

Static Evaluation of Software Architectures

Authors:
Jens Knodel
Mikael Lindvall

Dirk Muthig
Matthias Naab

Submitted for publication at
WICSA5, Working Conference
on Software Architecture

IESE-Report No. 036.05/E
Version 1.0
May 30, 2005

A publication by Fraunhofer IESE

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Abstract

The software architecture is one of the most crucial artifacts within the lifecycle
of a software system. Decisions made at the architectural level directly enable,
facilitate, hamper, or interfere with the achievement of business goals as well
as meeting functional and quality requirements. The latter includes reusability,
and thus software architectures are also essential for the success of product line
engineering.

This paper summarizes our practical experience by giving an overview on when
and how static architecture evaluation practically contributes to architecture
development. Therefore, it defines ten distinct purposes of architectural evalua-
tions and illustrates them in a set of industrial and academic case studies. Most
of the case studies are settled in a product line engineering context. In particu-
lar, we highlight how the different purposes determine and influence subse-
quent steps in architecture development.

Keywords: ADORE, architecture, architecture evaluation, product line, PuLSE-DSSA, reverse
engineering.

Copyright © Fraunhofer IESE 2005 v

Table of Contents

1 Introduction 1

2 Approach 2
2.1 PuLSE™-DSSA 2
2.2 Component Engineering 4
2.3 Implementation 4
2.4 ADORE™ 5

3 Static Architecture Evaluation 6
3.1 Purposes of Static Architecture Evaluation 7

4 Case Studies 10
4.1 CS1: Apache Tomcat 10
4.2 CS2: Go Phone 13
4.3 CS3: SAVE 14
4.4 CS4: TSAFE 15
4.5 CS5: Migration to a Reference Architecture 15
4.6 CS6: Product Line versus Implementations 16
4.7 CS7: Component Adequacy 17
4.8 CS8: Product Line Potential 18
4.9 CS9: Commonalities among Products 19

5 Related Work 20

6 Conclusion 21

7 References 22

Copyright © Fraunhofer IESE 2005 vii

Introduction

1 Introduction

One of the most important artifacts in the life cycle of a software system is the
architecture, since it embraces the decisions and principles for system to be de-
veloped. The software architecture is the fundamental organization of a system
embodied in its components, their relationships to each other and to the envi-
ronment and the principles guiding its design and evolution 14. The goal of an
architecture development method is to address such aspects and to provide the
fundament for achieving organizational and business goals, as well as meeting
the functional and quality requirements of the system. To ensure the achieve-
ment of the goals, it is mandatory to have quality engineering activities as an
integrated part in an architecture development method. This is especially true
for software product lines 10 since the product line architecture embraces the
decisions and principles for each family member. A sound instrument to assess
and ensure architectural quality is to conduct static architecture evaluations.
Static architecture evaluations compare the planned architecture (as described
by architectural artifacts) with the actual architecture as implemented in source
code (based on a mapping).

In this paper, we demonstrate the integration of static architecture evaluation
into our architecture development method, PuLSE-DSSA and identify ten dis-
tinct purposes for conducting static architecture evaluations. The results of such
an evaluation influence and determine subsequent architecture development.
We demonstrate the impact in a set of industrial and academic case studies,
where we applied Fraunhofer PuLSE™ (Product Line Software Engineering) 4
and Fraunhofer ADORE™ (Architecture- and Domain-Oriented Re-
Engineering)1.

The remainder of the paper is structured as follows: Section 2 presents Fraun-
hofer’s PuLSE and ADORE approach. Then section 4 discusses static architecture
evaluations and introduces ten distinct purposes for static architecture evalua-
tions integrated into PuLSE. Section 4 illustrates the role of the distinct purposes
in nine industrial and academic case studies. Chapter 5 then discusses related
work, while chapter 6 concludes this experience report.

1PuLSE and ADORE are registered trademarks of Fraunhofer Institute for Experimental Software Engineering

(IESE), Kaiserslautern, Germany

Copyright © Fraunhofer IESE 2005 1

Approach

2 Approach

The case studies combined two methods: Fraunhofer PuLSE, in particular its ar-
chitectural component PuLSE-DSSA, and ADORE for reverse engineering activi-
ties. This section presents an overview of the two methods and how they relate
to other phases in the software life cycle (Figure 1 depicts the phases) as typi-
cally proposed by software development processes, first architecture develop-
ment, then component engineering, and the implementation, and finally re-
verse engineering; other software development phases (e.g., requirements en-
gineering, testing, etc.), potential feedback cycles and iterations are left out.
Next to each phase, there is the main artifact produced in it.

Figure 1: Lifecycle Phases

2.1 PuLSE™-DSSA

PuLSE™-DSSA deals with product line activities at the architectural level (it can
also be used in single system development). Since greenfield scenarios 10 are
found only rarely in industrial contexts, PuLSE-DSSA is designed to smoothly in-
tegrate reverse engineering activities into the process of developing a product
line architecture. The main underlying concepts of the PuLSE-DSSA are:

• Scenario-based development in iterations that explicitly addresses the stake-
holders’ needs.

