Novel High k Application Workshop

March 24, 2014, namlab, Dresden

Nanoscale characterization of high-k dielectrics by electrical SPM methods

Mathias Rommel

Fraunhofer Institute for Integrated Systems and Device Technology (FhG IISB), Erlangen, Germany

Acknowledgements

- Boris Hudec, Alica Rosová, Kristína Hušeková, Edmund Dobročka, Karol Fröhlich Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Raul Rammula, Aarne Kasikov, Jaan Aarik
 Institute of Physics, University of Tartu, Tartu, Estonia
- Jeong Hwan Han, Woongkyu Lee, Seul Ji Song, Cheol Seong Hwang Department of Materials Science and Engineering, and Inter-university Semiconductor Research Center, Seoul National University, Seoul, Republic of Korea
- Albena Paskaleva
 Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Vanessa Iglesias, Marc Porti, Montserat Nafria Departament d' Enginyeria Electrònica, Universitat Autonoma de Barcelona, Spain
- Christoph Richter, Philipp Weinzierl NanoWorld Services GmbH, Erlangen, Germany
- Justinas Trapnauskas, Katsuhisa Murakami, Vasil Yanev, Tobias Erlbacher Fraunhofer IISB and Chair of Electron Devices, University of Erlangen
 - BMBF / EC (CATRENE) for partial funding (UTTERMOST, NANOCMOS, PULLNANO)

SPM equipment at Fraunhofer IISB

- Bruker Dimension Icon and DI 5000 with NanoScope V controller
- cAFM, TUNA, and extended TUNA (SCM, SSRM) modules
- for all electrical SPM measurements, commercially available PtIr (EFM) tips are used
- all measurements in ambient conditions (no UHV or N_2)

http://www.bruker.com, http://nanoscaleworld.bruker-axs.com

Novel high k Application Workshop, namlab, Dresden, March 2014

- the charm of electrical SPM is its imaging capability on the nanoscale
 - identification of the main leakage current paths of a sample by cAFM maps
 - ∘ ZrO_2 ALD films (5 nm) on native oxide (≈1 nm) on p-type silicon

V. Yanev et al., Applied Physics Letters 92, 252910-1-3 (2008)

Novel high k Application Workshop, namlab, Dresden, March 2014

• the charm of electrical SPM is its imaging capability on the nanoscale

- identification of the main leakage current paths of a sample by cAFM maps
- is it along grain boundaries or through grains?
- 20 nm TiO₂ (TiCl₄-ALD) on 25 nm RuO₂ + PDA (400 °C, O_2/N_2)

grain boundaries (examples)

0 nm / -1.0 nA

4.5 nm / 0.5 nA

K. Murakami et al., ACS Applied Materials & Interfaces 6, 2486-2492 (2014)

Novel high k Application Workshop, namlab, Dresden, March 2014

- However, electrical SPM can and should do more
 - SPM allows for complementary / in-depth information due to its lateral resolution (e.g., local I-V at grain boundaries or through grains for ZrO₂)

K. Murakami et al., AIP Conference Proceedings 1395, 134-138 (2011)

Novel high k Application Workshop, namlab, Dresden, March 2014

However, electrical SPM can and should do more

- still, though, its corresponding capabilities are not sufficiently exploited or even explored, partly due to:
- insufficient sensitivity of cAFM for fully exploiting current conduction mechanisms
- insufficient repeatability and reproducibility

Fraunhofer

IISB

Science & Technology B **31**, 01A108 (2013)

0

Novel high k Application Workshop, namlab, Dresden, March 2014

M. Rommel et al., Journal of Vacuum

Outline

- Selected examples for quantification of electrical SPM results or the direct correlation of such results with conventional methods
- Thickness mapping of high-k dielectrics
- Summary and outlook

Quantification of electrical SPM

• $ZrO_2/SiO_x/Si$ stack: determination of SiO_x layer thickness from local I-V

A. Paskaleva et al., Journal of Applied Physics 104, 024108-1-7 (2008)

Novel high k Application Workshop, namlab, Dresden, March 2014

- Quantification of electrical SPM
 - TDDB evaluation using CVS: comparing cAFM and conventional methods 4 nm SiO₂ + 4 nm MOCVD HfO₂, PDA: 600 °C in O₂

