diffusion
(Gölz et al., 2015). Hence, results should be considered as an upper estimate. However, some services could potentially increase their
attractiveness with increasing market penetrations (e.g. due to a higher number of charging stations) potentially resulting in in-
creasing WTPM.

Furthermore, in addition to incomplete datasets due to the different subsamples of different datasets, missing value problems
reduced sample sizes (Appendix C). We controlled for potential errors by additionally calculating net benefit based on the subsample
with full data availability. Differences observed between the two approaches are not significant.

Costs for charging infrastructure and services were taken from an early stage e-mobility project. The participating organizations'
decisions to adopt and use the interconnected charging infrastructure and services might also be linked to an increased WTPM.

Fig. 4. Sensitivities of parameter variation: Influence of the variation of one parameter on vehicle specific total costs of ownership (left diagram) and
overall net benefits excluding project specific compensation of expenses (right diagram).
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However, the comparably high costs for EVSE and e-mobility services provided within this project might represent the current market
situation.

Our TCO and e-mobility PSS net benefit calculations are based on a large set of parameters and assumptions. These are related to
values observed in 2015, the observation country (Germany) and the specific observation population (early EV adopting organiza-
tions). In the future preconditions for e-mobility PSS specific net benefits might change increasing net benefits of EV. Battery prices
are assumed to continue to decline (Berckmans et al., 2017; IEA, 2017). Second hand values of diesel and gasoline cars might
decrease quicker than assumed due to governments’ plans to ban ICEV from many cities (IEA, 2017). Although the short investment
horizon of 3.8 years used in this study represents the average holding time of cars in the commercial sector of Germany, strong
variations depending on organizations’ commercial sector are possible (Gnann et al., 2015a). According to analyses of other studies,
long investment horizons are in favor of EV and sensitivities are comparably low (Palmer et al., 2018). Furthermore, electricity
and gasoline prices as well as incentive schemes differ between countries and regions and should therefore be considered when
interpreting the results presented.

4.2. Discussion of results

The results presented in Section 3.1 indicate that despite the disadvantages of EV (e.g. range limitations, high charging times)
WTPM for EV of organizations participating in the field trial compensate additional EV specific costs. These findings are in line
with Plötz et al. (2014) and Peters and Dütschke (2014) showing that private EV users are willing to pay more for EV compared to
ICEV. WTPM for EV can be explained by innovative car pool managers benefitting from EV procurements due to technophilia
(Globisch et al., 2017). Furthermore, organizations benefit from positive effects on employee motivations (Globisch et al., 2017) and
EVs’ innovative and environmental image (Guth et al., 2017; Nesbitt and Davies, 2013; Sierzchula, 2014).

The results presented in Section 3.2 indicate that net benefits of individually customized service bundles are higher than net
benefits of the predefined ones (Fig. 2). Individual consulting for individual composition of service bundles could increase corre-
sponding net benefits significantly. The market for e-mobility PSS is still highly diversified. Hence, requirements for individual
consultancy services are high. There might not be only one e-mobility PSS to succeed in sales activities in organizational fleets.
Creating customized e-mobility PSS offers for different types of potential EV adopting organizations might be a convincing strategy
for stakeholders and would fit with the smart city paradigm assuming a higher flexibility of services to accommodate individual
needs. As interconnected EVSE of other organizations were used only infrequently in our case study, inter-organizational charging
activities could hardly be observed. Nevertheless, it seems that the users interpret this service as a kind of insurance against flat
batteries and are therefore willing to pay for this charging platform service even without its actual usage. Furthermore, platform-
connected EVSE delivers a sound basis for providing smart energy services (Brandt et al., 2017; Ensslen et al., 2018; Goebel et al.,
2014; Salah et al., 2017) and multimodal platform services (Willing et al., 2017) including offerings as e.g. ride sharing
(Teubner and Flath, 2015) and corporate carsharing (Heinen and Pöppelbu, 2017) in addition to the connected charging platform
services considered in this case study. Such additional platform services are co-creating value for EV users and providers by using
information exchanged in real-time between EV, EV users, service platforms and other stakeholders. This could contribute to balance
the negative benefits of EVSE.