Copyright © Fraunhofer IESE 2005 2

Approach

• Incremental development, which successively prioritizes requirements and
realizes them.

• Direct integration of reverse engineering activities into the development
process on demand.

• View-based documentation to support the communication of different roles.

The main process loop of PuLSE-DSSA consists of four major steps (see Figure
2):

Business and
organizational goals

Functional and
quality req.

Existing
artifacts,

documents,
systems, ...

Stakeholder analysis
Definition of

architectural views

(view-based)
(product line)
architecture

Set up
infrastructure

Extraction
(Basic-)

Analyses

ExtractionSpecial
Analyses

infrastructure-
extension
(optional)

Planning

Realization

Documentation

A
ss

es
sm

en
t

(o
pt

io
na

l)

Architecture
Development

Reverse
EngineeringFocused and

on demand

Figure 2: Overview PuLSE-DSSA (left side) and ADORE (right side)

Planning: The planning step defines the contents of the current iteration and
delineates the scope of the current iteration. This includes the selection of a
limited set of scenarios that are addressed in the current iteration, the identifi-
cation of the relevant stakeholders and roles, the selection and definition of the
views, as well as defining whether or not an architecture assessment is included
at the end of the iteration.

Realization: In the realization phase, solutions are selected and design deci-
sions taken in order to fulfill the requirements given by the scenarios. When se-
lecting and applying the selected solutions, an implicit assessment regarding
the suitability of the solutions for the given requirements and their compatibility
with design decisions of earlier iterations is made. A catalog of means and pat-
terns is used in this phase. Means are principles, techniques, or mechanisms
that facilitate the achievement of certain qualities in an architecture whereas

Copyright © Fraunhofer IESE 2005 3

Approach

patterns are concrete solutions for recurring problems in the design of architec-
tures.

Documentation: This step documents architectures by using an organiza-
tional-specific set of views. It thereby relies on standard views as, for example,
defined by Kruchten 20 or Hofmeister 13, and customizes or complements
them by additional aspects requested by one of the key stakeholders 6.

Assessment: The goal of the assessment step is to analyze and evaluate the re-
sulting architecture with respect to functional and quality requirements and the
achievement of business goals. In an intermediate state of the architecture, this
step might be skipped and the next iteration is started.

PuLSE-DSSA results in (product line) architectures documented in a selection of
architectural views.

2.2 Component Engineering

The architectural views are systematically mapped to models used by Fraun-
hofer’s KoBRA method for engineering component-based product lines 1, 21.
The structural view, for instance, maps to the component containment tree,
dynamic views map to interaction models of system or subsystem components.
According to Fraunhofer’s method, components are modeled by using the Uni-
fied Modeling Language (UML) and consist of a specification and a realization.
Each specification consists of a structural, a behavioral, and a functional model.
Each realization consists of a refined structural model, an activity, and an inter-
action model. The different components can then be engineered concurrently
since the architecture has defined the component communication, specified the
required interfaces, and distributed the responsibilities among the components.

2.3 Implementation

The implementation comprises all activities that transform the component en-
gineering models into source code written in a certain programming language.
This involves the realization of functionality described in the models, the crea-
tion and optimization of the algorithms required to solve computation prob-
lems, and restructuring and refactoring of the implemented parts to avoid qual-
ity problems like code clones, high complexity of the implementation, or large
routines with respect to lines of code.

Copyright © Fraunhofer IESE 2005 4

Approach

2.4 ADORE™

The architecture definition yields in product line components that have to be
engineered. In the implementation phase, the components and interfaces are
realized. Reverse engineering activities then enable the analysis of the imple-
mented architecture. One goal of reverse engineering as defined in 8 is to cre-
ate representations at higher levels of abstraction. Therefore, facts are extracted
from existing artifacts (e.g., source code, documentation, configuration files)
and the information is aggregated in a fact base or repository. Since the fact
base contains a large amount of information, the most information is often
hidden in overcrowded low-level models. Therefore, further analysis activities
process the information and aiming at creating meaningful views of the existing
systems.

ADORE™ (Architecture- and Domain-Oriented Reengineering) is a request-
driven reverse engineering approach that takes the architecture and the domain
context of the analyzed artifacts into account. ADORE is mainly instantiated in
step 2 of PuLSE-DSSA (realization), when the architects typically reason about
whether or not to reuse existing components. The architecture drives the selec-
tion of reverse engineering activities and the results of those activities answer
the reuse question. Reverse engineering activities are conducted asynchronously
to the PuLSE-DSSA iteration. That is, the current iteration of the architecture
development may proceed if the answer to the reverse engineering request is
delayed. The advantage of such a request-driven approach is that investment
into reverse-engineering is kept as small as possible.

