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Abstract

Relation extraction is frequently and successfully addressed by machine learning methods. The downside of this approach is the need
for annotated training data, typically generated in tedious manual, cost intensive work. Distantly supervised approaches make use of
weakly annotated data, which can be derived automatically. Recent work in the biomedical domain has applied distant supervision for
protein-protein interaction (PPI) with reasonable results, by employing the IntAct database. Training from distantly labeled corpora is
more challenging than from manually curated ones, as such data is inherently noisy. With this paper, we make two corpora publicly
available to the community to allow for comparison of different methods that deal with the noise in a uniform setting. The first corpus is
addressing protein-protein interaction (PPI), based on named entity recognition and the use of IntAct and KUPS databases, the second
is concerned with drug-drug interaction (DDI), making use of the database DrugBank. Both corpora are in addition labeled with 5
state-of-the-art classifiers trained on annotated data, to allow for development of filter methods. Furthermore, we present in short our
approach and results for distant supervision on these corpora as a strong baseline for future research.
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1. Introduction

Relation Extraction (RE) in the biomedical domain is a disci-
pline that is under extensive examination in the past decade,
with a goal to automatically extract interacting pairs of en-
tities from free text. Currently, a lot of relation extraction
systems rely on machine learning, namely classifying pairs
of entities to be related or not (Airola et al., 2008; Miwa et
al., 2009; Kim et al., 2010). Despite the fact that machine
learning has been most successful in identifying relevant
relations in text, a drawback is the need for manually anno-
tated training data. Domain experts have to dedicate time
and effort to this tedious and labor-intensive process.

As a consequence of the overall scarcity of annotated cor-
pora for relation extraction in the biomedical domain, the
approach of distant supervision, e. g. automatic labeling
of a training set is emerging. Many approaches follow the
distant supervision assumption (Mintz et al., 2009; Riedel
et al., 2010): “If two entities participate in a relation, all sen-
tences that mention these two entities express that relation.”
Obviously, this assumption does not hold in general, and
therefore exceptions need to be detected.

To allow the community to compare different approaches for
distant supervision, we make two corpora, one for protein-
protein interaction (PPI) and one for drug-drug interaction
(DDI) publicly available.! In addition, we present our results
on this task as a strong baseline. To complete the purpose of
a silver standard, annotations of well-established supervised
models on this corpus are included.

*These authors contributed equally.
'These two corpora are publicly at:
http://www.scai.fraunhofer.de/ppi-ddi-silverstandard.html.

1.1. Related Work

Distant supervision approaches have received considerable
attention in the past few years. However, most of the work is
focusing on domains other than biomedical texts. Mintz et
al. (2009) use distant supervision to learn to extract relations
that are represented in Freebase (Bollacker et al., 2008). Yao
et al. (2010) use Freebase as a source of supervision, dealing
with entity identification and relation extraction in a joint
fashion. Riedel et al. (2010) argue that distant supervision
leads to noisy training data that hurts precision and suggest
a two step approach to reduce this problem. Vlachos et al.
(2009) tackle the problem of biomedical event extraction.
The scope of their interest is to identify different event types
without using a knowledge base as a source of supervision,
but explore the possibility of inferring relations from the text
based on the trigger words and dependency parsing, without
previously annotated data. Thomas et al. (2011b) make use
of a distantly labeled corpus for protein-protein interaction
extraction. Different strategies are evaluated to select infor-
mative training instances. Buyko et al. (2012) examine the
usability of knowledge from a database to generate training
sets that capture gene-drug, gene-disease and drug-disease
relations.

The CALBC project asks for automated annotation of entity
classes in a common corpus to generate a silver standard by
combining different predictions (Rebholz-Schuhmann and
S. Kafkas, 2011). The usability of automatically derived
corpora has been recently demonstrated for the task of noun-
phrase chunking (Kang et al., 2012). The EVEX data set is
the result of applying named entity recognition, parsing and
event extraction on full MEDLINE (Landeghem et al., 2011).



