
3D SLAM With Scan Matching and Factor Graph Optimization
Thomas Emter and Janko Petereit
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB,
Fraunhoferstr. 1, 76131 Karlsruhe, Germany
{thomas.emter, janko.petereit}@iosb.fraunhofer.de

Abstract

For autonomous navigation, a mobile robot needs the capability to estimate its pose while simultaneously mapping its
environment. This contribution presents an approach for fusing data from multiple asynchronous sensors using factor
graphs. Full 3D SLAM is performed on data from several localization sensors and point clouds from a 3D LiDAR. The
scans from the LiDAR are integrated by scan matching for relative motion estimation and are also used for loop closure.

1 Introduction

It is an essential capability of a mobile robot to be able to
map its environment with its sensors. Because all sensors
of the robot are subject to noise and inaccuracies, this is
a great challenge. In the beginning the map and the local-
ization will not yet be precise and their errors are mutually
interdependent. In order to build a correct and precise map
while providing an accurate localization, their uncertain-
ties and mutual dependencies have to be modeled and ac-
counted for. Methods and algorithms to solve this problem
are well known as Simultaneous Localization and Mapping
(SLAM) [1].
In order to improve the precision of the localization and the
map, multiple sensors can be combined by means of sensor
fusion. The fusion has the advantage that errors stemming
from the sensor measurements can be reduced and even
mitigation of sensor outages is possible. In case of 6DoF
(degrees of freedom) localization and mapping, more than
one sensor is needed to ensure observability of all degrees
of freedom.
In this contribution, a factor-graph-based approach to com-
bine sensor fusion of a GPS, an inertial measurement unit
(IMU), and wheel odometry with scan matching of point
clouds from a 3D LiDAR scanner is presented. From
the IMU measurements, a relative motion can be de-
rived, whereas GPS provides absolute measurements. Scan
matching of two consecutive LiDAR scans also yields a
relative measurement. An existing framework for factor
graphs is used to include all measurements and a vehicle
model to perform full 6DoF localization and 3D mapping
simultaneously. As the sensors mounted on a mobile robot
have different data rates and are not synchronized, the factor
graph structure is exploited to model estimation problems
with multiple asynchronous sensors. The paper provides
an evaluation of the overall performance and robustness
against sensor failures with regard to the impact of different
sensor configurations. In order to embed the factor graph
in a system for on-line localization, a parallel filtering and
smoothing scheme is presented and evaluated with regard

to its timing properties.
The following section gives an overview over related work.
Afterwards, the SLAM scheme utilizing factor graphs is
explained with subsections covering scan matching, loop
closure, and map building. A section presenting the results
is followed by a conclusion closing the paper.

2 Related Work

Extended Kalman filters were successfully used to solve
the SLAM problem for a long time [2]. They were ex-
tended to track multiple hypotheses in order to be more
robust against wrong data associations [3]. For 2D SLAM,
particle-filter-based algorithms have been shown to be very
effective as they implicitly model multiple hypotheses, e.g.
[4]. Each particle establishing a different estimate of the
path and the map. 3D SLAM features six instead of three
degrees of freedom (6DoF) and much more particles and
thus increased processing power is needed. In addition, the
maps need more memory in 3D, rendering particle filters
more and more infeasible.
Graph optimization has been used for 2D SLAM for a long
time [5]. For 3D SLAM, mostly graph-based methods are
used because of the aforementioned limitations of the fil-
tering approaches concerning memory and computational
effort [6].
In [7] it is shown that if the variance of the heading remains
small, EKF-based 2D SLAM is robust and able to build con-
sistent maps. In graph-based methods, the inclusion of loop
closures is straightforward by means of introducing addi-
tional constraints into the graph, but falsely detected loop
closures may lead to inconsistent maps [8]. By integrating
a sensor with absolute measurements like GPS, the loop
closure can be made even more robust [9].
For estimation of the relative pose between scans from a 3D
LiDAR sensor, several scan matching algorithms have been
developed. The Velodyne SLAM algorithm extracts surfaces
from the scans to efficiently estimate the poses. Thus, the
algorithm is tailored for scenarios where planes exist, which
makes it well suited for urban scenarios [10]. Methods like



iterative closest point (ICP) are based on matching points
and make no assumptions on the scenario. Hence, they are
better suited for off-road or heterogeneous environments
[11]. The Generalized-ICP (GICP) algorithm is a variant
especially developed for data originating from scanning
sensors [12].

