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Abstract 

The software architecture is one of the most crucial artifacts within the lifecycle 
of a software system. Decisions made at the architectural level directly enable, 
facilitate, hamper, or interfere with the achievement of business goals as well 
as meeting functional and quality requirements. The latter includes reusability, 
and thus software architectures are also essential for the success of product line 
engineering.  

This paper summarizes our practical experience by giving an overview on when 
and how static architecture evaluation practically contributes to architecture 
development. Therefore, it defines ten distinct purposes of architectural evalua-
tions and illustrates them in a set of industrial and academic case studies. Most 
of the case studies are settled in a product line engineering context. In particu-
lar, we highlight how the different purposes determine and influence subse-
quent steps in architecture development. 

Keywords: ADORE, architecture, architecture evaluation, product line, PuLSE-DSSA, reverse 
engineering. 
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Introduction 

1 Introduction 

One of the most important artifacts in the life cycle of a software system is the 
architecture, since it embraces the decisions and principles for system to be de-
veloped. The software architecture is the fundamental organization of a system 
embodied in its components, their relationships to each other and to the envi-
ronment and the principles guiding its design and evolution 14. The goal of an 
architecture development method is to address such aspects and to provide the 
fundament for achieving organizational and business goals, as well as meeting 
the functional and quality requirements of the system. To ensure the achieve-
ment of the goals, it is mandatory to have quality engineering activities as an 
integrated part in an architecture development method. This is especially true 
for software product lines 10 since the product line architecture embraces the 
decisions and principles for each family member. A sound instrument to assess 
and ensure architectural quality is to conduct static architecture evaluations. 
Static architecture evaluations compare the planned architecture (as described 
by architectural artifacts) with the actual architecture as implemented in source 
code (based on a mapping).  

In this paper, we demonstrate the integration of static architecture evaluation 
into our architecture development method, PuLSE-DSSA and identify ten dis-
tinct purposes for conducting static architecture evaluations. The results of such 
an evaluation influence and determine subsequent architecture development. 
We demonstrate the impact in a set of industrial and academic case studies, 
where we applied Fraunhofer PuLSE™ (Product Line Software Engineering) 4 
and Fraunhofer ADORE™ (Architecture- and Domain-Oriented Re-
Engineering)1.   

The remainder of the paper is structured as follows: Section 2 presents Fraun-
hofer’s PuLSE and ADORE approach. Then section 4 discusses static architecture 
evaluations and introduces ten distinct purposes for static architecture evalua-
tions integrated into PuLSE. Section 4 illustrates the role of the distinct purposes 
in nine industrial and academic case studies. Chapter 5 then discusses related 
work, while chapter 6 concludes this experience report.  

                                                 
1PuLSE and ADORE are registered trademarks of Fraunhofer Institute for Experimental Software Engineering 

(IESE), Kaiserslautern, Germany 
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2 Approach 

The case studies combined two methods: Fraunhofer PuLSE, in particular its ar-
chitectural component PuLSE-DSSA, and ADORE for reverse engineering activi-
ties. This section presents an overview of the two methods and how they relate 
to other phases in the software life cycle (Figure 1 depicts the phases) as typi-
cally proposed by software development processes, first architecture develop-
ment, then component engineering, and the implementation, and finally re-
verse engineering; other software development phases (e.g., requirements en-
gineering, testing, etc.), potential feedback cycles and iterations are left out. 
Next to each phase, there is the main artifact produced in it. 

 

Figure 1:  Lifecycle Phases 

2.1 PuLSE™-DSSA   

PuLSE™-DSSA deals with product line activities at the architectural level (it can 
also be used in single system development). Since greenfield scenarios 10 are 
found only rarely in industrial contexts, PuLSE-DSSA is designed to smoothly in-
tegrate reverse engineering activities into the process of developing a product 
line architecture. The main underlying concepts of the PuLSE-DSSA are: 

• Scenario-based development in iterations that explicitly addresses the stake-
holders’ needs. 
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• Incremental development, which successively prioritizes requirements and 
realizes them. 

• Direct integration of reverse engineering activities into the development 
process on demand. 

