
Automatic Programming and Control for Robotic Deburring

Julian Ricardo Diaz Posada∗, Shivaram Kumar, Alexander Kuss, Ulrich Schneider, Manuel Drust,
Thomas Dietz, Alexander Verl†
∗Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), Nobelstr. 12, 70569 Stuttgart, Germany,
E-Mail: Julian.Diaz.Posada@ipa.fraunhofer.de
†Institute for Control Engineering of Machine Tools and Manufacturing Systems (ISW), University of Stuttgart, Germany

Abstract

In the current industrial scenario, robots are rarely used in contact operations such as machining and finishing as they
entail complex programming and control methods. Further, the disparity between accuracy specifications, communication
technologies and control methods required for such operations calls for greater efforts in robot programming and control.
This paper presents a novel approach to automatically program an industrial robot-based on the CAD model of the product
variants and to enable online control to minimize errors during a deburring process. The paper starts with the modeling
of the product, process and resource (PPR model) which is used to generate robot motion trajectories taking into account
the constraints and the free degrees of freedom (DoFs) of the robotic deburring process. The operator selects the edge of
the workpiece to be machined, and an automatic program generation system is designed which programs the robot for the
deburring process and enables online compensation. A laser scanner sensor device is used for localizing the workpiece
in the robot cell and in the online compensation to perform fine corrections of the robot’s movement during the process.
Experimental results are used to validate the robotic program generation and control mechanism for a deburring process,
and to outline the future potential of this work.

1 Introduction
Robots are low cost, reliable and flexible manufacturing
solutions for industrial automation, where the lot size is
small and the variation of profile geometries is high. While
recent statistical data from the International Federation of
Robotics [1] shows a definite increase in the total number
of produced robots, the contribution of robots in machin-
ing and finishing applications is still at a minimum of 2
percent. Robots in manufacturing possess advantages over
conventional tool machines when comparing dexterity over
extended workspaces and the changeability to new pro-
cesses and products [2] but are not adopted due to the many
challenges faced. A study [3] on challenges and obsta-
cles in robot-machining identifies complex programming
methods, poor accuracy and insufficient rigidity as the three
main obstacles and discusses some of the research efforts
being taken to overcome them. The focus of the work pre-
sented in this paper is on minimizing the complexity of
robot programming and online compensation of path errors
for a robotic deburring process.
Existing robot programming trends [4] can be roughly clas-
sified into online and offline programming methods. On-
line programming methods such as Lead-Through pro-
gramming or Teach-In programming are simple and easy
to perform for repetitive tasks, but they are often time con-
suming and not easily adaptable to new or additional tasks.
With higher complexity of the robot tasks, online program-

ming becomes infeasible as the overall production cost in-
creases. Offline programming [5] offers a solution to this
problem by simulating the process and robot cell using
software tools and generating robot programs offline with-
out any loss in production time. A user with expert knowl-
edge in CAD and CAM software tools and the process can
design the desired robot task offline, simulate it and then
use the tools to generate robot ready trajectories. Current
research in robot programming methods try to reduce the
complexity in offline programming methods, to enable the
process experts with less or no experience in offline CAD/-
CAM tools to easily reconfigure the robot system to suit
the process requirements [6]. Key research in this direction
includes Programming by demonstration (PbD) [7] where
the process is demonstrated by the operator using gestures
and movements which are processed by offline software
tools for program generation. Commercially available of-
fline programming tools are expensive and are aimed at
robot applications which do not require frequent reconfig-
urations. Recent research [8] finds that an offline program
generation system which incorporates human inputs, sen-
sor information and CAD models can effectively reduce the
overall programming effort. An offline programming sys-
tem which uses these inputs to easily reconfigure the robot
program is discussed in this paper.
For robot-based manufacturing applications, meeting high
accuracy standards is one of the major obstacles. Robot
calibration methods are extensively used in order to im-

