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ABSTRACT 

Military operations in urban areas became more relevant in the past decades. Detailed situation awareness in these 

complex environments is crucial for successful operations. Within the EDA (European Defence Agency) project on 

“Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) an extensive data set of 

hyperspectral and high spatial resolution data as well as three dimensional (3D) laser data was generated in a common 

field trial in the city of Zeebrugge, Belgium, in the year 2011.  

In the frame of DUCAS, methods were developed at two levels of processing. In the first level, single sensor data were 

used for land cover mapping and the detection of targets of interest (i.e. personnel, vehicles and objects). In the second 

level, data fusion was applied at pixel level as well as information level to investigate the benefits of combining sensor 

systems in an operational context.  

Providing data for mission planning and mapping is an important task for aerial reconnaissance and it includes the 

creation or the update of high quality 2D and 3D maps. In DUCAS, semi-automatic methods and a wide range of sensor 

data (hyperspectral, LIDAR, high resolution orthophotos and video data) were used for the creation of highly detailed 

land cover maps as well as urban terrain models. Combining the diverse information gained by different sensors 

increases the information content and the quality of the extracted information. 

In this paper we will present advanced methods for the creation of 2D/3D maps, show results and the benefit of fusing 

multi-sensor data. 

Keywords: hyperspectral, LIDAR, spatial resolution, 3D, spectral matching, classification, data fusion, terrain model, 

land cover 

1. INTRODUCTION 

Military operations in urban areas became more relevant in the past decades. Detailed situation awareness in these 

complex environments is crucial for successful operations. The objective of the EDA project DUCAS is to investigate 

the potential benefit of combined high spatial and spectral resolution airborne imagery for defense applications in urban 

areas. Seven countries are participating in this project: Sweden, Belgium, The Netherlands, Italy, France, Norway and 

Germany. DUCAS started in 2010 and will end in 2013. For the scope of DUCAS an extensive data set of hyperspectral 

and high spatial resolution data was generated in a common field trial in Zeebrugge, Belgium [1, 2], in the year 2011. 

Additionally, 3D-laser data were acquired earlier to the field trial. The attempt of that trial was to realize as much as 

possible realistic military scenarios like the support for conventional or special forces comprising tasks like detection, 

tracking and retrieval of objects.  

In the frame of DUCAS methods were developed at two levels of processing. In the first level, single sensor data was 

used for land cover mapping and the detection of targets of interest (i.e. persons, vehicles and objects). The processing 

covers classification, anomaly detection, change detection and spectral matching [3, 4, 5]. The processing used 

hyperspectral data from the visible light to the short wave infrared data and in the long wave infrared, broad band sensor 

data in the visible, near infrared and mid wave infrared and airborne 3D-laser scanner as well. Due to the heterogeneous 

urban environment with many types of backgrounds and mixed objects the tasks are difficult to be resolved by a single 
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sensor and often processing yields unsatisfying results. Therefore, in the second processing level, data fusion was applied 

at pixel level and at information level as well, and the benefits of combining sensor systems in an operational context 

were investigated.  

Providing data for mission planning and mapping is an important task for aerial reconnaissance and it includes the 

creation or the update of high quality 2D and 3D maps. In DUCAS, semi-automatic methods and a wide range of sensor 

data (hyperspectral, LIDAR, high resolution orthophotos and video data) had been used for the creation of highly 

detailed land cover maps as well as urban terrain models. Combining the diverse information gained by different sensors 

increases the information content and the quality of the extracted information. 

2. SENSOR DATA 

The main data source used for the data analysis described in this paper is the hyperspectral “ASIA Eagle II” of the 

company SPECIM. The “ASIA Eagle II” operates in the spectral regions from the visible (VIS) to the near infrared 

(NIR), 400 nm to 970 nm. The hyperspectral data cube consists of 130 bands with a spectral width of 4.5 nm. At 

DUCAS the spatial resolution was 40x40 cm². All data are radiometrically (µW/(cm² nm sr) corrected and 

georeferenced. To reach the required accuracy of georeferencing in the order of one pixel, an interactive optimization 

algorithm was used to improve the inertial navigation data. An example of the data acquired on 27 June 2011, at UTC 

11:17 under clear sky and sunny conditions is given in Fig. 1. 

 

Figure 1: AISA Eagle II image 27 June 2011, UTC 11:17, red=637 nm, green=549 nm, blue=459 nm.  

The second data set was taken by a scanning 3D laser, the Light Detection And Ranging (LIDAR) “ALTM Gemini” 

from the company Optech. However, the data acquisition by TopScan GmbH took place three month prior to the 

DUCAS trial, on 27 March 2011, to avoid tree canopies. The point density is approximately 100 points/m². Range and 

the respective height resolution is about 5 cm. These LIDAR data were mainly used for building extraction and terrain 

modeling, see chapter 3.2 and 4 respectively. 