3 Factor Graph SLAM

Besides reducing the resulting errors, fusion of multiple
sensors like GPS and scan matching increases the robust-
ness by compensating for each other’s weaknesses. For
example, GPS may be very heavily disturbed in confined
areas [13] whereas the precision of scan matching is very
good in areas with many objects. In flat areas with open
sky view GPS is very reliable but scan matching may not
be very effective due to lacking structures.
Compared to filtering approaches which are based on the
Markov assumption, in graph optimization, past states can
be re-estimated. This is very important for loop closures,
because in this case the robot returns to a place after a long
time and corrections can be back-propagated, i.e., errors
accumulated along the path can be corrected and consistent
maps be built.
Factor graphs represent the estimation problem as a graph-
ical model [14] and [15]. A factor graph being a bipartite
graph has two types of nodes: variable nodes xi and fac-
tor nodes f j. Since the graph is bipartite, the edges are
only between factor nodes and variable nodes. Sensor mea-
surements and other constraints are represented by factor
nodes and the state estimates by variable nodes. Solving
the SLAM problem equals to estimation of the full joint
probability p(X |Z) over all states xi given all sensor mea-
surements or constraints z j. The joint probability can be
represented by a factor graph as each factor f j encodes a
measurement likelihood p(z j|X j) with X j being all state
variables xi involved in factor f j, i.e., being connected via
edge ei j.
The presented SLAM algorithm is implemented using the
GTSAM framework as back-end. It provides a convenient
factor graph structure as well as different optimization algo-
rithms [16]. It also provides a factor for IMU preintegration.
Since an IMU measures at a very high rate, multiple consec-
utive measurements can be preintegrated into a single factor
to reduce node count and therefore computational complex-
ity [17] and [18]. As the IMU has a significantly higher
rate than the other sensors, this preintegration also allows
for a synchronization to the other sensor measurements by
combining the IMU measurements for the according peri-
ods of time. Although the IMU has a much higher data
rate than the other sensors, an exact synchronization cannot
be assured. Therefore, in our approach the IMU preinte-
gration is extrapolated upon the inclusion of a new node
based on the current measurement data. The interval of the
next following preintegration of new IMU measurements is
shortened accordingly.
The presented SLAM algorithm is primarily used for the
estimation of the 6DoF pose, but also the linear velocity
and IMU biases are estimated; the latter for internal reasons.

As the IMU biases change slowly over time, they can be
estimated at a lower rate.
Figure 1 shows an example for a factor graph, where
the variable nodes xn are shown as large cyan circles and
the factor nodes as small circles. For clarity, the variable
nodes of the linear velocity and IMU biases are not shown.
GPS measurements gm are prior factors colored in green,
possessing only one edge. IMU measurements in−1,n are
between-factors modeling a relative motion from state xn−1
to state xn and are colored in magenta. The relative motion
of the scan matching sn−1,n is also modeled as between-
factor from state xn−1 to state xn and colored in yellow.

g0

x0

i0,1

s0,1

x1

i1,2

s1,2

x2

g1

i2,3

s2,3

x3

Figure 1 Illustration of a factor graph with variable
nodes xn as large cyan circles and the factor nodes as
small circles.

The measurements from wheel odometry and the vehicle
model are also omitted from the figures for the sake of clar-
ity. The wheel odometry is modeled by another between-
factor, which introduces a constraint in the 2D plane at-
tached to the vehicle coordinate system. The vehicle model
is also a between-factor incorporating the kinematic con-
straints of the vehicle. While the factor of the wheel odom-
etry connects two nodes according to its measurement in-
terval, the vehicle model factor connects each consecutive
pair of nodes. The latter means that each time a new node
is added to the graph, a vehicle model factor is also added
connecting the new node with its predecessor.

3.1 Scan Matching
With scan matching, the relative motion between two con-
secutive scans of a 3D LiDAR scanner can be estimated.
Utilizing scan matching for relative motion estimation can
be denoted LiDAR odometry. In the presented SLAM ap-
proach, the Generalized-ICP (GICP) is used for scan match-
ing [12]. It extends the well-known ICP algorithm by a
probabilistic model in the minimization step taking into ac-
count the locally planar structure. It can be interpreted as
local plane-to-plane matching, which is better suited for
point clouds originating from moving 3D LiDAR scanners.
Despite exploiting locally planar structures, the GICP is
still well suited for unstructured scenarios and not reliant
on strictly planar surfaces in the environment. The esti-
mated relative motion has full six degrees of freedom and
is included into the graph as between-factor sn−1,n connect-
ing state xn−1 with state xn, cf. Figure 1.