prove the robot accuracy [9]. Co-ordinate measurement
machines, touch probes and measuring arms [9] are some
of the commonly used tools to perform robot calibration.
The calibration process is inherently tedious and repeti-
tive and the accuracy of the calibration is completely re-
liant on the equipment and calibration method employed.
Apart from the inherent manufacturing inaccuracies, geo-
metric and non-geometric errors also contribute to the poor
accuracy of robots [10]. Due to a number of factors con-
tributing to the inaccuracies and the high cost involved in
complete cell calibration and robot modeling, end-effector
pose measurements based on calibration are effective for a
reconfigurable workcell [11].
The calibration process can be used to generate a static
kinematic model of the robot to reduce the position errors
in static positions. In a contact operation such as debur-
ring, in order to compensate errors due to robot interaction
with tool and workpiece, one can use either offline or online
compensation strategies or a combination of both. While
offline compensation requires an accurate process model,
the online compensation method requires integrating sen-
sor systems to measure errors in real-time.
Offline compensation methods use a combination of robot
model and a machining process model to modify the robot
tool path offline for machining [12]. On the other hand,
online compensation methods compensate the robot path
errors or interaction forces during the process, based on
whether position or force is measured [13]. To minimize
the modeling efforts, a visual servo control based approach
using a 2D laser measurement system is implemented in
this research for an online compensation.
The paper starts with a brief description of the robot cell
in Section 2. The calibration of the tool and sensor de-
vices is explained in Section 3. Section 4 describes the lo-
calization of the workpiece in the robot cell. The design
of the program generation system and the individual com-
ponents, deburring process model, user desired deburring
path and sensor model measurements as inputs are intro-
duced in Section 5. Further, in Section 6, the control and
compensation scheme is designed and implemented. The
program generation system and the online control mecha-
nism with the control loop is validated with an exemplary
workpiece.

2 Description of the Robot Debur-
ring System

The architecture of the system is designed to reduce
programming and set-up times by modeling the task
and the process model. The robotic deburring process
is semantically modeled into a system software using
the AML (Automation Markup Language) [14] and the
XML (eXtensible Markup Language). Based on the task
description, the robotic deburring process is interpreted
by the motion generation software component to generate
deburring paths constraining the motions based in end-user
inputs. The motion generation component is explained

later in Section 5.2. The software architecture of the
robot system facilitates the visualization of the robot cell
and the interaction with the workpiece. This software
serves also as an interface for allowing manipulation of the
robot while automatically programming the manufacturing
task. The system architecture of the robot machining
system introducing the individual components and their
interactions is shown in the figure below.

Figure 1 System Architecture of the Deburring System

The robotic deburring system consists of a Kuka Quan-
tec KR270 industrial robot manipulator, a Biax pneumatic
spindle deburring tool with adjustable deflection and a 2-
D laser scanner, scanControl 2900-50 from the company
Micro-Epsilon mounted on the robot flange (Figure 2).
The deburring process is completed in two stages. In the
first stage, a robot program is automatically generated from
a combination of the three input components: task specifi-
cations given by the human, sensor information and CAD
models. In the second stage, an online compensation algo-
rithm is executed during the deburring process. The spindle
allows the configuration of different stiffness and deflec-
tions providing the system with a range of tolerance when
deburring the workpiece. The laser scanner provides the
robot system with measurements of the workpiece to com-
pensate the robot using a control system.

Figure 2 Robot deburring system

3 Tool and Sensor Calibration
The calibration procedure developed to determine the Tool
Centre Point (TCP) frame and the sensor frame are de-
scribed in this section.

3.1 TCP Calibration
The TCP calibration is carried out using a Leica AT901
laser tracker measurement system (its coordinate system
is notated as TRACKER). The tracker system follows re-
flective targets giving position measurements along the X ,
Y and Z-axes. The tracker targets are fixed to the robot
end-effector and repeated position and orientation mea-
surements along the axes, taken one at a time, are used to
record circle and plane features of the flange (FLANGE)
and the TCP illustrated in the figure below.