Corpus Positive pairs  Negative pairs Total
AlMed 1000 (0.17) 4,834 (0.82) 5,834
Biolnfer 2,534 (0.26) 7,132(0.73) 9,666
HPRDS50 163 (0.38) 270 (0.62) 433
IEPA 335(0.41) 482 (0.59) 817
LLL 164 (0.49) 166 (0.50) 330
DDI train 2,400 (0.10) 21,411 (0.90) 23,811
DDI test 755 (0.11) 6,275 (0.89) 7,030

Table 1: Basic statistics of the five PPI and two DDI corpora.
Ratios are given in brackets.

1.2. Interaction Databases

The IntAct database (Kerrien et al., 2012) contains protein-
protein interaction information. It consists of 290,947 binary
interaction evidences, including 39,235 unique pairs of in-
teracting proteins for human species.> KUPS (Chen et al.,
2010) is a database that combines entries from three manu-
ally curated PPI databases (IntAct, MINT (Chatr-aryamontri
et al., 2007) and HPRDS50 (Prasad et al., 2009)) and contains
185,446 positive pairs from various model organisms, out of
which 69,600 belong to human species.® Enriching IntAct
interaction information with the KUPS database leads to
57,589 unique pairs.*

The database DrugBank (Knox et al., 2011) combines de-
tailed drug data with comprehensive drug target information.
It consists of 6,707 drug entries. Apart from information
about its targets, for certain drugs known interactions with
other drugs are given. Altogether, we obtain 11,335 unique
DDI pairs.

1.3. Manually Curated Corpora

Pyysalo et al. (2008) made five corpora for protein-protein
interaction available in the same XML-based file format.
Their properties, like size and ratio of positive and nega-
tive examples, differ greatly, the latter being the main cause
of performance differences when evaluating on these cor-
pora. Moreover, annotation guidelines and contexts differ:
AlIMed (Bunescu et al., 2005) and HPRD50 (Fundel et al.,
2007) are human-focused, LLL (Nedellec, 2005) on Bacillus
subtilis, Biolnfer (Pyysalo et al., 2007) contains informa-
tion from various organisms, and IEPA (Ding et al., 2002)
is made of sentences that describe 10 selected chemicals,
majority of which are proteins, and their interactions.
Segura-Bedmar et al. (2011b) published a drug-drug inter-
action corpus where the drug mentions have been automati-
cally detected with MetaMap and their pair-wise relations
are manually annotated. The corpus is divided into a training
and testing set, generated from web-documents describing
drug effects.

An overview of the corpora is given in Table 1.

2As of January 27th, 2012.

3As of August 161, 2010.

445,684 out of 69,600 human PPI pairs are available from the
KUPS web service due to computational and storage limitations
(personal communication).

2. Methods

In this section, the workflow to prepare the two corpora is
presented.

2.1. Automatically Labeling a Corpus

One of the most important source of publications in the
biomedical domain is MEDLINE>, currently containing
more than 21 million citations.® The initial step is anno-
tation of named entities and entity normalization against
the databases mentioned in Section 1.2. — in our case per-
formed by ProMiner (Hanisch et al., 2005), a tool proving
state-of-the-art results in e. g. the BioCreative competition
(Fluck et al., 2007). Based on the named entity recognition,
only sentences containing co-occurrences of relevant enti-
ties are further processed. Based on the distant supervision
assumption, each pair of entities is labeled as related if men-
tioned so in a structured interaction database. Following
the closed world assumption, all remaining entity pairs are
labeled as non-interacting. To avoid information leakage
and biased classification, all documents which are contained
in the test corpus are removed from the distantly labeled
corpus. Each corpus is sub-sampled to a size of 200,000
entity-pairs, which is more than an order of magnitude larger
than any manually annotated PPI or DDI corpus.

2.2. Corpus Preprocessing

Sentences are parsed using the Charniak-Lease parser (Lease
and Charniak, 2005) with a self-trained re-ranking model
specialized for biomedical texts (McClosky, 2010). Result-
ing constituent parse trees are converted into dependency
graphs using the Stanford converter (Marneffe et al., 2006).
We create an augmented XML following the recommen-
dations of Airola et al. (2008). This XML encompasses
tokens with respective part-of-speech tags, constituent parse
tree, and dependency parse tree information. The pairs are
augmented with class labels predicted from five different
relation extraction methods (see Section 2.3.). For interact-
ing pairs in the PPI corpus we provide the original source
(IntAct or KUPS) along with the information if the pair is
made of self-interacting proteins. For sentences of the PPI
corpus we include the information if an interaction (trigger)
word is present. However, in case of DDI trigger-based
filtering is not applied (see Bobic et al. (2012)).