• View-based documentation to support the communication of different roles. 

The main process loop of PuLSE-DSSA consists of four major steps (see Figure 
2): 
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Figure 2:  Overview PuLSE-DSSA (left side) and ADORE (right side) 

Planning: The planning step defines the contents of the current iteration and 
delineates the scope of the current iteration. This includes the selection of a 
limited set of scenarios that are addressed in the current iteration, the identifi-
cation of the relevant stakeholders and roles, the selection and definition of the 
views, as well as defining whether or not an architecture assessment is included 
at the end of the iteration. 

Realization: In the realization phase, solutions are selected and design deci-
sions taken in order to fulfill the requirements given by the scenarios. When se-
lecting and applying the selected solutions, an implicit assessment regarding 
the suitability of the solutions for the given requirements and their compatibility 
with design decisions of earlier iterations is made. A catalog of means and pat-
terns is used in this phase. Means are principles, techniques, or mechanisms 
that facilitate the achievement of certain qualities in an architecture whereas 
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patterns are concrete solutions for recurring problems in the design of architec-
tures. 

Documentation: This step documents architectures by using an organiza-
tional-specific set of views. It thereby relies on standard views as, for example, 
defined by Kruchten 20 or Hofmeister 13, and customizes or complements 
them by additional aspects requested by one of the key stakeholders 6. 

Assessment: The goal of the assessment step is to analyze and evaluate the re-
sulting architecture with respect to functional and quality requirements and the 
achievement of business goals. In an intermediate state of the architecture, this 
step might be skipped and the next iteration is started. 

PuLSE-DSSA results in (product line) architectures documented in a selection of 
architectural views. 

2.2 Component Engineering 

The architectural views are systematically mapped to models used by Fraun-
hofer’s KoBRA method for engineering component-based product lines 1, 21. 
The structural view, for instance, maps to the component containment tree, 
dynamic views map to interaction models of system or subsystem components. 
According to Fraunhofer’s method, components are modeled by using the Uni-
fied Modeling Language (UML) and consist of a specification and a realization. 
Each specification consists of a structural, a behavioral, and a functional model. 
Each realization consists of a refined structural model, an activity, and an inter-
action model. The different components can then be engineered concurrently 
since the architecture has defined the component communication, specified the 
required interfaces, and distributed the responsibilities among the components.  

2.3 Implementation 

The implementation comprises all activities that transform the component en-
gineering models into source code written in a certain programming language. 
This involves the realization of functionality described in the models, the crea-
tion and optimization of the algorithms required to solve computation prob-
lems, and restructuring and refactoring of the implemented parts to avoid qual-
ity problems like code clones, high complexity of the implementation, or large 
routines with respect to lines of code. 
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2.4 ADORE™ 

The architecture definition yields in product line components that have to be 
engineered. In the implementation phase, the components and interfaces are 
realized. Reverse engineering activities then enable the analysis of the imple-
mented architecture. One goal of reverse engineering as defined in 8 is to cre-
ate representations at higher levels of abstraction. Therefore, facts are extracted 
from existing artifacts (e.g., source code, documentation, configuration files) 
and the information is aggregated in a fact base or repository. Since the fact 
base contains a large amount of information, the most information is often 
hidden in overcrowded low-level models. Therefore, further analysis activities 
process the information and aiming at creating meaningful views of the existing 
systems.   

ADORE™ (Architecture- and Domain-Oriented Reengineering) is a request-
driven reverse engineering approach that takes the architecture and the domain 
context of the analyzed artifacts into account. ADORE is mainly instantiated in 
step 2 of PuLSE-DSSA (realization), when the architects typically reason about 
whether or not to reuse existing components. The architecture drives the selec-
tion of reverse engineering activities and the results of those activities answer 
the reuse question. Reverse engineering activities are conducted asynchronously 
to the PuLSE-DSSA iteration. That is, the current iteration of the architecture 
development may proceed if the answer to the reverse engineering request is 
delayed. The advantage of such a request-driven approach is that investment 
into reverse-engineering is kept as small as possible.  