For the creation of the highly detailed land cover maps and urban terrain models two other data sources were used 

additionally, an orthophoto created by RMA from overlapping high resolution images and video sequences acquired by 

the Netherland Aerospace Laboratory (NLR) on the 27 June 2011, UTC 15:50. In chapter 4 a test case is described in 

which the data were fused for the classification and the reconstruction of buildings as well as texturing the horizontal and 

vertical structures with these data. 

3. CLASSIFICATION AND MAPPING 

This chapter describes the processing done for classification and mapping. Chapter 3.1 describes the classification results 

for the hyperspectral images and chapter 3.2 the pixel based fusion of the classification results with the buildings 

extracted from the 3D laser data which were used to update a map in chapter 3.3.  
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3.1. Classification using Hyperspectral Imagery 

The aim of the spectral classification is to find the best spectrum match in order to assign a label to a pixel. This 

spectrum can either be taken from a spectral library or directly from a region of interest (ROI) in the data itself. Several 

pixel-based supervised methods like Support Vector Machine (SVM) [6], Minimum distance [7], Mahalanobis distance 

[7], Maximum Likelihood [7] and Spectral Angle Mapper (SAM) [8] were applied. Supervisely, for each class regions of 

interest were defined.  

The Minimum Distance classification calculates the Euclidian distance between the mean spectra of the class. The 

Spectral Angle Mapper calculates the angle between the mean spectra and the Maximum Likelihood and Mahalanobis 

distance methods use class statistics for the classification. For each method, a threshold for maximum distance can be 

applied to ignore outliers. For the SVM, the selected training samples are used to define the decision boundaries between 

the classes. These boundaries are calculated such that the margins between the classes are maximized and the data points 

closest to the boundaries are named support vectors. If the classes cannot be separated linearly, it is also possible to use 

nonlinear kernel functions to define more complex boundaries. A pixel is assigned to a class depending on its position 

with respect to the boundaries. 

The results of the different methods were compared to a validation map, which was generated by an operator using a 

map and very high resolution color images of 5 cm and 8 cm resolution as well as the Digital Elevation Model (DEM). 

Fig. 2 shows the validation map (left) and the classification result obtained using SVM (right). The overall accuracy was 

calculated as the ratio of correctly classified pixels to total number of pixels. Table 1 contains these accuracy results of 

the different methods. As one can see, the pixel based supervised classification by SVM performs best. This result was 

expected for a complex (i.e. urban areas) and very high spectral data.  

  

Figure 2: Validation map (left) and SVM classification result before post-processing (right). 

 

Table 1: Overall accuracy for different classification algorithms applied to Eagle data. 

Minimum Distance 67.4 

Mahalanobis Distance 69.9 

Maximum Likelihood 56.8 

Spectral Angle Mapper 72.9 

Support Vector Machine 78.8 

For further improvement, majority analysis can be used to reduce the high segmentation in the classification result 

(suppress single pixel in homogenous areas). This post-processing improved the overall accuracy by approximately 10% 
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for the “Mahalanobis Distance” classifier and about 5% for the SVM. Excluding the SVM and SAM, the obtained 

accuracy by the classifiers was not as high as expected (i.e. over 85% accuracy). One reason for this unsatisfying result is 

the small number of pixels that were selected for the training regions in relation to the number of spectral bands. For 

“Maximum Likelihood” classifier, there should be around 10 times the number of bands of training pixels for separating 

correctly the segments. Due to the rare appearance of some classes (e.g. building metal) this was not possible with the 

available data sets. Moreover, it is obvious that some errors were originated from objects which are not present in the 

validation set (as vehicles and sky-roof windows and many different small objects available in the scene). Other 

classification confusions and errors were originated from shadows and misclassification at the edges of objects. 

Fig. 3 presents the error image for the SVM classifier before post-processing. White pixels indicate the misclassified 

ones. As can be observed, most errors occur in shadow areas and at the edges of objects. The ones in shadow areas are 

due to low contrast and nonlinear behavior of the spectra. Errors at the contour of objects are due to mixed pixels and 

misalignment with the validation map. 

 

Figure 3: Error image of SVM classification before post-processing.  

The results of the SVM classification obtained for the AOI were encouraging but they also highlighted the presence of 

noise in the scene. To reduce the variability in the hyperspectral data and the noise, Minimum Noise Fraction (MNF) [9] 

transformation was performed earlier to the SVM. The resulting of the overall accuracy shows an improvement of 2.6% 

to 81.4%. 

3.2. Fusion of Classification Results with LIDAR Data 

To further improve the classification results for the AOI, georeferenced 3D laser point cloud data which were interpreted 

as DEM were fused with the obtained results. The fusion of hyperspectral and DEM data allows in general reducing of 

ambiguities between ground and elevated features which are covered by similar materials (i.e. road and roof asphalt). 