The results presented in Section 3.3 show that today financial support can be an important incentive for EV adoption. If prices for
EV, EVSE and e-mobility services are further decreasing, monetary incentives could also be reduced. The findings of this paper show
that annual net benefits for most organizations are clearly positive due to the compensation of expenses granted. For about half of the
organizations net benefits of the EV are positive without considering the effect of the monetary incentives. However, net benefits of
interconnected EVSE and corresponding services are negative for about 80% of the participating organizations. Sierzchula et al.
(2014) as well as Harryson et al. (2015) show that financial incentives and availability of EVSE are positively correlated with
different countries’ EV market shares. The results of this case study point out that the diffusion of EV could be supported not only by
providing incentives to vehicle acquisitions but also by incentivizing e-mobility PSS including interconnected EVSE and corre-
sponding platform services being part of publicly accessible charging networks. This could result in positive spillover effects, as
additional publicly accessible EVSE offering smart charging services would be put in place that would again positively impact EV
sales and developments towards smarter mobility solutions and be in line with the development towards the smart city paradigm.

The results of our sensitivity analysis (Section 3.4) show that EVs’ TCO (and therefore overall net benefits of e-mobility PSS)
are particularly sensitive to variations of battery prices. Expected fast decreasing battery prices more than halving until 2020
(Berckmans et al., 2017) would significantly increase net benefits of EV (∼475 €/a). Effects of electricity and fuel price parameter
changes within the range of 25% are comparably low. Despite the high sensitivity potential of future battery price developments, the
lever of governments’ incentive programs on overall net benefits of e-mobility PSS is comparably high. Incentives amount to more
than 2500 €/a in Norway, more than 2000 €/a in France (Harryson et al., 2015) and to more than 2000 €/a in this project’s fleet test.
These findings are in line with Palmer et al. (2018) showing that government support for low-emission vehicles clearly needs to
address financial barriers if EV market share is to break out of the niche market.

5. Summary, conclusions and future work

Recently many field trials with EV intending to counteract climate change, to reduce oil dependency, particulate matter pollution
and noise emissions in urban areas by electrifying road transport were carried out in order to develop corresponding technologies.
During a field trial with 109 organizations using 327 EV driving profiles, survey data, actual costs for interconnected EVSE solutions
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as well as information on the compensation of expenses granted to organizations participating were collected. Net benefits for
e-mobility PSS, i.e. EV, interconnected EVSE and e-mobility services were evaluated based on fleet managers’ perspectives by
analyzing costs and WTPM.

The central research question addressed in this article whether e-mobility PSS can support EV adoption can be answered as
follows: Currently the costs for interconnected EVSE solutions and e-mobility services outweigh corresponding WTPM. However,
e-mobility PSS offerings are more promising if they are adapted to individual needs. They might become even more beneficial to EV
users, particularly by considering benefits of smart energy services and multimodal platform services in addition. Consequently,
WTPM for e-mobility PSS could increase resulting in a higher probability to adopt. In addition to that it is very likely that inter-
connected EVSE solutions and corresponding services allocated on the market underlie economies of scale and so will become
cheaper in the future. Consequently, positive net benefits of e-mobility PSS might be possible for more organizations in the future
without government incentives, particularly if increasing inter-organizational usage frequencies of EVSE are taken into account.
Therefore, it is very likely that e-mobility PSS will directly support EV adoption in the future. However, in the current market phase
the EVSE and e-mobility services offered rather negatively affected the adoption of EV, the high prices of interconnected EVSE in
particular. Although the EVSE and e-mobility services offered did not directly contribute positively to higher net benefits of e-
mobility PSS in most organizations, extending the e-mobility charging service offering by further additional smart platform services
following the smart city paradigm might positively affect overall net benefits. Smart energy demand response services, billing services
permitting to charge private EV with photovoltaic energy produced at the home roof top at the workplace, billing services to charge
company cars at home with electricity paid by the employer and multimodal platform services are additional services that could
enhance e-mobility PSS offerings. In addition, positive effects of publicly accessible EVSE encountering range anxiety should be
considered before conclusions are made concerning the research question whether e-mobility PSS can support EV adoption.
Considering positive indirect effects of EVSE availability on EV diffusion should be particularly considered when incentive schemes
are designed. The financial incentive program of this study’s field trial supported PSS sales activities, i.e. to allocate EV, project
specific interconnected EVSE and corresponding charging platform services. This resulted in positive overall net benefits for most of
the participating organizations.