3.2 Loop closure
Closing a loop, which happens when the mobile robot re-
turns to a known place, is one of the biggest challenges in
SLAM, because uncertainties accumulate over the traveled



path. When loop closures are not accounted for or loops
are falsely detected and integrated, the resulting map will
be inconsistent.
A potential loop closure has to be detected first. This
is accomplished by comparing the current pose with past
poses regarding their Euclidean distance. In order to avoid
loop closures with poses in the immediate past, potential
loop closures are omitted until a traveled distance > dpre is
reached. The comparison is performed for poses predating
this pose until the Euclidean distance is below a certain dis-
tance dloop with dloop < dpre. For a potential loop closure,
the GICP is performed and its fitness score is evaluated to
determine if a loop closure has occurred. This verification
helps to avoid false positives, which may lead to inconsis-
tencies in the resulting map [8]. A successful loop closure
is integrated into the factor graph as between-factor s0,n
connecting state x0 with state xn, see Figure 2. Thus, Li-
DAR scan matching is additionally used for loop closure
besides relative motion estimation of consecutive scans, cf.
Section 3.1.

g0

x0

i0,1

s0,1

x1 xn−1

gm

in−1,n

sn−1,n

xn

s0,n

Figure 2 Illustration of a loop closure between states x0
and xn.

3.3 Processing
The Velodyne has a scanning rate of 10 Hz, i.e., a rotation
takes 100 ms. The vehicle moves during this time leading
to a skewing of the scan; hence, the resulting scan has to be
rectified. This is accomplished by inertial correction based
on a high-rate 6DoF pose estimation.
After collecting all data and feeding it into the graph as
values and factors, a full optimization by the Levenberg-
Marquardt algorithm can be performed in the GTSAM
framework. Of course, it is possible to also do intermit-
tent optimizations, but the full optimization algorithm has
to be performed all over again.
If intermittent updates are necessary, a more efficient alter-
native is to use the iSAM2 algorithm for optimization [19].
It is able to perform incremental updates, thus reusing re-
sults from earlier runs. The efficiency is achieved, because
new factors and values mostly affect only small parts of
the graph. Thus, only a small part of the graph has to be
optimized most of the time.
In [20] concurrent smoothing and filtering is proposed,
combining the advantages of a full factor graph optimiza-
tion with the on-line capabilities of a filter. In this pa-
per, a similar scheme is introduced combining incremental
iSAM2 smoothing or intermediate Levenberg-Marquardt
optimization (LM) with a parallel on-line Extended Kalman

filter (EKF). The EKF also estimates the full 6DoF pose and
is explained in more detail in [21]. It can be used for the
aforementioned inertial correction of the LiDAR scans.
For the parallel processing scheme, the implemented front-
end algorithm incorporates three non-blocking and thread-
safe data pipelines providing the sensor data to multiple
parallel threads, as depicted in Figure 3. The first pipeline
provides data for the thread of the graph optimization al-
gorithm. As the graph optimization needs at least several
measurements zt , the first optimization starts at t1 with the
measurements from t0 up to t1. The second pipeline is
an intermediate pipeline for a catch-up EKF and the third
pipeline feeds the on-line EKF at full rate. For the EKFs,
all sensor data except LiDAR data for scan matching is
used. The reason for omitting the scan matching in the
on-line part is the processing time needed for the GICP,
which would compromise the on-line capability due to the
introduced latency.
Since the factor graph optimization takes some time (from
t1 to t2 or from t2 to t4), the availability of the result lags be-
hind the on-line EKF. Therefore, the intermediate catch-up
filter is initialized with the result of the graph optimization
algorithm (at t2 and t4, cf. green arrows in Figure 3) and fed
with data from the second pipeline until it is in sync with the
on-line EKF. When synchronized to the on-line EKF, the
state of the catch-up filter is copied to the on-line EKF (at t3
and t5, cf. blue arrows in Figure 3). Thus, the on-line EKF
is still able to run at its full rate, while additional precision
from the scan matching is also introduced to the on-line
EKF by the synchronization. All mentioned algorithms are
running in parallel threads to ensure best performance and
minimal interaction between the updates only for synchro-
nization purposes. Besides the three threads processing
the pipelines, there are other threads, e.g., for filling the
pipelines with new data or for logging data for evaluation.