Typical goals of reverse engineering in the context of product line engineering 
are a) recovery of lost information in order to benefit from field-tested solutions 
and experiences, b) localization of single features in the source code in order to 
reuse this functionality in the product line, c) enabling reuse in order to inte-
grate components (or whole subsystems) into the product line, and d) evaluat-
ing the architecture for quality assurance purposes. 
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3 Static Architecture Evaluation 

Static architecture evaluations compare two models of a software system with 
each other. Typically an architectural model (the intended architecture) is com-
pared with a source code model (the implemented architecture), as depicted in 
Figure 3. Each model consists of a set of (hierarchical) model elements and dif-
ferent types of relations (calls, variable access, etc.) between them. The model 
elements and the dependencies between them can either be postulated (e.g., 
in a high level model such as an architectural view) or extracted (e.g., in a low 
level model such as the source code). The comparison requires a mapping be-
tween the two models to be compared, which is a human-based task. The 
comparison assigns one of the following types to each model element and rela-
tion between a pair of model elements: 

• Convergence – a model element of a relation in the high level model was 
also present in the low level model 

• Divergence – a model element or a relation was present in the low level 
model, but missing in the high level model 

• Absence – a model element or a relation was present in the high level 
model, but the counterpart is missing in the low level model 

Architecture 
Model

Experts

Source Code 
Model

Architecture
Evaluation

(SAVE)
Mapping

Results 
Report

Architecture 
Model

ExpertsExperts

Source Code 
Model

Architecture
Evaluation

(SAVE)
Mapping

Results 
Report

 

Figure 3:  Architecture Evaluations with SAVE 

Next, the outcome of an evaluation is summarized and documented in a results 
report (graphical and textual), which can be processed further. The results show 
whether or not the higher level model converges to the lower level model. The 
total number of convergences indicates the degree of convergence, while the 
number of divergences and absences indicate the opposite. The architects can 
interpret the results (convergences, divergences and absences) and use them 
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for the different purposes. In some cases, it is necessary to calibrate the evalua-
tions (i.e., refinement of the high level model, the low level model, or the map-
ping), which means that the evaluation is performed iteratively. 

We performed all evaluations in the case studies described later with the SAVE 
tool (Software Architecture Visualization and Evaluation), which is based on the 
Reflexion model idea of 24 and 19. The SAVE tool is an Eclipse plug-in that is 
described in more detail in 23 and 25.  

3.1 Purposes of Static Architecture Evaluation  

A static evaluation of software architectures can be performed for different, 
distinct purposes. The purposes differ in their objectives, the reasons why to 
conduct a static architecture evaluation and how they influence subsequent 
steps of architecture development. In the following we will introduce ten dis-
tinct purposes and relate them to the four steps of PuLSE-DSSA (see Figure 4 
for the list of purposes, grouped by the PuLSE-DSSA steps): 

 

 

 

 

 

 

 

ID PuLSE-DSSA Step Purpose 
1.1 Product line potential  
1.2 

Planning 
Product alignment 

2.1 Reuse potential 
2.2 Component adequacy 
2.3 

Realization 

Comprehension 
3.1 Consistency 
3.2 Completeness 
3.3 

Documentation 

Re-documentation  
4.1 Evolution control 
4.2 

Assessment 
Structure  

Figure 4:  Evaluation Purposes 

1.1 Product line potential: An analysis into whether several, independently devel-
oped, existing systems are realized under an umbrella of one common refer-
ence architecture. The results of such an evaluation help to determine which 
products become part of the envisioned product line and therefore have to be 
migrated towards the product line architecture (if necessary). Thus, it guides the 
planning of the first iteration of PuLSE-DSSA in order to assess the product line 
potential that is already embodied in existing systems.  

1.2 Product alignment: When one system is subject to be merged into an already 
existing product line, the purpose is to evaluate the product line architecture on 
the one hand against the system’s architecture to assess the conformity and to 
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detect differences and on the other hand against the system’s documentation 
in order to put the PuLSE-DSSA planning step on a sound foundation. This sup-
ports the effort estimation in order to align the system to the product line archi-
tecture and analyzes the degree of required modifications. 