Future work could in addition to services considered in this analysis focus on further additional, customer-oriented smart services,
as interconnected EVSE solutions provide the basis for EV specific EVSE being part of the internet of things fostering possibilities to
offer further e-mobility specific charging platform services to organizations and EV users. Future work could focus on evaluating costs
and benefits of such advanced e-mobility PSS integrating additional innovative charging platform services forming service bundles
supportive to the smart city paradigm.
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Appendix A. Cost parameters

See Tables A.1–A.3.

Table A.1
Battery and energy prices (all prices without VAT in €2015).

Battery and energy prices Unit Value Reference

Battery price €/kWh 359 Pfahl (2013)
Gasoline price €/l 1.274 MWV (2014)
Diesel price €/l 1.201
Electricity price private €/kWh 0.249 Schlesinger et al. (2011), BCG (2009), Leipziger Institut für Energie GmbH (2012), McKinsey (2012)
Electricity price commercial €/kWh 0.179
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Appendix B. Sample characteristics

See Tables B.1–B.3.

Table A.2
Technical and economic assumptions for vehicle attributes (all prices without VAT in €2015).

Vehicle attributes Unit Small Medium Large LCV Reference

Depth of discharge BEV – 90% [1]
Depth of discharge PHEV – 80% [1]
Battery capacity BEV kWh 7 10 13 16 [1]
Battery capacity PHEV kWh 20 24 28 32 [1]
Conventional consumption Gasoline l/km 0.058 0.071 0.094 0.112 [2]
Conventional consumption Diesel l/km 0.046 0.057 0.072 0.085 [2]
Conventional consumption PHEV l/km 0.053 0.066 0.083 0.098 [2]
Electric consumption PHEV kWh/km 0.170 0.211 0.228 0.335 [2]
Electric consumption BEV kWh/km 0.185 0.223 0.240 0.360 [2]
Operations & maintenance Gasoline €/km 0.026 0.048 0.074 0.059 [3]
Operations & maintenance Diesel €/km 0.026 0.048 0.074 0.059 [3]
Operations & maintenance PHEV €/km 0.024 0.044 0.069 0.055 [3]
Operations & maintenance BEV €/km 0.021 0.040 0.062 0.049 [3]
Net list price Gasoline € 10,747 17,321 30,976 38,689 [4]
Net list price Diesel € 12,936 19,508 33,208 40,889 [4]
Net list price PHEV (w/o battery) € 15,356 22,116 35,551 43,371 [4]
Net list price BEV (w/o battery) € 11,280 18,042 31,432 38,677 [4]
Vehicle tax Gasoline €/a 62 125 229 161 [5]
Vehicle tax Diesel €/a 139 226 349 161 [5]
Vehicle tax PHEV €/a 26 34 46 161 [5]
Vehicle tax BEV €/a 0 0 0 161 [5]

[1] Hacker et al. (2011), Gnann et al. (2012), Linssen et al. (2012), Pfahl (2013).
[2] Helms et al. (2011)..
[3] Propfe et al. (2012)
[4] Pfahl (2013).
[5] BMF (2014).

Table A.3
Cost parameters and cost calculations for EVSE and services.