3.4 Mapping
While integrating new data into the factor graph, mapping
is only preformed implicitly, as the LiDAR data is only used
for scan matching up to this point. An explicit map is built
only after graph optimization. Mapping is accomplished by
using the Normal Distributions Transform (NDT) represen-
tation [22].
To build an NDT map, the environment is divided into
voxels. For each voxel a normal distribution over all points
within the voxel is calculated, i.e., each voxel contains a 3D
mean and a covariance matrix. By interpreting the normal
distribution as its σ -ellipsoid, the shape of the environment
can be modeled. A flat surface for example leads to a disk
shaped ellipsoid.
To correct errors and cope with noise or dynamic objects,
which should not be integrated into the map, a method
for taking information about free space into account is in-
cluded. An existence probability is additionally attached to
each voxel. The existence probability is updated by each
observation, i.e., increased by a point falling into a voxel
and decreased while tracing the laser ray from its origin
through free space to that voxel. In the voxel map, this is
accomplished with a 3D Bresenham algorithm [23]. The



On-line EKF thread

Catch-up EKF thread zt1 − zt3 zt2 − zt5

Graph optimizer thread zt0 − zt1 zt0 − zt2 zt0 − zt4

t0 t1 t2 t3 t4 t5

Figure 3 Timing diagram of the parallel filtering and smoothing scheme.

normal distribution of a voxel with its existence probability
falling below a certain threshold is eliminated.

4 Results

Due to the lack of ground truth data, the following results
are qualitative evaluations and quantitative comparisons.
An Xsens MTi-G-700 delivers IMU and GPS measurements
with rates of 100 Hz and 4 Hz respectively. The 3D LiDAR
data is from a Velodyne HDL-64E, which has a scanning
rate of 10 Hz, i.e., a rotation takes 100 ms. The wheel odom-
etry sensor is custom-made and has a rate of 10 Hz.

4.1 Full SLAM

Figure 4 NDT map over a satellite image of the area.
The height is color-coded from blue (low) via green to red
(high).

The resulting map after a full optimization is shown in
Figure 4 over a satellite image of the area. By inclusion of
GPS measurements, the map is implicitly geo-referenced.
The vehicle traveled for about 1.8 km with multiple loop
closures. The cross shaped building in the left half was
surrounded two times. After the second turn, the parking
lot in the right bottom corner was driven trough and finally

the area in the top right corner with trees and bushes was
covered. Thus, the tour covered both urban scenarios and
unstructured environments.

Figure 5 Multiple loops; path in blue and loop closure
constraints in red.

Figure 5 shows the path in blue with multiple loops. The
loop closure constraints are depicted in red. The large loop
was traveled twice, which can be seen by the continuous
loop closure constraints along the path.

4.1.1 On-Line Processing
The final path estimated incrementally with the iSAM2
algorithm is very close to the full optimization with the
Levenberg-Marquardt algorithm. The maximum positional
difference in 3D is 1.06 m; the maximum horizontal posi-
tion difference is only 0.06 m. In Figure 6 it can be seen
that there exists a nearly constant offset of the final path
estimated with iSAM2 (blue curve). As can be seen by
the maximum horizontal position difference of a few cen-
timeters, this offset is mainly in the altitude. The altitude
measured by GPS is much more inaccurate compared to
latitude and longitude resulting in a higher variance [24].
The difference of the on-line localization with the parallel
EKF with parallel iSAM2 optimization is up to 12.08 m
and 2.29 m on average. With regard to only the horizon-
tal error, the maximum difference is 5.25 m and 0.78 m



0 50 100 150 200 250 300 350 400 450 500

t [s]

0

2

4

6

8

10

12

14

P
o

s
it
io

n
 e

rr
o

r 
[m

]
Final iSAM2

Intermediate iSAM2

On-line EKF

Figure 6 Position errors of on-line localization compared
to full optimization with Levenberg-Marquardt.

on average. The differences with a parallel intermediate
Levenberg-Marquardt optimizer are very similar.
Although the difference of the final optimized path esti-
mate is much lower, the intermediate and incrementally
computed graph estimates also have high differences along
the path. These incremental estimates are used to initial-
ize the on-line EKF; see red circles in Figure 6. The dif-
ferences are highest in the beginning before the first loop
closure, which occurs at about 135 s and has a length of
about 550 m, cf. Figure 6. After the first loop closure, the
differences are much lower and closer to the final curve of
the iSAM2 estimation.