2.1 Reuse potential: The decision whether to reuse (and integrate into a given ar-
chitecture) a component, an architectural fragment or part within a product 
line is often not easy to make. The reuse candidate typically can not be used as 
is, since it was not designed and realized for the product line, so it is question-
able whether it fits to the architecture. The dependencies of the reuse candi-
date have to be revealed and the need for its (potential) adaptation should 
drive the reuse decision. Static evaluations help to visualize the dependencies 
and the position of the reuse candidate within a decomposition hierarchy. This 
information helps the product line architects to derive sound architectural deci-
sions. In case, there are several reuse candidates to the same design problems, 
see 16 for an example of a comparison approach. 

2.2 Component adequacy: This static evaluation aims at uncovering the internal 
quality of the subject component. The scope is narrowed down to a single 
component and its context only. It is analyzed in depth (usually combined with 
other reverse engineering techniques like clone detection, variability analysis, 
code metrics, etc.). The component’s internal design, the internal quality, and 
the component’s internal structure are reviewed to assess its adequacy. The 
component engineering models including interfaces are compared to the com-
ponent’s implementation. The results enable the architects to derive statements 
about the component adequacy (see 17 for an example). 

2.3 Comprehension: Program comprehension aims at achieving an understanding 
of a software system on a high level of abstraction (i.e., an architectural level or 
a component level). For this purpose, mental models are reflected against the 
implementation and iteratively improved (e.g., as described in 15 or 24) until 
the mental model and the implementation agree. Bottom-up strategies thereby 
aim at abstracting the models more and more, while top-down strategies refine 
abstract (domain) views until they conform with the details of the implementa-
tion. 

3.1 Consistency: An assessment of the degree of consistency of documentation 
(e.g., architectural views, component engineering models) with the implemen-
tation. It is checked where the documentation is still a valid snapshot of the im-
plementation, or if both evolved differently. Thus, it aims at increasing the up-
to-dateness of the documentation. 

3.2 Completeness: An analysis in order to detect not yet documented architectural 
entities (model elements or relations). A key criterion for documentation quality 
is its completeness. Static evaluations are able to reconcile the elements docu-
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mented in architecture descriptions with those that are implemented. The iden-
tified gaps can now be documented.  

3.3 Re-documentation: When re-documenting a software system or product line, 
static evaluations are very useful to extract the static decomposition (on a low 
level), when combined with clustering techniques (e.g., see 18) then the com-
bination of both can lead to high level architectural descriptions. 

3.4 Evolution control: Static architecture evaluations are one good means to 
monitor the evolution of a system or a product line and they give the architects 
the possibility to intervene when necessary. After computing a baseline, the fo-
cus of an architecture evaluation is set only on the delta (i.e., the modifications 
made to the system after the baseline was set). This filtering emphasizes only 
new effects (convergences, violations, degeneration). Another scenario is to de-
fine a target architecture, and to evaluate the progress in reaching this target, 
when modifying the system over time. 

4.1 Structure: When conducting an assessment, one discussion aspect might be 
the decomposition and/or the traceability from the architecture to the source 
code. This discussion can be backed up with the results of static architecture 
evaluations concerning the structural decomposition of a system. 

Copyright © Fraunhofer IESE 2005 9
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4 Case Studies 

This section presents nine case studies where we applied static architecture 
evaluations with the SAVE tool in the context of PuLSE-DSSA and ADORE for 
different purposes (see Figure 5 for an overview). 

 

 

 

 

 

 
 

Figure 5:  Case Study Overview 

Purpose CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9 
Product line potential         X  
Product alignment     X   X  
Reuse potential     X    X 
Component ade-
quacy 

      X   

Comprehension X       X  
Consistency  X    X    
Completeness      X    
Re-documentation     X      
Evolution control   X X X     
Structure  X     X    

4.1 CS1: Apache Tomcat 

Subject  Apache Tomcat 
Domains Web server 
Type Academic single system 
Language Java  
Size ~ 300 KLOC  
Purposes Comprehension, structure 

Figure 6:  CS1 - Overview 

In 25 an experiment was conducted for the validation of the SAVE visualization 
component. The hypothesis was that a well-configured visualization for soft-
ware architectures can support the comprehensibility and the reduction of 
complexity. In the context of the experiment we searched for reasonable, realis-
tic tasks concerning an existing system. Apache Tomcat 2 as being a system of 
appropriate size (411 classes) was selected as the analysis object for the ex-
periment. Apache Tomcat is an open source web server of the Apache software 
foundation. 