Figure 3 Transformations between TCP and Flange of
the robot

The measured geometrical features are used to determine
the position and orientation of the frame at the flange and
the TCP. The flange position and orientation in reference to
the tracker are given by T FLANGE

T RACKER, while tool position and
orientation in the tracker frame are given by T TCP

T RACKER. The
required calibrated transformation of the tool in the flange
frame T TCP

FLANGE is given by the following equation,

T TCP
FLANGE = T FLANGE

T RACKER
−1

T TCP
T RACKER (1)

3.2 Sensor Calibration
The calibration of the sensor frame (SENSOR) for the 2-
dimensional laser scanner with respect to the flange co-
ordinate system denoted as T SENSOR

FLANGE is performed using
a novel approach. In this approach, multiple laser scan-
ner measurements of a calibration structure along with the
corresponding robot flange position are measured to com-
pute this transformation. Each laser scanner measurement,
composed of seven sensed lines of the calibration struc-
ture (refer Figure 4), is used to define the reference coor-
dinate system of the calibration structure, denoted as (CS).
The co-ordinate system CS is required to obtain the trans-
formation from the sensor frame to the calibration struc-
ture TCS

SENSOR. The robot sensor recording the consecutive

line segments from the calibration structure and a sample
recorded measurement is shown in the figure below.

Figure 4 Left: Measurement of calibration structure fea-
tures and Right: recorded feature measurement

Moreover, in each measurement, the transformation robot
base (ROBOTBASE) to flange T FLANGE

ROBOT BASE is recorded. A
closed kinematic equation from robot base to calibration
structure and back to robot base is illustrated as follows.

Figure 5 Transformations involved in the sensor calibra-
tion method

The closed kinematic equation obtained from these mea-
surements is used to compute the flange to sensor frame
transformation T SENSOR

FLANGE with i and j as parameters for in-
dexing different measurements as follows,

T F(i, j) = [T SENSOR
CSi

·T FLANGE
SENSOR (β) ·T ROBOT BASE

FLANGEi
]·

[T
FLANGE j

ROBOT BASE ·T
SENSOR

FLANGE (β) ·T
CS j
SENSOR]

where, β =
[
x y z a b c

] (2)

The kinematic equation is optimized by using the
Levenberg-Marquardt algorithm within different combina-
tions of measurements. Five optimization loops are pro-
grammed. The first loop, to optimize weight factor selec-
tion of the Levenberg-Marquardt algorithm, in the second,
to select the initial parameters of vector β , in the third loop,
to optimize translational components, in the fourth loop, to
optimize rotational components and finally to optimize all
the parameters of the flange to sensor frame transformation

T SENSOR
FLANGE . The Levenberg-Marquardt optimization problem

is defined for the obtained set of measurements, optimiza-
tion loops and dependent values [T F(i, j), /0] optimizing the
parameters of β from the model curve f (T F(i, j),β) so
that the sum of the deviations becomes minimal in the fol-
lowing equation,

S(β) =
m

∑
k=1

[/0− f (T F(i, j),β)]2. (3)

4 Localization of workpieces
A basis for the proposed online sensor compensation is
the knowledge about the coarse workpiece location. This
information can be obtained by online teaching with the
robot end effector. However, in the case of changing prod-
uct variants teaching can be a time consuming task. To
overcome this drawback, we integrate an automatic work-
piece localization based on optical sensor measurements.
The 2D sensor mounted on the robot end effector (see
Section 2) is moved over the workpiece geometry as shown
in the figure (refer Figure 6 (a)). Information about the
robot positions T ROBOT BASE

FLANGE retrieved from the robot con-
troller and the sensor transformation T FLANGE

SENSOR are used to
transform the 2D sensor data in 3D space resulting in a 3D
point cloud of the measured workpiece. The measured ge-
ometry is represented by a sensor point cloud S =~ik with
the points~ri for i = 1, ...,NS. The workpiece CAD model
is used to generate a corresponding reference point cloud
R =~r j of the workpiece geometry with the points ~r j for
j = 1, ...,NR. Finally, a point cloud matching is performed
between the S and R using the generalized ICP algorithm
by [16]. It minimizes the sum of squared distances be-
tween corresponding points of two point clouds in an iter-
ative process taking into account locally planar structure.
The result of the point cloud matching is shown in the
(Figure 6 (b)). The resulting transformation TWP

ROBOT BASE
can then be used for coarse workpiece localization in the
offline planning environment. As the reference point cloud
R is derived from the nominal CAD model of the work-
piece, it does not account for geometric deviations of the
real workpiece geometry. This results in inaccuracies of the
workpiece localization. However, in combination with the
online sensor measurements proposed in this paper, these
inaccuracies can be compensated.