2.3. Pair Annotation

Labeling two large corpora with database knowledge is the
main contribution of this paper. Additionally, we supplement
the corpus with predictions of five state-of-the-art relation
extraction approaches to provide a supplementing layer of
information. (An assessment of the used methodologies for
relation extraction was performed by Tikk et al. (2010).)

This includes the shallow linguistic (SL) (Giuliano et al.,
20006), all-paths graph (APG) (Airola et al., 2008), sub-
tree (ST) (Vishwanathan and Smola, 2002), subset tree
SST (Collins and Dufty, 2001), and spectrum tree (SpT)
(Kuboyama et al., 2007) method, which exploit different
views on the data. Parameter optimization was performed as

Shttp://www.ncbi.nlm.nih.gov/pubmed/
®As of January, 2012.



described by Tikk et al. (2010). For a detailed description
of the feature setting and approach, we refer to the orig-
inal publications. Entities were blinded by replacing the
entity name with a generic string to ensure the generality of
the approach. Constituent parse trees have been reduced to
the shortest-enclosed parse following the recommendations
from Zhang et al. (2006). All five methods are trained on
the union of all five PPI corpora and the DDI training and
test set respectively. Note that the predictions coming from
the five methods are biased towards these training corpora:
Models trained on the resulting silver standard (excluding
the database annotation) are likely to obtain a too optimistic
result, even though the respective sentences from the test set
are not used in the training process.

3. Results

In this section, we start with an overview of state-of-the-art
results for fully supervised relation extraction on PPI and
DDI corpora (see Table 1). Section 3.2. gives a statistical
outline of the two distantly labeled corpora. Subsequently
we present the results of the five relation extraction meth-
ods trained on manually annotated data and applied on the
distantly labeled corpora. Finally, we present our results
for models trained on distantly labeled PPI and DDI data,
when evaluated on manually annotated corpora, as a strong
baseline for future research.

3.1. Performance Overview of Supervised RE
Systems

Protein-protein interactions have been extensively investi-
gated in the past decade because of their biological signif-
icance. Machine learning approaches have shown the best
performance in this domain (e. g. BioNLP (Cohen et al.,
2011; Tsujii et al., 2011) and DDIExtraction Shared Task
(Segura-Bedmar et al., 2011a)).

Our relation extraction system is based on the linear support
vector machine classifier LibLINEAR (Fan et al., 2008). The
approach employs lexical and dependency parsing features,
as explained by Bobic et al. (2012).

Table 4 shows a comparison of state-of-the-art relation ex-
traction systems’ performances on 5 PPI corpora, deter-
mined by document level 10-fold cross-validation. In Ta-
ble 2, results of the five best performing systems on the
DDI test data set of the DDI extraction workshop are shown.
Note that the first three systems use ensemble based meth-
ods combining the output of several different classifiers. In
addition, the performance of our system, which is later used
for distant supervision, is shown in both tables.

3.2. Distantly Labeled Corpora for DDI and PPI

The file format of the corpora is by large self explanatory
and strongly follows an established file format (Airola et
al., 2008; Pyysalo et al., 2008). A short excerpt of the DDI
corpus is shown in the appendix. The example consists of
one sentence with two annotated drugs that participate in a
relation according to DrugBank.

Basic statistics of the two distantly labeled corpora are
shown in Table 3. The Charniak-Lease parser does not
produce results for nine sentences in the PPI corpus and
14 sentences in the DDI corpus. In general, most methods

Methods P R Fy

Thomas et al. (2011a) 60.5 719 65.7
Chowdhury et al. (2011) 586 70.5 64.0
Chowdhury and Lavelli (2011) 584 70.1 63.7
Bjorne et al. (2011) 58.0 689 63.0
Minard et al. (2011) 552 649 59.6
Our system (lex) 62.7 52.1 569
Our system (lex+dep) 669 579 62.1

Table 2: Comparison of fully supervised relations extraction
systems for DDI. (lex denotes the use of lexical features,
lex+dep the additional use of dependency parsing-based
features.) The first three systems are based on ensemble
learning.