Typical goals of reverse engineering in the context of product line engineering
are a) recovery of lost information in order to benefit from field-tested solutions
and experiences, b) localization of single features in the source code in order to
reuse this functionality in the product line, c) enabling reuse in order to inte-
grate components (or whole subsystems) into the product line, and d) evaluat-
ing the architecture for quality assurance purposes.

Copyright © Fraunhofer IESE 2005 5

Static Architecture Evaluation

3 Static Architecture Evaluation

Static architecture evaluations compare two models of a software system with
each other. Typically an architectural model (the intended architecture) is com-
pared with a source code model (the implemented architecture), as depicted in
Figure 3. Each model consists of a set of (hierarchical) model elements and dif-
ferent types of relations (calls, variable access, etc.) between them. The model
elements and the dependencies between them can either be postulated (e.g.,
in a high level model such as an architectural view) or extracted (e.g., in a low
level model such as the source code). The comparison requires a mapping be-
tween the two models to be compared, which is a human-based task. The
comparison assigns one of the following types to each model element and rela-
tion between a pair of model elements:

• Convergence – a model element of a relation in the high level model was
also present in the low level model

• Divergence – a model element or a relation was present in the low level
model, but missing in the high level model

• Absence – a model element or a relation was present in the high level
model, but the counterpart is missing in the low level model

Architecture
Model

Experts

Source Code
Model

Architecture
Evaluation

(SAVE)
Mapping

Results
Report

Architecture
Model

ExpertsExperts

Source Code
Model

Architecture
Evaluation

(SAVE)
Mapping

Results
Report

Figure 3: Architecture Evaluations with SAVE

Next, the outcome of an evaluation is summarized and documented in a results
report (graphical and textual), which can be processed further. The results show
whether or not the higher level model converges to the lower level model. The
total number of convergences indicates the degree of convergence, while the
number of divergences and absences indicate the opposite. The architects can
interpret the results (convergences, divergences and absences) and use them

Copyright © Fraunhofer IESE 2005 6

Static Architecture Evaluation

for the different purposes. In some cases, it is necessary to calibrate the evalua-
tions (i.e., refinement of the high level model, the low level model, or the map-
ping), which means that the evaluation is performed iteratively.

We performed all evaluations in the case studies described later with the SAVE
tool (Software Architecture Visualization and Evaluation), which is based on the
Reflexion model idea of 24 and 19. The SAVE tool is an Eclipse plug-in that is
described in more detail in 23 and 25.

3.1 Purposes of Static Architecture Evaluation

A static evaluation of software architectures can be performed for different,
distinct purposes. The purposes differ in their objectives, the reasons why to
conduct a static architecture evaluation and how they influence subsequent
steps of architecture development. In the following we will introduce ten dis-
tinct purposes and relate them to the four steps of PuLSE-DSSA (see Figure 4
for the list of purposes, grouped by the PuLSE-DSSA steps):

ID PuLSE-DSSA Step Purpose
1.1 Product line potential
1.2

Planning
Product alignment

2.1 Reuse potential
2.2 Component adequacy
2.3

Realization

Comprehension
3.1 Consistency
3.2 Completeness
3.3

Documentation

Re-documentation
4.1 Evolution control
4.2

Assessment
Structure

Figure 4: Evaluation Purposes

1.1 Product line potential: An analysis into whether several, independently devel-
oped, existing systems are realized under an umbrella of one common refer-
ence architecture. The results of such an evaluation help to determine which
products become part of the envisioned product line and therefore have to be
migrated towards the product line architecture (if necessary). Thus, it guides the
planning of the first iteration of PuLSE-DSSA in order to assess the product line
potential that is already embodied in existing systems.

1.2 Product alignment: When one system is subject to be merged into an already
existing product line, the purpose is to evaluate the product line architecture on
the one hand against the system’s architecture to assess the conformity and to

Copyright © Fraunhofer IESE 2005 7

Static Architecture Evaluation

detect differences and on the other hand against the system’s documentation
in order to put the PuLSE-DSSA planning step on a sound foundation. This sup-
ports the effort estimation in order to align the system to the product line archi-
tecture and analyzes the degree of required modifications.

2.1 Reuse potential: The decision whether to reuse (and integrate into a given ar-
chitecture) a component, an architectural fragment or part within a product
line is often not easy to make. The reuse candidate typically can not be used as
is, since it was not designed and realized for the product line, so it is question-
able whether it fits to the architecture. The dependencies of the reuse candi-
date have to be revealed and the need for its (potential) adaptation should
drive the reuse decision. Static evaluations help to visualize the dependencies
and the position of the reuse candidate within a decomposition hierarchy. This
information helps the product line architects to derive sound architectural deci-
sions. In case, there are several reuse candidates to the same design problems,
see 16 for an example of a comparison approach.