Robot 2D Laser sensor

Sensor
movement

Workpiece

(a) (b)

Figure 6 (a) Sensor movement for 3D workpiece local-
ization and (b) Localization result between reference point
cloud R (blue) and sensor point cloud S (red).

5 Automatic Program Generation
System

In this section, the motion generation system used to gen-
erate robot path points is explained followed by the design
and implementation of the automatic program generation
system.

5.1 State Machine Based Deburring Process
Model

The kinematic arrangement of the sensor with the tool in
the current setup makes the sensor traverse a path ahead of
the tool. The kinematic relationship between the tool and
sensor frame is used to generate an offset path and a map-
ping distance (k) between the sensor measurement frame
and the tool frame for workpiece variants. Subsequently,
the entire path is modeled into four process states (Sens-
ing, Deburring, Stop Sensing, Stop Deburring) as shown in
the figure below.

Figure 7 Deburring process states

A state machine model ensures a reliable system by re-
stricting the system to be at only one of the four states at
any point of time. The individual states and their descrip-
tions are elaborated in the table below.

Table 1 Summary of States

States Description
Sensing The tool is not in contact with the work-

piece. The robot system is ready to
receive sensor measurements and com-
pute the tool position

Deburring The tool is in contact with the work-
piece. The compensation is active
and simultaneously sensor measure-
ments are recorded

StopSensing The tool is in contact with the work-
piece. The sensor measurements are not
recorded but the compensation mecha-
nism is active

StopDeburring The tool is not in contact with the work-
piece and the sensor system is also in a
deactivated state

An initial path over the workpiece is computed by inter-
preting the DoFs and constraints of the process by optimal

motion generation explained in Section 5.2. The four pro-
cess states and the robot system behavior is then assigned
to the generated robot path points.

5.2 Motion Generation in Workpiece for
Robotic Deburring

A path over the workpiece without taking into account the
sensor model is initially computed by interpreting the DoFs
and constraints of the deburring manufacturing process us-
ing the motion generation methods proposed by the au-
thors [15] taking into account the user specified product,
process and resource models (Figure 1). The robot debur-
ring cell is simulated with the CAD files using the PPR
model described using the Automation Markup Language
(AML) [14]. The process is modeled into an eXtensible
Markup Language (XML) file also linked to the AML. It
describes the geometrical transformation from workpiece
to process and specifies the DoFs and constraints of the
process. For the deburring process, the rotation around the
tool axis (rotation around Z-axis) is defined as a DoF as
specified in the following listing,

Listing 1 Semantic-modeling of the deburring process in
XML

1< P r o c e s s name=" D e b u r r i n g ">
2 < Fr am eC o ns t r a i n t s Do F >
3 <GeoPar name=" x " u n i t ="mm" t y p e =" F ixed " v a l u e =" 0 " / >
4 <GeoPar name=" y " u n i t ="mm" t y p e =" F ixed " v a l u e =" 0 " / >
5 <GeoPar name=" z " u n i t ="mm" t y p e =" F ixed " v a l u e =" 0 " / >
6 <GeoPar name=" a " u n i t =" deg " t y p e =" F ixed " v a l u e =" 0 " / >
7 <GeoPar name=" b " u n i t =" deg " t y p e =" F ixed " v a l u e =" 0 " / >
8 <GeoPar name=" c " u n i t =" deg " t y p e =" Range " min="−45" max=" 45 " v a l u e =" 0 " / >
9 < / F r am eC o ns t r a i n t s Do F >

10< / P r o c e s s >

Based on user specifications over the simulated workpiece,
desired start and end positions are defined as ~PSn , ~PEn re-
spectively, where n denotes the number of selected edges.
Orientations are defined taking into account a defined prod-
uct convention denoted with quaternions q

n
which are

given by the interaction mode (refer Figure 1) to the mo-
tion planner. The workpiece edge positions are then param-
eterized with the parameter l and are specified in the homo-
geneous matrix transformation from robot base to work-
piece notated in (Equation 4). In order to generalize mo-
tion generation for multiple edges, the rotation between
them is calculated by finding the required transformation
between the quaternions and evaluating the axis-angle con-
vention [αn,~vn] = Q2AA((q

n
)−1 · q

[n+1]
) and parameteriz-

ing it taking into account a rotation factor over l notated ζ

as in (Equation 5).