Fusing DEM and hyperspectral data was done in two ways. The first one was a pixel-based fusion by integrating height 

as additional band to the hyperspectral data; the second one was an object-based fusion. However, only small 

improvement in the accuracy was achieved in both cases (up to about 2%, see Table 2). In complex urban areas the 

geometrical and materials separation in the scene usually is high; however, the investigated scene is relatively simple. In 

the AOI there are large buildings with large spectral distances in between and different roof and background materials 

(i.e. the asphalt of roof and pavement are different). Hence, the improvement by using DEM is rather marginal.  

Nevertheless, if the origin of the errors in the hyperspectral image is the presence of shadows (see also Fig. 1) a 

significant increase in the classification accuracy is gained by including a shadow mask in the evaluation process. The 

shadow mask was calculated using the DEM and the sun position [10]. As Table 2 shows, the overall accuracy is 89.5% 

(improvement of 8%) with supplementary fusion of height and spectral information as well as using shadow masks to 

exclude the areas from classification (labelled as unclassified class).  
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Table 2: Overall accuracy for SVM and different levels of data fusion. 

SVM with MNF  81.4 

SVM with MNF & height as 1 band  83.0 

SVM with MNF and DEM  83.5 

SVM with MNF, DEM and shadow mask  89.5 

The images in Fig. 4 illustrate this improvement. The left image presents the SVM classification map after MNF. The 

right image shows the result after object-based fusion and applying the shadow mask. It can clearly be seen that the 

classification areas are much more homogenous, the edges and corners of the buildings are sharpened and the shadows 

are marked as a separate, undefined class.  

   

Figure 4: SVM Classification after MNF without fusion (left) and after data fusion with DEM and shadow mask (right). 

Fig. 5, left image, presents the SVM error map before fusion and after object-based fusion and applying the shadow 

mask (right image). Nearly all the remaining errors are present at the contour of objects; errors are caused by mixed pixel 

and the evaluation process. 

  

Figure 5: Error images after MNF without fusion (left) and after data fusion with DEM and shadow mask applied (right). 
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3.3. Update of Map 

Having the classified surface, these results can be merged with an existing map for update. In Fig. 6, left, the original 

map of the AOI is shown. In the merged map with classification results, right, much more details are present. It can 

clearly be seen that additional buildings were constructed at the bottom half of the image. Details include roads and 

parking areas (red), paths (yellow) and additional information on grass cover (green) and gravel areas (skin color). 

Additionally, there is also a particular construction (purple) detected, which is a small, low building. However, the tower 

(grey circle in the center of left image) is labeled as road and hence is not present any more. 

 

Figure 6: The original map (left) and the updated map (right). 

 

4. TERRAIN MODELING 

A very detailed 3D terrain models is very helpful for training purposes and crucial for mission planning in complex 

urban areas. In urban scenarios, buildings are of particular interest as they can be used for ambushes, offer cover for 

snipers and impede the line of sight. A good knowledge of the building shapes and positions is also important for 

trafficability analysis.  

Detection of buildings and vegetation was done in three steps: computation of Digital Terrain Model (DTM), separation 

of buildings and vegetation as well as filtering and labeling [11]. The difference between DEM and DTM gives elevated 

points, which are either buildings or vegetation, like trees or bushes. In a second step it would be possible to filter out the 

vegetation by analyzing the multiple return signal of the laser pulse caused by vegetation. However, in the AOI the 

presence of vegetation is negligible. In the third step the detection of buildings is made by filtering elevated regions by 

their altitude, area and elongation. This is to suppress false pixels. The remaining pixels are the buildings hypothesis. The 

reconstruction of the buildings is applied to these pixels for the creation of an accurate 3D model.  

The reconstruction of buildings is again done in three steps: building boundary extraction, roof detail analysis and 

texturing. First the building contour as a rectangular polygon (optionally) is computed. Straight lines in the DEM are 

obtained by an edge detector [12]. Their slopes are stored in an histogram modulo 90° for determining the main building 

orientation. Afterwards the height is thresholded to get the lowest boundary rectangle: The contours of the building are 

refined by increasing the threshold yielding additional rectangular subparts. Neglecting very small and very narrow parts 

is achieved by reducing the number of vertices. 

The second step of the building reconstruction is the roof detail analysis. Several dominant planes from the 3D point 

clouds within every building are computed by a modified random sample consensus (RANSAC-) procedure [11]. After 

calculating a course set of planes and applying some morphological operations, roof polygons are built and intersected 

between each other and the outlines of the buildings. However, with this procedure small structures like chimneys and 
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dormers are smoothed out. These structures could be identified in advance by determining small elevated, connected 

regions of low gradient and by ignoring the corresponding points in the later computations. Walls are modeled by 

vertical trapezoids connecting roof polygons and corresponding points on the ground.  