2.2 Component adequacy: This static evaluation aims at uncovering the internal
quality of the subject component. The scope is narrowed down to a single
component and its context only. It is analyzed in depth (usually combined with
other reverse engineering techniques like clone detection, variability analysis,
code metrics, etc.). The component’s internal design, the internal quality, and
the component’s internal structure are reviewed to assess its adequacy. The
component engineering models including interfaces are compared to the com-
ponent’s implementation. The results enable the architects to derive statements
about the component adequacy (see 17 for an example).

2.3 Comprehension: Program comprehension aims at achieving an understanding
of a software system on a high level of abstraction (i.e., an architectural level or
a component level). For this purpose, mental models are reflected against the
implementation and iteratively improved (e.g., as described in 15 or 24) until
the mental model and the implementation agree. Bottom-up strategies thereby
aim at abstracting the models more and more, while top-down strategies refine
abstract (domain) views until they conform with the details of the implementa-
tion.

3.1 Consistency: An assessment of the degree of consistency of documentation
(e.g., architectural views, component engineering models) with the implemen-
tation. It is checked where the documentation is still a valid snapshot of the im-
plementation, or if both evolved differently. Thus, it aims at increasing the up-
to-dateness of the documentation.

3.2 Completeness: An analysis in order to detect not yet documented architectural
entities (model elements or relations). A key criterion for documentation quality
is its completeness. Static evaluations are able to reconcile the elements docu-

Copyright © Fraunhofer IESE 2005 8

Static Architecture Evaluation

mented in architecture descriptions with those that are implemented. The iden-
tified gaps can now be documented.

3.3 Re-documentation: When re-documenting a software system or product line,
static evaluations are very useful to extract the static decomposition (on a low
level), when combined with clustering techniques (e.g., see 18) then the com-
bination of both can lead to high level architectural descriptions.

3.4 Evolution control: Static architecture evaluations are one good means to
monitor the evolution of a system or a product line and they give the architects
the possibility to intervene when necessary. After computing a baseline, the fo-
cus of an architecture evaluation is set only on the delta (i.e., the modifications
made to the system after the baseline was set). This filtering emphasizes only
new effects (convergences, violations, degeneration). Another scenario is to de-
fine a target architecture, and to evaluate the progress in reaching this target,
when modifying the system over time.

4.1 Structure: When conducting an assessment, one discussion aspect might be
the decomposition and/or the traceability from the architecture to the source
code. This discussion can be backed up with the results of static architecture
evaluations concerning the structural decomposition of a system.

Copyright © Fraunhofer IESE 2005 9

Case Studies

4 Case Studies

This section presents nine case studies where we applied static architecture
evaluations with the SAVE tool in the context of PuLSE-DSSA and ADORE for
different purposes (see Figure 5 for an overview).

Figure 5: Case Study Overview

Purpose CS 1 CS 2 CS 3 CS 4 CS 5 CS 6 CS 7 CS 8 CS 9
Product line potential X
Product alignment X X
Reuse potential X X
Component ade-
quacy

 X

Comprehension X X
Consistency X X
Completeness X
Re-documentation X
Evolution control X X X
Structure X X

4.1 CS1: Apache Tomcat

Subject Apache Tomcat
Domains Web server
Type Academic single system
Language Java
Size ~ 300 KLOC
Purposes Comprehension, structure

Figure 6: CS1 - Overview

In 25 an experiment was conducted for the validation of the SAVE visualization
component. The hypothesis was that a well-configured visualization for soft-
ware architectures can support the comprehensibility and the reduction of
complexity. In the context of the experiment we searched for reasonable, realis-
tic tasks concerning an existing system. Apache Tomcat 2 as being a system of
appropriate size (411 classes) was selected as the analysis object for the ex-
periment. Apache Tomcat is an open source web server of the Apache software
foundation.

In order to be able to prepare the experimental tasks we (as the experiment de-
signers) had to first understand the Apache Tomcat system ourselves. Due to

Copyright © Fraunhofer IESE 2005 10

Case Studies

the trade-off between time constraints and realistic tasks, we had to compose
the experiment carefully. We applied our ADORE approach to analyze Apache
Tomcat to understand the decomposition structure and to find out about inter-
nal details that become part of the experimental tasks. The Apache Tomcat sys-
tem could be decomposed into hierarchically nested 42 components. To reduce
the visual complexity of the system under investigation, we collapsed the com-
ponents. Figure 7 presents a high level view of the system and the main subsys-
tems in a UML oriented notation. Starting from this view we were able to iden-
tify which components are related to each other. If components are collapsed,
all relations of contained components are lifted to the displayed level. For in-
stance, we were able to identify a cyclic dependency between the components
org.apache.catalina and org.apache.coyote.

Figure 7: Apache Tomcat High Level View

Further analyses of the system required the navigation into collapsed compo-
nents by expanding them in the visualization. This enabled the exploration of
the structure of the system in a top-down manner. This strongly supports the
comprehensibility of the visualization, as users can decide, what information
they want to see. Figure 8 zoomed into org.apache.tomcat in order to further
explore the internals of that component. Local details of a component are
shown while the global context is preserved (i.e., the top-level components stay
visible, but their relations point to the low-level components).