In order to be able to prepare the experimental tasks we (as the experiment de-
signers) had to first understand the Apache Tomcat system ourselves. Due to 
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the trade-off between time constraints and realistic tasks, we had to compose 
the experiment carefully. We applied our ADORE approach to analyze Apache 
Tomcat to understand the decomposition structure and to find out about inter-
nal details that become part of the experimental tasks. The Apache Tomcat sys-
tem could be decomposed into hierarchically nested 42 components. To reduce 
the visual complexity of the system under investigation, we collapsed the com-
ponents. Figure 7 presents a high level view of the system and the main subsys-
tems in a UML oriented notation. Starting from this view we were able to iden-
tify which components are related to each other. If components are collapsed, 
all relations of contained components are lifted to the displayed level. For in-
stance, we were able to identify a cyclic dependency between the components 
org.apache.catalina and org.apache.coyote. 

 

Figure 7:  Apache Tomcat High Level View 

Further analyses of the system required the navigation into collapsed compo-
nents by expanding them in the visualization. This enabled the exploration of 
the structure of the system in a top-down manner. This strongly supports the 
comprehensibility of the visualization, as users can decide, what information 
they want to see. Figure 8 zoomed into org.apache.tomcat in order to further 
explore the internals of that component. Local details of a component are 
shown while the global context is preserved (i.e., the top-level components stay 
visible, but their relations point to the low-level components). 
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Figure 8:  Zooming into a Subcomponent 

An interesting observation, which became an analysis task in the experiment, is 
concerned with the processing of the TCP/IP and the HTTP communication pro-
tocols. While TCP/IP is a stateful protocol with established connections, HTTP is 
stateless. The extracted facts of the Apache Tomcat exactly reflect this: The 
TCP/IP protocol, processed by the org.apache.tomcat.util.net component, uses 
threads for managing a number of connections initiated by clients. In contrast, 
the processing of HTTP does not use threads, as requests can be independently 
processed. Figure 9 presents an extraction of the parts involved in the protocol 
processing. This shows that Apache Tomcat is a well-structured system, where 
the naming of components indicates important implementation details. 
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Figure 9:  Go Phone Architecture 

The SAVE tool connects the architectural evaluation activities to the source 
code. It is possible to navigate to the source code files belonging to a compo-
nent directly from the view, furthermore it is also possible to jump to the source 
and destination of a relation. This strongly supports the comprehension of rela-
tionships between source code and architectural models. 

4.2 CS2: Go Phone 

Subject  (Hypothetical) mobile phone 
Domains Demonstrator, mobile phones 
Type Academic product line 
Language Java (J2ME) 
Size ~ 10 KLOC per system 
Purposes Consistency 

Figure 10:  CS2 – Overview 

The GoPhone product line is a hypothetical product line of mobile phone im-
plemented in Java. It was developed at IESE as a test bed and demonstrator es-
pecially to validate and illustrate product line methods, techniques, or tools 22. 
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To ensure the proper mode of operation of the demonstrator, we apply PuLSE-
DSSA to design architectural modifications, which are then typically realized by 
student workers. 

Static architecture evaluations help us to assess the degree to which the stu-
dent workers adhere to architecture guidelines and decisions we made for im-
plementation details. Thus, the architectural models (see Figure 9 for an over-
view) developed in PuLSE-DSSA iterations are compared to the source code 
models implemented for the consistency purposes. Since we use the GoPhone 
product line as a test bed, it is crucial that the concepts we want to demon-
strate are realized in a clean and smooth manner. We included the static 
evaluations in the acceptance procedure for the students, and depending on 
the results, we either redesign the architecture or the student workers obtain a 
to-do list to refactor their solutions. 