4.2 Dynamic Environment
Figure 7 shows a scenario with a walking person. When
using plain mapping, the person walking from right to left
is added permanently to the map, cf. Figure 7(a).

(a) (b)

Figure 7 Scenario with a walking person. Normal map-
ping (a); taking negative evidence into account (b).

By taking information about free space into account, the
person will only be in the map for a short time and subse-
quently removed by negative evidence. If the area has been
scanned before and enough negative evidence has been ac-
cumulated, the person might even not be added to the map
at all. Thus, the person will not be in the final map, cf. Fig-
ure 7(b). Comparing both figures it can be seen that with-
out taking negative information into account some clutter is

visible on the ground-level surface, whereas in Figure 7(b)
the surface is flat and nearly artifact-free.

4.3 Simulated GPS outage
In order to evaluate the robustness against sensor failures
an outage of the GPS for a period of about 35 seconds or
130.7 m was simulated.

Table 1 Horizontal position errors in m

emin eavg emax

IMU 0.01 1.38 4.48
IMU+Odo 0.07 0.93 2.51
IMU+Odo+Model 0.12 0.71 1.17
IMU+SM 0.18 0.76 1.58
IMU+SM+Odo+Model 0.06 0.28 0.62

In Table 1 the horizontal position errors in the area of
the GPS outage for different sensor configurations can be
found. The errors are calculated compared to the result of
using all sensors and no GPS outage. If only an IMU is
present during the GPS outage, the errors amount to about
4.5 m. Additional inclusion of odometry can already re-
duce the average and maximum error significantly. Adding
the vehicle model to the aforementioned sensors or alter-
natively using scan matching helps to further reduce the
average and maximum errors comparably. Including all
available sensor and model data, the errors are the lowest
as expected.

0 10 20 30 40 50 60 70 80 90

t [s]

0

1

2

3

4

5

6

H
o

ri
z
o

n
ta

l 
p

o
s
it
io

n
 e

rr
o

r 
[m

]

IMU

IMU+Odo

IMU+Odo+Model

IMU+SM

IMU+SM+Odo+Model

Figure 8 Horizontal position errors. The period of GPS
outage is shaded in gray.

Figure 8 shows the horizontal position errors in the area
of the GPS outage. The period of GPS outage is shaded in
gray. It can be seen that the error using only IMU is the
highest during the outage. The smoothing property of the
graph optimization leads to smooth transitions and no hard
jumps can be seen at the start or the end of the GPS outage.
On the other hand, this leads to errors being present outside
the GPS outage even when using all available sensor and
model data.



Because the altitude is the most error prone as mentioned in
Section 4.1.1, the 3D position error is evaluated separately
for comparison.

Table 2 3D Position errors in m

emin eavg emax

IMU 0.30 2.04 4.52
IMU+Odo 1.18 2.12 3.92
IMU+Odo+Model 0.56 1.60 2.81
IMU+SM 0.18 0.84 1.67
IMU+SM+Odo+Model 0.18 0.36 0.62

In Table 2 the 3D position errors in the area of the GPS out-
age for different sensor configurations can be found. The
errors are again calculated compared to the result of using
all sensors and no GPS outage. If only an IMU is present
during the GPS outage the errors are also the highest and
amount to more than 4.5 m. In the 3D case, additional
odometry only reduces the maximum error a little because it
only introduces a relative constraint in a 2D plane. Adding
the vehicle model to the aforementioned sensors or alterna-
tively using scan matching helps to reduce the average and
maximum errors significantly, because both are relative 3D
constraints. Including all available sensor and model data,
the errors are the lowest like in the 2D case as expected.
Figure 9 shows a comparison of the resulting maps in
the area, where the GPS outage occurred. In Figure 9(a),
where only an IMU was present during the outage, the map
clearly shows strong distortions due to large errors during
the outage. Both, the addition of wheel odometry with a ve-
hicle model (Figure 9(b)) and scan matching (Figure 9(c))
greatly improve the robustness against GPS outages and
the precision of the mapping result. Figure 9(c)) shows the
reference map without GPS outage.