TWP
ROBOT BASE(l) =

[
Rq(qn)

~PSn +(l
100)(

~PEn −~PSn)

0 1

]
,

l ∈ [100n,100(n+1)].

(4)

β (l,n) = αn ·
(

l− (100n−ζ)

2ζ

)
. (5)

The process model is mathematically denoted using the
semantical description (refer Listing 1) in the transforma-
tion from workpiece to manufactuing process as denoted

in (Equation 6). The process and product description are
embedded into the Open Motion Planning library [17]. The
parameters l and δc (rotation around Z-axis, represented
with the variable c) are specified as the DoF of the sam-
ple based motion planner [18] and an Optimal Rapidly ex-
ploring Random Tree algorithm (RRT*) [17] is used for
finding optimal way to rotate the end-effector for the de-
burring process. Figure 8 depicts the sampled states in the
Robot Manufacturing Process space in which the DoFs are
configured, the Cartesian space positions depicting the path
σ∗m (where m represent the number of poses in this path de-
fined by the end user) and the robot joint movements for
reaching the deburring of two orthogonal edges. Moreover,
the robot sequences obtained from the simulation are also
depicted.

T PROCESS
WP (δc) =

Reul

 a
b

c+δc

  x
y
z


0 1

 (6)

0 50 100 150 200
−280

−260

−240

−220

−200

−180

l Factor

D
o

F
 P

ro
d

u
c
t

−
 R

o
ta

ti
o

n
 a

ro
u

n
d

 Z
 [

D
e

g
]

Robot Manufacturing Process Space

1900
1920

1940
1960

1980
2000

−560
−540

−520
−500

621

621.5

622

622.5

623

Z
 [

m
m

]

Cartesian Space

X [mm]Y [mm]

0 50 100 150 200
27

28

29

l Factor

A
n

g
le

[D
e

g
]

Axis 1

0 50 100 150 200
−30

−28

−26

−24

l Factor

A
n

g
le

[D
e

g
]

Axis 2

0 50 100 150 200
65

70

75

l Factor
A

n
g

le
[D

e
g

]

Axis 3

0 50 100 150 200
100

102

104

106

l Factor

A
n

g
le

[D
e

g
]

Axis 4

0 50 100 150 200
−117.5

−117

−116.5

−116

l Factor

A
n

g
le

[D
e

g
]

Axis 5

0 50 100 150 200
206

208

210

212

l Factor

A
n

g
le

[D
e

g
]

Axis 6

Figure 8 Evaluated samples and interconnected solu-
tion in the Robot Manufacturing Process space, Cartesian
and joint spaces for robotic deburring using the rotation
around the tool vector with the found motion

5.3 Sensor Model
Each of the m poses of σ∗m calculated in Section 5.2 is re-
lated to the sensor model by further interpreting the con-
straints of the workpiece and the manufacturing process.
To achieve this for linear edges, the mapping distance k
is mathematically calculated constrained with the param-
eter l, to map the tool position information with that of
the workpiece edge for sensing and later compensating the
robot during the deburring process. In order to determine
the transformation matrix for the expected sensor measure-
ments, a closed kinematic chain between base-tool-sensor-
workpiece is taken. The end transformation from robot

base to expected sensor measurements on the workpiece is
denoted as TWPEXP_MEAS

ROBOT BASE , the transformation from robot base
to TCP is denoted as T TCP

ROBOT BASE , the transformation from
tool to sensor is denoted as T SENSOR

TCP and the transforma-
tion from sensor to expected measurements is denoted as
TWPEXP_MEAS

SENSOR . The equation describing the kinematic chain
with these transformations is derived below,

[TWPEXP_MEAS
ROBOT BASE] = [T TCP

ROBOT BASE] · [T SENSOR
TCP]

·[TWPEXP_MEAS
SENSOR]

(7)

From the calibration process (see Section 3), the transfor-
mation to the tool and the sensor with respect to the robot
flange is determined. Thus the transformation matrix from
tool to the sensor frame T SENSOR