4.3 CS3: SAVE 

Subject  SAVE  
Domains Reverse engineering, program analysis 
Type Academic single system 
Language Java 
Size ~ 20 KLOC 
Purposes Evolution control 

Figure 11:  CS3 - Overview 

In CS3, we evaluated the implementation of the SAVE tool (the tool we used to 
conduct the static architecture evaluation) itself against its architecture descrip-
tion. The tool had to undergo some major restructurings in the development 
because of some technical constraints that came along with the architectural 
decision to realize the SAVE tool as an Eclipse plug-in and reuse functionality 
given by other plug-ins (e.g., EMF 11 for persistency, GEF 12 for graphical out-
put).  

The purpose of this evaluation was to track the evolution and in order to be 
able to reason about the design decisions. The SAVE tool was hierarchically de-
composed into the three plug-ins and several lower level components. Most no-
table in the evaluation were the absence between the SAVE core and the visu-
alization plug-in. The reason for this was the event propagation mechanism of 
Eclipse, which has no static dependencies. A detailed description of this case 
study can be found in 23. We updated the architectural description of the SAVE 
tool accordingly and paid special attention to the event propagation mecha-
nism in the assessment step of PuLSE-DSSA.  
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4.4 CS4: TSAFE 

Subject  Air traffic control system 
Domains Demonstrator, air traffic control 
Type Academic single system 
Language Java 
Size ~ 20 KLOC 
Purposes Re-documentation, evolution control 

Figure 12:  CS4 - Overview 

TSAFE is a test bed to aid air-traffic controllers in detecting and resolving short-
term conflicts between aircrafts [26]. FC-MD used TSAFE in order to conduct an 
experiment about the preservation of software architecture flexibility when un-
familiar developers change the system due to new requirements 1. Before the 
experiment, static architecture evaluation helped in the re-documentation of 
the system when the architectural flexibility concepts were built-in. 

In addition, the SAVE tool helped to analyze and to visualize parts of the results 
of the experiment. The goal of the experiment was to assess the ease of the in-
troduction of new requirements to the TSAFE system, depending on the quality 
of the software architecture of the system. The subjects were split into seven 
teams and the teams were divided into two groups – one group worked on a 
system with the clean, documented architecture and the other one worked on 
the original system having a messy architecture. Both groups had the task to 
extend the system to fulfill new requirements, the same for each group. The 
SAVE tool monitored the results of the students focusing only on the deltas in-
troduced after starting the analysis. 

4.5 CS5: Migration to a Reference Architecture 

Subject  Car window opener 
Domains Embedded system, car electronics 
Type Industrial single systems 
Language C 
Size ~ 10 – 20 KLOC per system 
Purposes Product alignment, reuse potential, 

evolution control 

Figure 13:  CS5 - Overview 

A customer and IESE applied the PuLSE-DSSA method to design a product line 
architecture for an existing family of car window openers, where each system 
differs slightly from the others because of the different car manufacturers’ re-
quirements. The case study started with an assessment of the reuse potential of 
one existing system, and it was decided to use this system as basis for the archi-
tecture development. Then we extended the architecture in PuLSE-DSSA cycles 
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with respect to product line needs and removed some architectural flaws al-
ready known for the system. 

The refactorings were monitored by static architecture evaluation to show the 
progress of the refactorings, the distance to the final state, and to prove that 
the changed implementation really is compliant to the reference architecture. 
The final result was a layered architecture allowing only strict top-down de-
pendencies, the only exceptions were some callbacks violating the layered 
structure and some include dependencies due to configuration files and third 
party software (which was not in the scope of the case study).  

Ongoing work will restructure further systems of the window opener family 
compliant to the product line architecture. The PuLSE-DSSA cycles conduct 
static architecture evaluation for the product line alignment purpose to decide 
whether to include the system in the product line and to estimate the effort re-
quired to align the system. 

4.6 CS6: Product Line versus Implementations 

Subject  Climate measurement devices 
Domains Embedded system, measurement 
Type Industrial product line 
Language C 
Size ~ 200 – 600 KLOC per system 
Purposes Consistency, completeness, structure 

Figure 14: CS6 - Overview 

In CS6, three members of a product line of climate measurement devices were 
derived from a product line infrastructure providing a framework with generic 
components. The goal of this case study was to assess the consistency between 
the product line architecture and three derived products, and to check the 
completeness of the architecture documentation. The intended outcome was 
an action list where to adopt the architecture, and how to better support the 
derivation of future products with the help of the infrastructure. 