Copyright © Fraunhofer IESE 2005 11

Case Studies

Figure 8: Zooming into a Subcomponent

An interesting observation, which became an analysis task in the experiment, is
concerned with the processing of the TCP/IP and the HTTP communication pro-
tocols. While TCP/IP is a stateful protocol with established connections, HTTP is
stateless. The extracted facts of the Apache Tomcat exactly reflect this: The
TCP/IP protocol, processed by the org.apache.tomcat.util.net component, uses
threads for managing a number of connections initiated by clients. In contrast,
the processing of HTTP does not use threads, as requests can be independently
processed. Figure 9 presents an extraction of the parts involved in the protocol
processing. This shows that Apache Tomcat is a well-structured system, where
the naming of components indicates important implementation details.

Copyright © Fraunhofer IESE 2005 12

Case Studies

Figure 9: Go Phone Architecture

The SAVE tool connects the architectural evaluation activities to the source
code. It is possible to navigate to the source code files belonging to a compo-
nent directly from the view, furthermore it is also possible to jump to the source
and destination of a relation. This strongly supports the comprehension of rela-
tionships between source code and architectural models.

4.2 CS2: Go Phone

Subject (Hypothetical) mobile phone
Domains Demonstrator, mobile phones
Type Academic product line
Language Java (J2ME)
Size ~ 10 KLOC per system
Purposes Consistency

Figure 10: CS2 – Overview

The GoPhone product line is a hypothetical product line of mobile phone im-
plemented in Java. It was developed at IESE as a test bed and demonstrator es-
pecially to validate and illustrate product line methods, techniques, or tools 22.

Copyright © Fraunhofer IESE 2005 13

Case Studies

To ensure the proper mode of operation of the demonstrator, we apply PuLSE-
DSSA to design architectural modifications, which are then typically realized by
student workers.

Static architecture evaluations help us to assess the degree to which the stu-
dent workers adhere to architecture guidelines and decisions we made for im-
plementation details. Thus, the architectural models (see Figure 9 for an over-
view) developed in PuLSE-DSSA iterations are compared to the source code
models implemented for the consistency purposes. Since we use the GoPhone
product line as a test bed, it is crucial that the concepts we want to demon-
strate are realized in a clean and smooth manner. We included the static
evaluations in the acceptance procedure for the students, and depending on
the results, we either redesign the architecture or the student workers obtain a
to-do list to refactor their solutions.

4.3 CS3: SAVE

Subject SAVE
Domains Reverse engineering, program analysis
Type Academic single system
Language Java
Size ~ 20 KLOC
Purposes Evolution control

Figure 11: CS3 - Overview

In CS3, we evaluated the implementation of the SAVE tool (the tool we used to
conduct the static architecture evaluation) itself against its architecture descrip-
tion. The tool had to undergo some major restructurings in the development
because of some technical constraints that came along with the architectural
decision to realize the SAVE tool as an Eclipse plug-in and reuse functionality
given by other plug-ins (e.g., EMF 11 for persistency, GEF 12 for graphical out-
put).

The purpose of this evaluation was to track the evolution and in order to be
able to reason about the design decisions. The SAVE tool was hierarchically de-
composed into the three plug-ins and several lower level components. Most no-
table in the evaluation were the absence between the SAVE core and the visu-
alization plug-in. The reason for this was the event propagation mechanism of
Eclipse, which has no static dependencies. A detailed description of this case
study can be found in 23. We updated the architectural description of the SAVE
tool accordingly and paid special attention to the event propagation mecha-
nism in the assessment step of PuLSE-DSSA.

Copyright © Fraunhofer IESE 2005 14

Case Studies

4.4 CS4: TSAFE

Subject Air traffic control system
Domains Demonstrator, air traffic control
Type Academic single system
Language Java
Size ~ 20 KLOC
Purposes Re-documentation, evolution control

Figure 12: CS4 - Overview

TSAFE is a test bed to aid air-traffic controllers in detecting and resolving short-
term conflicts between aircrafts [26]. FC-MD used TSAFE in order to conduct an
experiment about the preservation of software architecture flexibility when un-
familiar developers change the system due to new requirements 1. Before the
experiment, static architecture evaluation helped in the re-documentation of
the system when the architectural flexibility concepts were built-in.

In addition, the SAVE tool helped to analyze and to visualize parts of the results
of the experiment. The goal of the experiment was to assess the ease of the in-
troduction of new requirements to the TSAFE system, depending on the quality
of the software architecture of the system. The subjects were split into seven
teams and the teams were divided into two groups – one group worked on a
system with the clean, documented architecture and the other one worked on
the original system having a messy architecture. Both groups had the task to
extend the system to fulfill new requirements, the same for each group. The
SAVE tool monitored the results of the students focusing only on the deltas in-
troduced after starting the analysis.