TCP is calculated as,

T SENSOR
TCP = T TCP

FLANGE
−1

T SENSOR
FLANGE (8)

The TCP pose in robotbase is then constrained using the
parameterization of the edge using the defined parameter
l in (Equation 4). With this procedure it is assured that
the the robot moves during the sensing state over the edge.
The rotational component q

n
is known in advance from the

computed path σ∗m. In the equation below this constraint is
expressed for each of the translational components,

T TCP
ROBOT BASE =

Rq(qn
)

 xTCP(l)
yTCP(l)
zTCP(l)


0 1

 (9)

The transformation sensor to expected measurement is also
defined and the translation components for x and z compo-
nents are also unknowns (y is null because it is a 2 dimen-
sional sensor) as follows,

TWPEXP_MEAS
SENSOR =

Rwpexp_smeas

 xSENSOR
0

zSENSOR


0 1

 (10)

By substituting (Equation 8), (Equation 9) and
(Equation 10) into (Equation 7) and equaling this to
the first computed pose in the workpiece (σ∗1) a linear
system of three equations eq1,eq2,eq3 with three variables
(l, xSENSOR and zSENSOR) is automatically built and solved
by using a Python embedded tool into the CAM software
as follows,

xσ∗1

yσ∗1

zσ∗1

=

eq1(xSENSOR,zSENSOR,xTCP(l))
eq2(xSENSOR,zSENSOR,yTCP(l))
eq3(xSENSOR,zSENSOR,zTCP(l))

 (11)

The tool position is offset along the machining edge with
the solved l and in this way its relation to the Cartesian
space is solved for determining the mapping distance k.
Then using k, a sensor path is calculated for each of
the poses of σ∗m obtaining in this way the sensing path

denotated as σSens
m which relates the machining points

with the sensing points. In order to map the tool position
with the expected measurements, a 6-D frame containing
position and orientation information of the workpiece is
constructed by taking into account the workpiece and the
sensor CAD models using a triangular mesh. The inter-
section points of the workpiece edge and projected sensor
scanned lines are identified using a triangle intersection
algorithm. This algorithm based on the CAD objects of
the workpiece is used to calculated the expected sensor
measurements over the sensor path. An illustration of the
scan lines onto the workpiece edge and the intersection
points on the workpiece edge is shown below.

Figure 9 Expected Measurement calculation

From the points lying on the surface of the workpiece
along the scan lines, the edge points of the workpiece
are determined. The Z and Y -axes vectors are defined
on the workpiece surface with the edge point and other
surface points along the scan line on the two workpiece
faces as shown in Figure 9. The frame on the edge of
the workpiece is constructed using these two vectors and
its normal vector calculated as X-axis depicted by red
arrow. A similar algorithm is used to interpret the real
measurements of the sensor.

5.4 Algorithm for Program Generation
The automatic program generation system is initialized
with the localization of the workpiece as in Section 4. With
the obtained workpiece edge points, a set of robot poses
σ∗m, defined in tool frame, for the deburring process are
generated as in, Section 5.2. Based on the sensor model,
a list of poses defined in sensor frame σSens

m is computed in
Section 5.3. The deburring process is modeled in the pro-
gram generation system into the four states introduced in
Section 5.1. Based on the generated robot poses over the
workpiece (σ∗m), the sensor modeled pose (σSens

m) with re-
spect to the workpiece (refer Figure 7), each robot pose is
assigned to one of the four states.
The robot behaviour described during the different states is
generated in the form of a robot program code as shown in
the figure below.

Figure 10 Automatic program generation algorithm

6 Compensation and Control
In this section the design and implementation of the con-
troller and the compensation scheme is explained. More-
over, results from experimental compensation are depicted.

6.1 Design and Implementation
A control loop with a manually tuned Proportional-Integral
(PI) controller is designed in a Programmable Logic Con-
troller (PLC) to compensate the robot path errors online.
The information flow between the sensor device, robot sys-
tem and the controller is illustrated in (Figure 11). The
disparity in the communication cycletimes between the dif-
ferent components (robot controller, PLC, sensor device) is
overcome by imposing hard real-time constraints into the
PLC and the robot controller, with a cycle time of 12 ms.