Figure 15 presents as an example of the architecture evaluations a textual over-
view on the call dependencies between one product and the framework. The 
dependencies are given internally (call within the product, or in the framework) 
and external from the product to the framework, or vice versa; the dependen-
cies on the highest level of abstraction, it is possible for the architects to navi-
gate and zoom into the details over the decomposition hierarchy, from the 
products over architectural layers, to component hierarchies, to files and finally 
to function, procedures and variables. The communication between framework 
and products shows an unexpected high number of dependencies of calls from 
the framework-related source code to product code. This is a major risk to the 
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structure of the framework, since framework functionality relies on product im-
plementation. Furthermore, the results showed that underlying layered archi-
tecture was significantly violated not only by call but as well by includes, and 
variable accesses. So the documentation was neither consistent nor complete. 

 

 

 

CALLS  CALLEE Total 
CALLER Product_1 Framework  
Product_1 9226  58 9284
Framework 1021 858  187

9
Total 10247  91

6
 111

63 

Figure 15:  Product versus Framework 

The actions items derived comprise a detailed analysis of the divergences and 
adaptation of either the reference architecture or the product implementation. 
Obsolete dependencies (e.g., includes, but no included element is used) are 
refactored, as well as the reduction of global variables is a goal for restructuring 
activities (they should be encapsulated). Another action item is a reconsidera-
tion of the current interfaces between components. These quality issues were 
input to another PuLSE-DSSA cycle. 

4.7 CS7: Component Adequacy 

Subject  Graphics Component 
Domains Embedded system, car multimedia 
Type Industrial product line 
Language C++ 
Size ~ 180 KLOC 
Purposes Component adequacy 

Figure 16:  CS7 - Overview 

CS7 deals with the implementation of a first product line component in the 
context of a migration project where an organization incrementally transitioned 
from single system development to product line engineering. The component 
(at the time of the evaluation still under development) was responsible for the 
graphical output of a car multimedia system on a TFT-panel. Since it should be-
come the first product line component, the quality of the implementation was 
of special interest. The adequacy of the component was statically evaluated 
with the help of the SAVE tool (next to other analyses). 

The component engineering models decomposed the subject into the three in-
ternal layers. Figure 17 depicts the results of the evaluation. The evaluation 
shows a high degree of adequacy so far since there are almost no violations to 
the documented component engineering model (Layer-1 uses Layer-2, grey ar-
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row, cardinality 1149); there are only two exceptions: the divergences from 
Layer-2 to Layer-1 (blue dashed arrow, cardinality 2) and the absence from 
Layer-2 to Layer-3). The reason for the latter is that the component is currently 
still under development, and this layer has not yet been realized. The evaluation 
shows that the implementation so far did follow the intended design decisions, 
although detailed analysis of the layers gave pointers for improvement. The 
challenge for the development organization is now to ensure this over time. 
The component’s evolution should be monitored when new variants are cre-
ated based on this first product line component. To keep the quality and to 
avoid degeneration, we recommended quality assurance activities including the 
continuous architectural evaluations. 

 
Figure 17:  Layers 

4.8 CS8: Product Line Potential 

Subject  Engine control system 
Domains Embedded system, car body electronics 
Type Industrial single systems 
Language C 
Size ~ 100 – 500 KLOC per system 
Purposes Product line potential, product alignment, 

comprehension 

Figure 18:  CS8 - Overview 

CS8‘s subject was a project where a development organization has already a 
couple of existing products. The question was to estimate the product line po-
tential of the related systems. A common reference architecture was docu-
mented, more or less valid because the products were developed following the 
clone-and-own principle. To be able to state the product line potential, we had 
to understand the system architectures given. So we conducted a couple of 
analysis activities, one of them was to evaluate the reference architecture 
against the different product implementations. The goals were to explore the 
product line potential and to what extent there are commonalities among the 
existing products, and to gain knowledge whether a product line could be built 
on top of the given reference architecture. The results of the static evaluations 
showed that the systems were degenerated, partially to a large extent. Never-
theless, the results identified some commonalities among the products bearing 
high product line potential. This influences the planning of the first PuLSE-DSSA 
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iteration cycle by selecting the set of scenarios that deals with the common 
parts first, in order to achieve benefits of product line engineering fast.  