4.5 CS5: Migration to a Reference Architecture

Subject Car window opener
Domains Embedded system, car electronics
Type Industrial single systems
Language C
Size ~ 10 – 20 KLOC per system
Purposes Product alignment, reuse potential,

evolution control

Figure 13: CS5 - Overview

A customer and IESE applied the PuLSE-DSSA method to design a product line
architecture for an existing family of car window openers, where each system
differs slightly from the others because of the different car manufacturers’ re-
quirements. The case study started with an assessment of the reuse potential of
one existing system, and it was decided to use this system as basis for the archi-
tecture development. Then we extended the architecture in PuLSE-DSSA cycles

Copyright © Fraunhofer IESE 2005 15

Case Studies

with respect to product line needs and removed some architectural flaws al-
ready known for the system.

The refactorings were monitored by static architecture evaluation to show the
progress of the refactorings, the distance to the final state, and to prove that
the changed implementation really is compliant to the reference architecture.
The final result was a layered architecture allowing only strict top-down de-
pendencies, the only exceptions were some callbacks violating the layered
structure and some include dependencies due to configuration files and third
party software (which was not in the scope of the case study).

Ongoing work will restructure further systems of the window opener family
compliant to the product line architecture. The PuLSE-DSSA cycles conduct
static architecture evaluation for the product line alignment purpose to decide
whether to include the system in the product line and to estimate the effort re-
quired to align the system.

4.6 CS6: Product Line versus Implementations

Subject Climate measurement devices
Domains Embedded system, measurement
Type Industrial product line
Language C
Size ~ 200 – 600 KLOC per system
Purposes Consistency, completeness, structure

Figure 14: CS6 - Overview

In CS6, three members of a product line of climate measurement devices were
derived from a product line infrastructure providing a framework with generic
components. The goal of this case study was to assess the consistency between
the product line architecture and three derived products, and to check the
completeness of the architecture documentation. The intended outcome was
an action list where to adopt the architecture, and how to better support the
derivation of future products with the help of the infrastructure.

Figure 15 presents as an example of the architecture evaluations a textual over-
view on the call dependencies between one product and the framework. The
dependencies are given internally (call within the product, or in the framework)
and external from the product to the framework, or vice versa; the dependen-
cies on the highest level of abstraction, it is possible for the architects to navi-
gate and zoom into the details over the decomposition hierarchy, from the
products over architectural layers, to component hierarchies, to files and finally
to function, procedures and variables. The communication between framework
and products shows an unexpected high number of dependencies of calls from
the framework-related source code to product code. This is a major risk to the

Copyright © Fraunhofer IESE 2005 16

Case Studies

structure of the framework, since framework functionality relies on product im-
plementation. Furthermore, the results showed that underlying layered archi-
tecture was significantly violated not only by call but as well by includes, and
variable accesses. So the documentation was neither consistent nor complete.

CALLS CALLEE Total
CALLER Product_1 Framework
Product_1 9226 58 9284
Framework 1021 858 187

9
Total 10247 91

6
 111

63

Figure 15: Product versus Framework

The actions items derived comprise a detailed analysis of the divergences and
adaptation of either the reference architecture or the product implementation.
Obsolete dependencies (e.g., includes, but no included element is used) are
refactored, as well as the reduction of global variables is a goal for restructuring
activities (they should be encapsulated). Another action item is a reconsidera-
tion of the current interfaces between components. These quality issues were
input to another PuLSE-DSSA cycle.

4.7 CS7: Component Adequacy

Subject Graphics Component
Domains Embedded system, car multimedia
Type Industrial product line
Language C++
Size ~ 180 KLOC
Purposes Component adequacy

Figure 16: CS7 - Overview

CS7 deals with the implementation of a first product line component in the
context of a migration project where an organization incrementally transitioned
from single system development to product line engineering. The component
(at the time of the evaluation still under development) was responsible for the
graphical output of a car multimedia system on a TFT-panel. Since it should be-
come the first product line component, the quality of the implementation was
of special interest. The adequacy of the component was statically evaluated
with the help of the SAVE tool (next to other analyses).

The component engineering models decomposed the subject into the three in-
ternal layers. Figure 17 depicts the results of the evaluation. The evaluation
shows a high degree of adequacy so far since there are almost no violations to
the documented component engineering model (Layer-1 uses Layer-2, grey ar-

Copyright © Fraunhofer IESE 2005 17

Case Studies

row, cardinality 1149); there are only two exceptions: the divergences from
Layer-2 to Layer-1 (blue dashed arrow, cardinality 2) and the absence from
Layer-2 to Layer-3). The reason for the latter is that the component is currently
still under development, and this layer has not yet been realized. The evaluation
shows that the implementation so far did follow the intended design decisions,
although detailed analysis of the layers gave pointers for improvement. The
challenge for the development organization is now to ensure this over time.
The component’s evolution should be monitored when new variants are cre-
ated based on this first product line component. To keep the quality and to
avoid degeneration, we recommended quality assurance activities including the
continuous architectural evaluations.