Pricing model Price c c,i
EVSE

i
s

EVSE hardware investment for project specific charging infrastructure One-time payment Individual organizations’

actual investments (Ii
EVSE)

=ci
EVSE aEVSE Ii

EVSE

ni
PEV

·
[1]

Connectivity
services

sCON: Permission to charging network; guarantee of
EVSE connectivity and maintenance

One-time registration
fee per organization

248.65 € (actual price)
=ci

sCON aEVSE

ni
PEV
·248.65€

Charging platform
services

s1: Map-based display of charging points and display
concerning their current availability; RFID card

Service fee per month
and EV

2.45 €/month (actual price) =c 12·2.45€i
s1

s2: Reservation of charging stations Price per reservation 1.00 €/reservation
(assumption)

=c f12· ·1€i
s

i
s2 2 [2]

s3: Charging at own EVSE Price per charging
hour

0.85 €/hour (actual price) =c f12· ·0.85€i
s

i
s3 3 [3]

s4 : Provision of own charging
infrastructure

s4a: Regional 3.10 €/hour (actual price) = −c f12· ·3.10€i
s a

i
s a4 4 [3]

s4b: Supra-regional 3.95 €/hour (assumption) = −c f12· ·4.10€i
s b

i
s b4 4 [3]

s5: Usage of charging
infrastructure of other -
organizations

s5a : Regional 3.95 €/hour (actual price) =c f12· ·3.95€i
s a

i
s a5 5 [3]

s5b: Supra-regional 4.95 €/hour (assumption) =c f12· ·4.95€i
s b

i
s b5 5 [3]

Additional services s6: Mobility guarantee (rental car option) Price per day 40.00 €/day (assumption) =c f ·40€i
s

i
s6 6

s7: EV and charging
infrastructure consulting

s7a:By different
companies

One-time payment 1000.00 € (assumption) = =c ci
s a

i
s b a

ni
PEV

7 7 ·1000€

s7b:By the same
company

[1]
̃ ̃

̃= =
+

+ −
a 0.295EVSE i TEVSE i

i TEVSE
(1 ) ·

(1 ) 1
; TEVSE = 3.8a.

[2] fi
s2 represents the number of reservations per month.

[3] …f f, ,i
s

i
s3 5 represent participating organizations charging hours per month. More detailed information on usage frequencies of connected charging

services is provided in Ensslen et al. (2017).
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Appendix C. Data used

See Table C.1.

Table B.2
Economic sector distributions.

Interested
organizations

Participating
organizations

Organizations providing
driving profiles

Both – Participating organizations
providing driving profiles

Employees in Baden-
Württemberg in 2013 [1]

Sample size 234 109 45 26 4,476,072
n/a 79 31 14 6 0
Subsample without

missing values
155 78 31 20 4,476,072

More than 250
employees

20.65% 20.51% 16.13% 20.00% 47.54%

Less than 250
employees

79.35% 79.49% 83.87% 80.00% 52.46%

[1] Statistisches Landesamt Baden-Württemberg (2016b).

Table B.3
Statistics on the vehicle driving profile data.

Attribute Items N

Vehicle size Small 65
Medium 107
Large 26
LCV 25

Vehicle usage Fleet vehicle 131
Company car 88
Not reported 4

Number of users One 67
Several 156

Parking spot Own parking spot on company's estate 120
Differing parking spots on company's estate 81
No parking spot on company's estate 22

Table C.1
Overview on the datasets used.

(Sub) Sample Interested organizations Organizations participating in the field trial Cost
parameters

Sample size

Dataset Driving profiles (n= 45) Survey data
(n= 109)

Copies of EVSE
invoices (n=109)

Invoices concerning
compensation of expenses
(n=109)

TCOΔ i
PEV x x n= 45

wtpmi
PEV x n=96

TCOi
EVSE x n= 109

wtpmi
EVSE x n=94

ci
CON x n= 108

wtpmi
CON x n=87

ci
SB x x nSB1=67; nSB2 =61;

nSBopti =56

wtpmi
SB x nSB1 =63; nSB2

=56; nSBopti =56
COEi x n= 108

ui
PEV x x n=24

+ +u u ui
EVSE

i
CON

i
SB x x x nSB1 =59; nSB2

=55; nSBopti =55

ui
PSS x x x x x nSB1 =13

A. Ensslen et al. Transportation Research Part A xxx (xxxx) xxx–xxx

13



Appendix D. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tra.2018.04.028.