4.9 CS9: Commonalities among Products 

Subject  Digital camera  
Domains Embedded system 
Type Industrial single systems 
Language C 
Size ~ 400 – 600 KLOC per system 
Purposes Reuse potential  

Figure 19:  CS9 - Overview 

Three digital camera systems were the subject of the ongoing case study CS9. 
In order to exploit the commonalities among the systems to establish a product 
line infrastructure, all three products were analyzed statically for common parts 
(i.e., components that were the same from an architectural viewpoint for all 
three systems). The commonalities identified are subjects to be migrated into a 
common infrastructure. Static architecture evaluations indicate the potential 
that exists among those products and enables the architects to estimate poten-
tials saving due to reuse for future derived products. Further architecture devel-
opment will include variability implementation techniques to manage the dif-
ferences among the systems.  
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5 Related Work 

The basic concepts of the SAVE tool are similar to the Reflexion model tech-
nique presented by Murphy 24 in comparing an extracted source code model 
and a high level model created by the user. The computed model is called Re-
flexion model and shows where the planned high level model agrees with and 
where it differs from the extracted dependencies of the source code.  

Koschke 19 extended the Reflexion model to support hierarchies. Thereby it is 
allowed that a high level model element to be part of another elements. The 
SAVE tool supports hierarchies as well. 

Postma 26 introduced another method of software architecture verification. 
This method is based on architectural rules. A rule expresses conditions on mul-
tiple relations and therefore this kind of verification is more general than verify-
ing only one relation. The rules are defined using a Relation Partition Algebra 
(RPA). 

Architectural tracking is the process of comparing the specified software archi-
tecture of the system and the actual implementation of the system in a regular 
manner. FC-MD (see 27) had previously developed an approach for architec-
tural tracking, which is now adapted to the SAVE tool and integrated into the 
PuLSE-DSSA method.  

The software architecture analysis method (SAAM 9) evaluates the modifiability 
of software architectures with respect to a set of representative change scenar-
ios. The architecture tradeoff analysis method (ATAM 9) is also a scenario-based 
method, which extends SAAM to address further quality attributes. Its goal is to 
analyze whether the software architecture satisfies given quality requirements 
and how the satisfaction of these quality requirements trade off against each 
other.  

In 7, Bosch presents four architecture assessment techniques (i.e., scenario-, 
simulation-, mathematical model- and experience-based assessments). These 
techniques aim at the evaluation whether a system fulfills its quality require-
ments or not.  
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6 Conclusion 

Static evaluations of software architectures are a sound instrument to control, 
to learn, and to assess architectural aspects and its implementation. This work 
presents ten different, distinct purposes for conducting static evaluations and 
how the results serve different goals within our architecture development 
method PuLSE-DSSA. We demonstrated in this experience report how such 
evaluation influences the further architectural development and presented nine 
case studies (5 industrial and 4 academic), where we exemplified how static ar-
chitecture evaluations contributed to the architecture-driven development. All 
case studies were conducted with the help of the SAVE tool. The results of 
conducted static evaluations steer ongoing architectural development by un-
derpinning architectural decisions and thus, they contribute to the successful 
achievement of functional requirements and quality goals of the overall system 
or product line. 

Up to now, we applied static evaluations only for limited purposes; there was 
not yet a long-term case study that covered all purposes across all PuLSE-DSSA 
steps, several iteration cycles and including a long-term evolution of the prod-
uct line. We want to address this issue in future case studies. 

Ongoing work will include a mechanism to be able to perform dynamic evalua-
tion based on runtime scenario traces, which then can be compared against 
behavioral model or dynamic architectural views. Another potential extension is 
to include version histories (when the system is under control of a configuration 
management system) to be able to make statement about historic trends and 
development directions. 
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