Figure 17: Layers

4.8 CS8: Product Line Potential

Subject Engine control system
Domains Embedded system, car body electronics
Type Industrial single systems
Language C
Size ~ 100 – 500 KLOC per system
Purposes Product line potential, product alignment,

comprehension

Figure 18: CS8 - Overview

CS8‘s subject was a project where a development organization has already a
couple of existing products. The question was to estimate the product line po-
tential of the related systems. A common reference architecture was docu-
mented, more or less valid because the products were developed following the
clone-and-own principle. To be able to state the product line potential, we had
to understand the system architectures given. So we conducted a couple of
analysis activities, one of them was to evaluate the reference architecture
against the different product implementations. The goals were to explore the
product line potential and to what extent there are commonalities among the
existing products, and to gain knowledge whether a product line could be built
on top of the given reference architecture. The results of the static evaluations
showed that the systems were degenerated, partially to a large extent. Never-
theless, the results identified some commonalities among the products bearing
high product line potential. This influences the planning of the first PuLSE-DSSA

Copyright © Fraunhofer IESE 2005 18

Case Studies

iteration cycle by selecting the set of scenarios that deals with the common
parts first, in order to achieve benefits of product line engineering fast.

4.9 CS9: Commonalities among Products

Subject Digital camera
Domains Embedded system
Type Industrial single systems
Language C
Size ~ 400 – 600 KLOC per system
Purposes Reuse potential

Figure 19: CS9 - Overview

Three digital camera systems were the subject of the ongoing case study CS9.
In order to exploit the commonalities among the systems to establish a product
line infrastructure, all three products were analyzed statically for common parts
(i.e., components that were the same from an architectural viewpoint for all
three systems). The commonalities identified are subjects to be migrated into a
common infrastructure. Static architecture evaluations indicate the potential
that exists among those products and enables the architects to estimate poten-
tials saving due to reuse for future derived products. Further architecture devel-
opment will include variability implementation techniques to manage the dif-
ferences among the systems.

Copyright © Fraunhofer IESE 2005 19

Related Work

5 Related Work

The basic concepts of the SAVE tool are similar to the Reflexion model tech-
nique presented by Murphy 24 in comparing an extracted source code model
and a high level model created by the user. The computed model is called Re-
flexion model and shows where the planned high level model agrees with and
where it differs from the extracted dependencies of the source code.

Koschke 19 extended the Reflexion model to support hierarchies. Thereby it is
allowed that a high level model element to be part of another elements. The
SAVE tool supports hierarchies as well.

Postma 26 introduced another method of software architecture verification.
This method is based on architectural rules. A rule expresses conditions on mul-
tiple relations and therefore this kind of verification is more general than verify-
ing only one relation. The rules are defined using a Relation Partition Algebra
(RPA).

Architectural tracking is the process of comparing the specified software archi-
tecture of the system and the actual implementation of the system in a regular
manner. FC-MD (see 27) had previously developed an approach for architec-
tural tracking, which is now adapted to the SAVE tool and integrated into the
PuLSE-DSSA method.

The software architecture analysis method (SAAM 9) evaluates the modifiability
of software architectures with respect to a set of representative change scenar-
ios. The architecture tradeoff analysis method (ATAM 9) is also a scenario-based
method, which extends SAAM to address further quality attributes. Its goal is to
analyze whether the software architecture satisfies given quality requirements
and how the satisfaction of these quality requirements trade off against each
other.

In 7, Bosch presents four architecture assessment techniques (i.e., scenario-,
simulation-, mathematical model- and experience-based assessments). These
techniques aim at the evaluation whether a system fulfills its quality require-
ments or not.

Copyright © Fraunhofer IESE 2005 20

Conclusion

6 Conclusion

Static evaluations of software architectures are a sound instrument to control,
to learn, and to assess architectural aspects and its implementation. This work
presents ten different, distinct purposes for conducting static evaluations and
how the results serve different goals within our architecture development
method PuLSE-DSSA. We demonstrated in this experience report how such
evaluation influences the further architectural development and presented nine
case studies (5 industrial and 4 academic), where we exemplified how static ar-
chitecture evaluations contributed to the architecture-driven development. All
case studies were conducted with the help of the SAVE tool. The results of
conducted static evaluations steer ongoing architectural development by un-
derpinning architectural decisions and thus, they contribute to the successful
achievement of functional requirements and quality goals of the overall system
or product line.

Up to now, we applied static evaluations only for limited purposes; there was
not yet a long-term case study that covered all purposes across all PuLSE-DSSA
steps, several iteration cycles and including a long-term evolution of the prod-
uct line. We want to address this issue in future case studies.