Although this 3D model already contains a lot of information needed for mission planning, the information gain can be 

increased by considering additional sensor data. Wall textures obtained from up-to-date sensor data contrary to the 

standard wall textures gives hints for access points to buildings, shows windows and provides hazard areas which should 

be avoided during a possible attack. For texturing the vertical polygons (walls), the conventional None-NADIR view 

NLR video was the available complementary data. For the texturing procedure, the exact position and the view direction 

of the camera for each image is needed. Due to lack of accuracy of the inertial navigation data, an interactive method 

was used. Having sufficient corresponding points between the 3D model and camera image, the camera orientation can 

be estimated fully automatically. For this at least six corresponding points are needed for a non-calibrated camera. We 

took around ten corresponding points to improve the accuracy of the process. Now, each polygon in the 3D model can be 

back-projected in the image plane thus obtaining a synthetic depth map. This depth map allows determining the 

foreground polygon for every pixel. Using a cost function, the best image for every wall is chosen for texturing. If the 

wall is not covered completely by one image, the second best image is used, and so on. Fig. 7 illustrates the occlusion 

analysis procedure.  

   

Figure 7: Illustration of the occlusion analysis procedure. The left image shows a video frame, the image in the middle 

shows the corresponding synthetic depth map of the buildings and the right image shows the foreground polygon. 

Fig. 8 shows the results of the wall texturing for one building. In this 3D image the orthophoto was used for horizontal 

areas on ground and roofs instead of the classification results. In such an image important details like windows or 

entrance points are visible. However, due to the poor quality of the video data, these details are not very clear in Fig. 8. 

 

Figure 8: 3D-terrain model of area with texture from orthophoto for pixel on horizontal areas and from slant view video for 

pixel of vertical areas (walls).  

Information about the materials covering the surface is essential for trafficability analyses or gives hints which roofs can 

be accessed by enemy forces. Given a good spatial registration, the classification results can be used for dressing the 

horizontal areas as roofs and the ground. This result contains information about materials as well as object types. Fig. 9 

shows a sample result for this work. At the top of the image there are also buildings outside the AOI, where classification 

data are missing. 
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Figure 9: 3D model with horizontal planes (ground and roofs) textured by manually improved classification results. 

5. DISCUSSION AND CONCLUSIONS 

For military operations in urban areas, detailed situation awareness is crucial for the success of the operations in these 

complex environments. Therefore, providing data for mission planning and mapping is an important task for aerial 

reconnaissance. This also includes the creation or update of high quality 2D and 3D maps (which is also one of the tasks 

of the EDA project DUCAS).  

Advanced (semi-) automatic classification algorithm in a combination with hyperspectral data can help operators to 

create land cover maps of large area in a raid procedure. Several pixel-based supervised classification methods were 

applied on hyperspectral data for the creation of 2D land cover maps. The best results were obtained with the Support 

Vector Machine classifier, which is a powerful and robust method. However, the accuracy for radiance data was not 

exceeded 79% (lower than expected). The main reasons for this unsatisfying result are the small number of pixels 

selected for the training regions in relation to the number of spectral bands, and the presence of shadows. The 

classification results were improved slightly for MNF transformed data with reduced variability. Results were also 

improved with additional data of a DEM, because the combined data allowed the separations between geometrical 

objects and materials. However, the research in this study shows that in urban scenes where the separation between man-

made objects is clear, fusion of optical data and DEM are not mandatory. A significant increase in the classification 

accuracy is gained by including a shadow mask in the evaluation process. With supplementary fusion of height and 

spectral information as well as using shadow masks the overall accuracy was improved to 90% resulting in a highly 

detailed 2D land cover map. The remaining errors are at the contour of objects, which are due to mixed pixels and 

misalignment between validation map and the data used for classification.  

Beside 2D maps, highly detailed 3D terrain models are very helpful for training purposes and crucial for mission 

planning in complex urban areas. A better support can be achieved by integrating the computed model into combat 

simulation software [11]. During operations 3D models also build the basis for target handoff between different video 

systems. For urban areas, buildings are of particular interest. To be able to create such a 3D model, the detection of 

buildings (and vegetation, if present) is necessary. Having the buildings reconstructed, these 3D models were enriched in 

a data fusion process with additional information gained by other sensors like texture of visible images and/or 

classification results created from hyperspectral sensors. The later allowed automatic labelling of objects with basic 

classes like road and vegetation.  

Overall, a wide range of sensor data (hyperspectral, LIDAR, high resolution orthophotos and video data) had been used 

for the creation of highly detailed land cover maps as well as urban terrain models. Combining the diverse information 

gained by the different sensors increases the information content and the quality of the extracted information. However, 

it must be mentioned that scenes with many different classes are not qualified for automatic classification due to low 

training pixels and high operational effort.  
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