Novel high k Application Workshop, namlab, Dresden, March 2014

Quantification of electrical SPM

- in depth evaluation of temperature dependent TDDB (CVS @ 30 °C ...210 °C)
- 5 nm HfO₂ (ALD) / 1 nm SiO_x interfacial layer, PDA: 1000 °C, N₂
- bimodal character due to measuring on both, grains (G) and grain boundaries (GBs)
- from Arrhenius plot similar activation energies for Gs and GBs TDDB are evaluated
 → breakdown always initiated by SiO_x interfacial layer

V. Iglesias et al., Microelectronic Engineering **109**, 129-132 (2013)

Thickness mapping of high-k dielectrics

- SCM does NOT allow quantitative capacitance measurements!
- so far, only possible by dedicated home-made equipment using CV measurements (12-24 hours for each measurement!!)*
- recently, scanning microwave microscopy (SMM) has been introduced for attofarad capacitance measurements**
 - \Rightarrow using a network analyzer for characterization
 - \Rightarrow calibration required for quantitative measurements
 - \Rightarrow on-sample calibration procedures developed***

^{**} Agilent Technologies, Attofarad Capacitance Measurement with Scanning Microwave Microscopy, application note, 2010 *** G. Gramse et al., Nanotechnology **25**, 145703-1 – 145703-8 (2014)

^{*} W. Brezna et al., Applied Physics Letters **83**, 4253-4255 (2003)

- Thickness mapping of high-k dielectrics using an alternative approach
 - Corona charging and subsequent Kelvin probe force microscopy (KPFM)
 - \rightarrow adaptation of and comparison with
 - → conventional macroscopic "V-Q" method (Semilab WT-2500, 8 mm SKP)

J. Trapnauskas et al., Applied Physics Letters **104**, 052907-1-4 (2014)

Novel high k Application Workshop, namlab, Dresden, March 2014

- Thickness mapping of high-k dielectrics using an alternative approach
- procedure 0 Potential Data -1V \Rightarrow charging in clean room \Rightarrow KPFM in SPM lab LiftMode important to note: Scan 0 \Rightarrow simple KPFM implementation two steps: Lift Height a) topography b) CPD in lift mode (10 nm) \Rightarrow ambient conditions **Height Data** J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

http://www.brukerafmprobes.com/download/BrukerProbeCat_2013_International_LowFinal.pdf, 22.03.2014

Conductive Probe

Novel high k Application Workshop, namlab, Dresden, March 2014

Thickness mapping of high-k dielectrics using an alternative approach

• proof of concept using SiO₂ sample with stripes of different SiO₂ thicknesses

J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

Novel high k Application Workshop, namlab, Dresden, March 2014

Thickness mapping of high-k dielectrics using an alternative approach

- for samples with inhomogeneous thicknesses, procedure suffers from insufficient sample positioning accuracy (appr. 1-2 µm possible, but ...)
- an adapted approach is presented which assumes:
 - \Rightarrow correlation between CPD and topography (height)
 - \Rightarrow layer properties do not change substantially within micrometers

J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

- Schematic of the proposed approach
 - MOCVD 5 nm HfSi_xO_y on 4 nm SiO₂ + RTA (900 °C, 10 s, O₂) + FGA

2. Leakage correction

J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

• Schematic of the proposed approach

J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

Novel high k Application Workshop, namlab, Dresden, March 2014

Schematic of the proposed approach

J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

Novel high k Application Workshop, namlab, Dresden, March 2014

• Thickness mapping of high-k dielectrics – results

	Thickness (nm)	
Sample	SKP	KPFM
HfO ₂	5.3	5.2
HfSi _x O _y RTA	5.7	5.7
$HfSi_xO_y RTA + FGA$	8.5	8.7

J. Trapnauskas et al., Applied Physics Letters 104, 052907-1-4 (2014)

Novel high k Application Workshop, namlab, Dresden, March 2014

Summary and outlook

- electrical SPM techniques allow for unique and complementary information compared to conventional "macroscopic" results from MIS structures (even in ambient conditions!)
- direct quantification or correlation with results from conventional methods possible
- KPFM based procedure for nanoscale thickness mapping has been demonstrated
- future work
 - further development of cAFM for improved evaluation of current conduction mechanisms at the nanoscale

→ higher sensitivity (better amplifiers), shielded tips, T dependent measurements (heated chuck), modeling, …

- improvement of thickness measurement method
 - \rightarrow in-situ charging or at least "in-tool" charging with very accurate stage

- Limitations and solutions
 - unique topography features allow unambiguous localization of position of interest topography topography topography measurement A measurement B measurement C

- sample positioning accuracy sufficient and evaluation procedure not required
- corresponding KPFM data can be directly used to evaluate EOT