Ongoing work will include a mechanism to be able to perform dynamic evalua-
tion based on runtime scenario traces, which then can be compared against
behavioral model or dynamic architectural views. Another potential extension is
to include version histories (when the system is under control of a configuration
management system) to be able to make statement about historic trends and
development directions.

Copyright © Fraunhofer IESE 2005 21

References

7 References

1. Anders B., Fellman J., Lindvall M., and Rus I.: Experimenting with Software
Architecture Flexibility Using an Implementation of the Tactical Separation
Assisted Flight Environment, Proceedings of IEEE/NASA SEL Workshop,
2005.

2. Apache Tomcat
http://jakarta.apache.org/tomcat/index.html

3. C. Atkinson et al.: Component-based Product Line Engineering with UML,
Addison-Wesley, 2001

4. J. Bayer et al.: “PuLSE: A Methodology to Develop Software Product
Lines”, 5th Symposium on Software Reusability (SSR'99), 1999

5. J. Bayer et al: Definition of Reference Architectures based on Existing Sys-
tems, (IESE-Report 034.04/E), 2004

6. J. Bayer: View-Based Software Documentation, PhD, Fraunhofer IRB Verlag,
2004.

7. J. Bosch: Design & Use of Software Architectures, Addison-Wesley, 2000

8. E. Chikofsky, and J. H. Cross: Reverse Engineering and Design Recovery: a
Taxonomy, IEEE Software, 7(1):13-17, January 1990

9. P. Clements, R. Kazman., and M. Klein: Evaluating Software Architectures:
Methods and Case Studies, Addison-Wesley, 2002

10. P. Clements and L. M. Northrop: Software Product Lines: Practices and Pat-
terns, Addison-Wesley, 2001

11. Eclipse Modeling Framework, http://www.eclipse.org/emf

Copyright © Fraunhofer IESE 2005 22

References

12. Graphical Editing Framework, http://www.eclipse.org/gef/

13. C. Hofmeister, R. Nord, R., and D. Soni: Applied Software Architecture.
Addison-Wesley, 1999

14. IEEE Standard 1471 - Recommended Practice for Architectural Descriptions
of Software-Intensive Systems, IEEE Computer Society, 2000

15. J. Knodel: Reconstruction of Architectural Views by Design Hypothesis,
Softwaretechnik-Trends, 2003

16. J. Knodel, T. Forster, J. F. Girard: Comparing design alternatives from field-
tested systems to support product line architecture design, CSMR, March
2005

17. J. Knodel, D. Muthig, Analyzing Product Line Adequacy of Existing Com-
ponents, Submitted to Workshop on Reengineering towards Product Lines
(R2PL), November 2005

18. R. Koschke: Atomic Architectural Component Recovery for Program Under-
standing and Evolution, PhD, University of Stuttgart, 2000.

19. R. Koschke, D. Simon: Hierarchical Reflexion Models, Working Conference
on Reverse Engineering, 2003

20. P. Kruchten: The 4+1 View Model of Architecture. IEEE Software, Novem-
ber 1995 12(6):42–50.

21. D. Muthig and C. Atkinson: Model-driven Product Line Architectures. Soft-
ware Product Line Conference (SPLC2), San Diego, CA, 2002

22. D. Muthig, et al.: GoPhone - A Software Product Line in the Mobile Phone
Domain, 2004 (IESE-Report 025.04/E)

23. P. Miodonski, T. Forster, J. Knodel, M. Lindvall, D. Muthig: Evaluation of
Software Architectures with Eclipse, Kaiserslautern, 2004, (IESE-Report
107.04/E)

Copyright © Fraunhofer IESE 2005 23

References

24. G. C. Murphy, D. Notkin, K. Sullivan: Software reflexion models: bridging
the gap between source and high-level models, ACM Software Engineer-
ing Notes, 1995

25. M. Naab, T. Forster, J. Knodel,, D. Muthig: Evaluation of Graphical Ele-
ments and their Adequacy for the Visualization of Software Architectures,
Kaiserslautern, 2005, (IESE-Report 078.05/E)

26. A. Postma: A method for module architecture verification and its applica-
tion on a large component-based system, Information & Software Tech-
nology, 2003

27. R. Tvedt, P. Costa, M. Lindvall: Evaluating Software Architectures, Ad-
vances in Computers, Elsevier Science, 2004

28. TSAFE: Tactical Separation Assisted Flight Environment,
http://sdg.lcs.mit.edu/TSAFE/

Copyright © Fraunhofer IESE 2005 24

Document Information

Title: Static Evaluation of Soft-
ware Architectures

Date: May 30, 2005
Report: IESE-036.05/E
Status: Final
Distribution: Public

Copyright 2005, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	Abstract
	Table of Contents
	Introduction
	Approach
	Static Architecture Evaluation
	Case Studies
	Related Work
	Conclusion
	References
	Document Information