4.4 Timing
The timing assessment was conducted on a Xeon 2687W
v2 CPU with eight cores running @ 3.4 GHz.
Along the path of about 1.8 km more than 65,000 measure-
ments of all sensors were captured. Full optimization with
Levenberg-Marquardt in GTSAM including all measure-
ments and model data takes about 11.5 s.
In Table 3 the timings of the parallel updates of the con-
current filtering and smoothing scheme are listed.

Table 3 Timings of Updates

tmin tavg tmax σt

EKF update [µs] 11.0 79.1 7598.0 74.9
iSAM2 update [ms] 12.0 382.8 9996.3 219.1
LM update [ms] 27.8 350.0 11525.3 273.4
Catch-up filter [ms] 0.2 15.5 105.8 22.2

The on-line EKF updates only take 79.1 µs on average.
This also includes the copy operation from the catch-up
filter for synchronization. The maximum processing time
of about 7.6 ms seems quite high and presumably stems

from spurious delays of the operating system because only
35 of more than 65,000 updates took more than 1 ms. The
iSAM2 updates take less than 400 ms on average but may
take nearly 10 s, which is nearly as high as the full opti-
mization with Levenberg-Marquardt. The timings of the
continuous Levenberg-Marquardt updates are very similar.
This can be explained by the front-end algorithm, which
generates very many loop closure constraints. Loop clo-
sure constraints have a great impact on the efficiency of the
iSAM2 regarding incremental updates, as these constraints
have influences on large parts of the graph. Thus, the capa-
bility of iSAM2 of updating only small parts of the graph
cannot be utilized most of the time. The subsequent catch-
up filtering also takes several ms. Given the processing time
of the on-line EKF well below 10 ms, the parallel structure
is suitable for on-line operation.
The insertion of one LiDAR scan with approximately
120,000 3D points into the NDT map takes about 7 ms
plus 32 ms for including negative information. Building the
whole map (Figure 4) with about 5,000 scans and taking
negative information into account takes roughly 200 sec-
onds. When operating in environments where no dynamic
objects are to be expected or only mapping over short time
intervals is necessary, negative information may be omitted
resulting in a more than fivefold speedup.

5 Conclusion

In this paper an evaluation of factor graphs for 6DoF SLAM
utilizing the GTSAM framework was presented. The ro-
bustness of the algorithm against sensor failures has been
evaluated and compared for different sensor configurations.
It has been shown that the algorithm successfully mitigates
simulated GPS outages and that aiding the IMU with ad-
ditional sensors or a vehicle model greatly improves the
localization and mapping.
For mapping, a scheme based on NDT maps accounting for
information about free space was introduced. This helps to
filter dynamic objects from the map and allows for error
corrections.
A proposed parallel on-line concurrent filtering and
smoothing scheme was compared to the results of a full
optimization and its timing was evaluated demonstrating its
on-line suitability.

ACKNOWLEDGMENT

The described research forms part of the project entitled
“AKIT – Autonomy kit for near-serial-production work ve-
hicles for networking and assisted rescue from safety haz-
ards”, which is being promoted in the course of the “Inno-
vative rescue systems” announcement of the BMBF within
the scope of the German government’s “Research for civil
safety” program.



(a) (b) (c) (d)

Figure 9 Mapping in the area of the GPS outage with IMU and GPS only (a); with IMU, GPS, wheel odometry, and
vehicle model (b); with IMU and scan matching (c); reference map without outage using IMU, GPS, wheel odometry,
and vehicle model (d). The height is color coded from blue (low) via green to red (high).

References

[1] S. Thrun, W. Burgard, and D. Fox, Probabilis-
tic Robotics. Cambridge, Massachusetts: The MIT
Press, 2005.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous lo-
calization and mapping: Part I”, IEEE Robotics &
Automation Magazine, vol. 13, 2 2006.

[3] ——, “Simultaneous localization and mapping: Part
II”, IEEE Robotics & Automation Magazine, vol. 13,
3 2006.

[4] G. Grisetti, C. Stachniss, and W. Burgard, “Improv-
ing Grid-based SLAM with Rao-Blackwellized Par-
ticle Filters by Adaptive Proposals and Selective Re-
sampling”, in Proceedings of the 2005 IEEE Inter-
national Conference on Robotics and Automation
(ICRA), 2005.

[5] F. Lu and E. Milios, “Globally consistent range scan
alignment for environment mapping”, Autonomous
Robots, vol. 4, no. 4, pp. 333–349, 1997.