Appendix E. Summary statistics

See Tables E.1–E.3.

Table E.1
EV specific summary statistics.

Summary statistics N [in €/a]

Mean Std. Devi-ation Std. Error Mini-mum Maxi-mum Quantiles

25 50 75

TCO difference for an EV compared to an ICEV TCOΔ i
EV 46 944 216 32 668 1654 771 914 1041

WTPM for an EV compared to an ICEV wtpmi
BEV 96 4837 6282 641 −10,000 35,000 2000 5000 7000

wtpmi
PHEV 93 4321 5302 549 –22,500 25,000 2000 5000 5500

wtpmi
EV 96 1460 1878 192 −2955 10,341 591 1477 2068

Net benefits of EV ui
PEV 24 716 2353 480 −2540 9509 –232 477 716

Table E.2
EVSE and service bundle specific summary statistics.

Summary statistics N [in €/a]

Mean Std. Devi-
ation

Std. Er-
ror

Mini-mum Maxi-mum Quantiles

25 50 75

Costs for EVSE and e-mobility
services

Ii
EVSE 108 4585 3430 330 0 16,075 2164 3655 5731

TCOi
EVSE 109 1342 1017 97 0 4749 637 1066 1678

ci
sCON 108 46 25 2 2 73 24 37 73

ci
SB SB1 67 884 923 113 4 6223 381 580 1123

SB2 61 1172 1251 160 134 6523 462 708 1247
SBopti 56 323 961 128 −1411 6449 0 29 346

WTPM for EVSE and e-mobility
services

wtpmi
EVSE 94 789 2067 213 −1200 16,800 0 296 600

wtpmi
CON 87 205 259 28 2 1518 57 126 235

wtpmi
SB SB1 63 725 1545 195 −42 10,860 60 222 683

SB2 56 913 1759 235 −137 11,235 108 326 1029
SBopti 56 763 1678 224 −24 11,235 44 138 660

Net benefits of EVSE and e-
mobility services per PEV

ui
EVSE 94 −589 2145 221 −4438 15,951 −1357 −680 −227

ui
CON 87 158 250 27 −61 1444 7 77 204

ui
SB SB1 63 −166 995 125 −2936 4637 −560 −192 103

SB2 56 −256 1074 144 −2939 4712 −619 −299 −1
SBopti 56 441 898 120 0 4786 28 91 431

+ +u u ui
EVSE

i
CON

i
SB SB1 59 −584 2580 336 −4894 14,842 −1731 −1028 −214

SB2 55 −661 2674 361 −5064 14,842 −1794 −1088 −369
SBopti 55 43 2732 368 −4443 15,939 −1011 −367 58

Table E.3
Average compensation of expenses per EV.

Summary statistics N [in €/a]

Mean Std. Deviation Std. Error Mini-mum Maxi-mum Quantiles

25 50 75

Average compensation of expenses per EV COEi 108 2050 510 49 834 3285 1773 2068 2364
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Glossary

BEV: Battery electric vehicle
EVSE: Electric vehicle supply equipment (i.e. charging infrastructure)
ICEV: Internal combustion engine vehicle
EV: Plug-in electric vehicle, i.e. full battery electric vehicle, range extended electric vehicle or plug-in hybrid electric vehicle
PHEV: Plug-in hybrid electric vehicle
PSS: Product service system
REEV: Range extended electric vehicle
TCO: Total cost of ownership
WTPM: Willingness to pay more compared to a combustion engine vehicle alternative
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