Figure 11 Online path compensation scheme

The model of the robot manipulator is simulated in the con-
trol loop (refer Figure 11) using a PT1 delay element. A
PT1 is a single order delay element with its transfer func-
tion G(s) defined as,

G(s) =
K1

(1+T1s)
. (12)

A controller to trace the references is designed using the PI
components with a transfer function C(s) defined as,

C(s) = Kp

[
1+

1
(1+Tns)

]
, (13)

The PT1 model system is parameterized with the robot time
constant T1(ms), controller time constant Tn, robot gain Kn
and proportional gain of controller Kp. These values are
further tuned to get the optimal system response. The PI
controller with an integral time Tn =15 ms and a having a
proportional gain of Kp = 0.8 is chosen for further exper-
imentation. The controller is tuned to perform finer com-
pensations (in the order of 1 mm), assuming that the real
workpiece geometry matches approximately with that of
the CAD geometry. The errors given to the controllers,
in this case deltas in Y and Z-axes in the TCP frame, are
calculated into the PLC by computing the transformation
between the expected and desired sensor measurements in
the TCP frame as follows,

TWPMEAS
WPEXP_MEAS

= (T SENSOR
TCP ·TWPEXP_MEAS

SENSOR)−1·

(T SENSOR
TCP ·TWP_MEAS

SENSOR).
(14)

6.2 Experimental Compensation
The automatic program generation system is validated and
the control system performance is analyzed for an edge of
a cuboid workpiece. The workpiece localization is per-
formed as described in Section 4. A program is automati-
cally generated using the motion planning algorithms, state
machine and sensor model as explained in Section 5. The
errors are computed as in Equation 14 and compensated
by the PI controllers in TCP frame. The compensation ac-
tion at the different control points of the deburring path is
illustrated in the figure below.

45 50 55 60 65 70 75 80 85 90 95
−60

−58

−56

−54

−52

−50

−48

R
o

b
o

t
d

is
p

la
c
e

m
e

n
t
Y

 [
m

m
]

Sample time [s]

Path compensation based on automatic program generation

Compensation pose in TCP coordinate system
Reference pose in TCP coordinate system

Figure 12 Path compensation based on automatic pro-
gram generation

The reference values are set at the control points using the
expected sensor measurements of the workpiece. Small
variations on these measurements are due to the sample
based nature of the motion planner. The start of stage two
can be noticed when both paths start. Close matching at this
point is due to the localization algorithm. Proper response
of the system is noticed. Future work is testing the control
response when the process dynamics is also involved.

7 Conclusions
In SMEs where the lot size is low and the variation between
components is high, robot systems which can be easily re-
configured to new processes and products will play a key
role. To make up for this deficiency, an intuitive program-
ming system for faster reconfiguration of robots by gener-
ating robot ready programs with minimal steps is presented
in this paper.
The novelty of this approach lies in encapsulating firstly,
the motion generation with its constraints and free degrees
of freedom derived from the product, process and resource
models. Secondly, the process model states. Thirdly, the
control information for online path compensation within
the robot program, obtained from CAM computations in
which the sensor model is embedded. And finally, the
user input. By performing an online compensation, the re-
quirements of repetitive calibrations, tedious robot model-
ing process and teach-in processes can be reduced.
Future work of the presented approach is related to the ex-
tension of the sensor models in order to allow computation
of expected measurements in CAM and sensing of more
complex geometries in workpieces. Moreover, the imple-
mentation and evaluation of different sensors by changing
the sensor model into the architecture and adapting them
into the robot cell could be approached. Furthermore, the
cognitive abilities of robot systems could be increased by
optimizing robot motions by using the free degrees of free-
dom interpreted from the manufacturing process and the
sensor constraints when measurement of complex work-
piece features is required.

8 Acknowledgments
The authors would like to acknowledge Mr. Arjun Srid-
har, Mr. Pedro Rosales and Mr. Tae Hun Lee for their
contribution on the implementation of some functionalities
described in this paper and also Mrs. Luzia Schuhmacher
for proofreading this paper. The research leading to these
results was supported and financed by Baden-Württemberg
Stiftung (ROB-8).