[6] D. Borrmann, J. Elseberg, K. Lingemann, A.
Nüchter, and J. Hertzberg, “Globally consistent 3D
mapping with scan matching”, Robotics and Au-
tonomous Systems, vol. 56, no. 2, 2008.

[7] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and
E. Nebot, “Consistency of the EKF-SLAM algo-
rithm”, in Proceedings of the 2006 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS), 2006, pp. 3562–3568.

[8] J. S. Gutmann and K. Konolige, “Incremental map-
ping of large cyclic environments”, in Computa-
tional Intelligence in Robotics and Automation,
1999. CIRA ’99. Proceedings. 1999 IEEE Interna-
tional Symposium on, 1999, pp. 318–325.

[9] T. Emter, “Integrated Multi-Sensor Fusion and
SLAM for Mobile Robots”, Proceedings of the 2011
Joint Workshop of Fraunhofer IOSB and Institute for
Anthropomatics, Vision and Fusion Laboratory, J.
Beyerer and A. Pak, Eds., 2012.

[10] F. Moosmann and C. Stiller, “Velodyne SLAM”, in
Proceedings of the 2011 IEEE Intelligent Vehicles
Symposium, Baden-Baden, Germany, 2011, pp. 393–
398.

[11] S. Rusinkiewicz and M. Levoy, “Efficient variants
of the ICP algorithm”, in Proceedings Third Interna-
tional Conference on 3-D Digital Imaging and Mod-
eling, 2001, pp. 145–152.

[12] A. Segal, D. Haehnel, and S. Thrun, “Generalized-
ICP.”, in Robotics: Science and Systems, vol. 2,
2009.

[13] M. S. Braasch, “Multipath”, in Springer Handbook
of Global Navigation Satellite Systems, P. J. Teunis-
sen and O. Montenbruck, Eds., Cham: Springer In-
ternational Publishing, 2017, pp. 443–468.

[14] V. Indelman, S. Williams, M. Kaess, and F. Dellaert,
“Factor graph based incremental smoothing in iner-
tial navigation systems”, in 2012 15th International
Conference on Information Fusion, 2012.

[15] V. Indelman, S. Williams, M. Kaess, and F. Dellaert,
“Information fusion in navigation systems via factor
graph based incremental smoothing”, Robotics and
Autonomous Systems, vol. 61, no. 8, 2013.

[16] GTSAM, https : / / bitbucket . org / gtborg /
gtsam, Accessed: 2018-01-03.

[17] L. Carlone, Z. Kira, C. Beall, V. Indelman, and
F. Dellaert, “Eliminating conditionally independent
sets in factor graphs: A unifying perspective based
on smart factors”, in Int. Conf. on Robotics and Au-
tomation (ICRA), Hong Kong, 2014.

[18] C. Forster, L. Carlone, F. Dellaert, and D. Scara-
muzza, “IMU Preintegration on Manifold for Effi-
cient Visual-Inertial Maximum-a-Posteriori Estima-
tion”, in Robotics: Science and Systems, 2015.

[19] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J.
Leonard, and F. Dellaert, “iSAM2: Incremental
smoothing and mapping using the bayes tree”, The
International Journal of Robotics Research, vol. 31,
no. 2, pp. 216–235, 2012.



[20] S. Williams, V. Indelman, M. Kaess, R. Roberts, J. J.
Leonard, and F. Dellaert, “Concurrent filtering and
smoothing: A parallel architecture for real-time nav-
igation and full smoothing”, Int. J. Rob. Res., vol. 33,
no. 12, Oct. 2014.

[21] T. Emter and J. Petereit, “Integrated Multi-Sensor
Fusion for Mapping and Localization in Outdoor
Environments for Mobile Robots”, in Proceedings
SPIE 9121, Multisensor, Multisource Information
Fusion: Architectures, Algorithms, and Applications
2014, 2014.

[22] M. Magnusson, The three-dimensional normal-
distributions transform: an efficient representation
for registration, surface analysis, and loop detection.
Örebro Universitet, 2009.

[23] J. E. Bresenham, “Algorithm for computer control of
a digital plotter”, IBM Systems Journal, vol. 4, no. 1,
pp. 25–30, 1965.

[24] J. Kouba, F. Lahaye, and P. Tétreault, “Precise point
positioning”, in Springer Handbook of Global Navi-
gation Satellite Systems, P. J. Teunissen and O. Mon-
tenbruck, Eds., Cham: Springer International Pub-
lishing, 2017, pp. 723–751.