References
[1] International Federation of Robotics - Statis-

tical Department, “World robotics 2014 in-
dustrial robots,” 2014. [Online]. Available:
http://www.worldrobotics.org/

[2] Jayaweera, N.: Webb, P.: Robotic edge profiling of
complex components, Industrial Robot, Vol. 38, No.
1, pp. 38-47, 2011.

[3] Karim, A.: Verl,A.: Challenges and Obstacles in
robotic-machining, 44th International Symposium on
Robotics (ISR), pp. 1-4, 2013.

[4] Pan, Z.: Joseph, P.: Larkin, N.: van Duin, S.; Nor-
rish, J.: Recent Progress in Programming Methods for
Industrial Robots, 41th International Symposium on

Robotics (ISR), pp. 1-8, 2010.
[5] Vuong, N.D.: Lim, T. M. L.: Yang, G.: Simula-

tion and Offline Programming for Contact Operations,
Springer London, 2015.

[6] Leali,F.: Pini, F.: Ansaloni, M.: Integration of CAM
off-line programming in robot high accuracy machin-
ing, International symposium on System integration
IEEE/SICE, pp. 580-585, 2013.

[7] Billard, A.: Calinon,S.: Dillman, Rüdiger: Schaal,
S.: Robot programming by demonstration, Springer
handbook of robotics, Springer, pp. 1371-1394, 2008.

[8] Dietz, T.: Schneider, U.: Barho, M.: Oberer-Treitz,
S.: Drust, M.: Hollmann, R.: Hägele, M.: Program-
ming System for Efficient Use of Industrial Robots for
Deburring in SME Environments, ROBOTIK 2012,
VDE-Verlag., pp. 428-433, 2012.

[9] Elatta Y, A.: Gen, Li Pei: Zhi, Fang Liang: Daoyuan,
Yu: Fei, Luo: An Overview of Robotic Calibration,
Information Technology J., Vol. 3, pp. 74-78, 2004.

[10] Schneider, U.: Drust, M.: Ansaloni, M.: Lechmann,
C.: Pelliciari, M.: Leali, F.: Gunnink, J.W.: Verl,
A.: Improving robotic machining accuracy through
experimental error investigation and modular compen-
sation, Advanced Manufacturing Technology J., pp. 1-
13, 2014.

[11] Leali, F.: Vergnano, A.: Pini, F.: Pellicciari, M.:
Berselli, G.: A workcell calibration method for en-
hancing accuracy in robot machining of aerospace
parts, Advanced Manufacturing Technology J., pp. 1-
9, 2014.

[12] Slavkovic, N. R.: Milutinovic, D.S.: Glavonjic, M.
M.: A method for off-line compensation of cutting
force-induced errors in robotic machining by tool path
modification, Advanced Manufacturing Technology,
Springer, Vol. 70, pp. 2083-2096, 2014.

[13] Samad, T.: Annaswamy, A.: "The impact
of control technology" [Online]. Available:
http://ieeecss.org/general/impact-control-technology

[14] Drath, R.: Lüder, A.: Peschke, J.: Hundt, L.: Au-
tomationML - the glue for seamless automation en-
gineering: Conference on emerging Technologies and
Factory Automation ETFA, IEEE, pp. 616-623, 2008.

[15] Diaz Posada, J. R.: Dietz, T.: Ockert, P.: Kuss,
A.: Hägele, M.: Verl, A.: Automatic Optimal Motion
Generation for Robotic Manufacturing Processes: Op-
timal Collision Avoidance in Robotic Welding, 12th
IEEE Conference on Automation Science and Engi-
neering CASE, "submitted to peer review", 2016.

[16] Segal, A.: Haehnel, D.: Thrun, S.: Generalized-ICP,
Robotics: Science and Systems, Vol. 2, No. 4, 2009.

[17] Karaman, S.: Frazzoli, E.: Sampling-based Algo-
rithms for Optimal Motion Planning, Int. J. Rob. Res.,
Vol. 30, pp. 846-894, 2011.

[18] LaValle, S.M.: Motion Planning: The Essentials,
IEEE Robotics and Automation Society Magazine,
Vol. 18, pp. 79-89, 2011.