PPI DDI
Abstracts 49,958 76,859
Sentences 51,934 79,701
Pos. Sent. 19,891 5,587
Tokens 1,608,899 2,520,545
Entities 150,886 203,315
Pairs 200,000 200,000
Pos. Pairs 37,600 8,705

Table 3: Statistics of the distant PPI and DDI corpora. (pos.
sent. denotes the number of sentences with at least one
related entity pair.)

fail to predict class labels for instances contained in these
sentences, leading to a reduced number of predictions per
corpus. However, the effect is only marginal as <1 % of all
entity pairs are affected by this problem.

3.3. Pair Annotation

As shown in Table 5, relation extraction methods tend to
classify between 10.9 % and 16.8 % of all protein pairs as
interacting. However, the overall ratio of positive instances
across all five PPI corpora is greater, measuring up to 32.6 %.
We observe similar values for the distant DDI corpus with
ratios ranging from 12.7 % to 19.6 %.

The distribution of confidence scores (distance to the hy-
perplane) for all methods on both corpora is shown in Fig-
ure 1. Instances with a negative sign are classified as non-
interacting and instances with a positive sign are classified as
interacting. The linear association between different meth-
ods is assessed using Pearson correlation for all instances
contained in the distantly supervised corpus. We observe
correlation coefficients ranging from 0.29 (APG versus SpT)
to 0.59 (APG versus SL) for PPI and between 0.34 (APG
vs ST) to 0.71 (ST vs SST) for DDI. Significance of all
pairwise correlations is assessed using a t-test and is in all
cases highly significant (p-value < 0.01). Correlation is ex-
emplarily depicted as scatterplot for SL and APG on PPI in
Figure 2. Both methods agree on the predicted class label on
instances contained in the first and third quadrant, whereas
the two methods have conflicting results for instances in
the second and fourth quadrant. The figure indicates that
some instances can be confidently classified by one method



AlMed Biolnfer HPRD50 IEPA LLL
P R Fy P R Fi P R Fi P R Fy P R F
Airola et al. (2008) 529 618 564 567 672 613 643 658 634 696 827 751 725 872 768
Kim et al. (2010) 614 532 566 618 542 576 667 692 678 737 71.8 729 769 91.1 824
Fayruzov et al. (2009) 39.0 34.0 56.0 72.0 76.0
Liu et al. (2010) 54.7 59.8 64.9 62.1 78.1
Miwa et al. (2009) 550 688 608 657 711 681 685 761 709 675 786 71.7 776 86.0 80.1
Tikk et al. (2010) 475 655 545 551 665 600 644 67 642 712 693 693 745 853 745
Our system (lex) 629 500 557 593 551 571 724 756 739 677 733 704 666 83.6 76.1
Our system (lex+dep)  63.6 520 572 658 629 643 708 740 724 704 761 732 704 91.6 79.6

Table 4: Comparison of fully supervised relation extraction systems for PPIL.

PPI DDI
Method positive negative positive negative
SL 33,677 (16.8) 166,219 25,344 (12.7) 174,539
SpT 21,971 (10.9) 177,921 29,324 (14.6) 170,558
ST 28,885 (14.4) 171,112 39,286 (19.6) 160,597
SST 24,840 (12.4) 175,157 25,841 (12.9) 174,039
APG 26,313 (13.1) 173,686 25,357 (12.7) 174,643

Table 5: Distribution of positive and negative instances for the different methods on both distantly labeled corpora. The ratio

of positive examples is given in brackets.

(high distance to the hyperplane), but the other method is
comparably inconfident. This suggests a great variability
between the methods.

Even though the correlation between the methods is lower
than expected, the inter-classification agreement (accuracy)
is comparably high and ranges between 80.7 % to 86.4 %
and 78.2 % to 84.6 % for all PPI and DDI instances respec-
tively. We observe a large agreement between the distantly
labeled corpus and the classification methods with approxi-
mately 76 % overall agreement for PPI and 80 % for DDI.
The association between distantly labeled corpora and all
classification methods is significant according to a fisher
test (p-value < 0.01), except for SpT where we observe a
p-value of 0.04. However, the large overall agreement is
due to the high number of negative instances in the distant
corpora and predicted by the different methods. For positive
PPI instances alone we observe an agreement of approx-
imately 27 % between instances labeled as interacting by
our knowledge base and the classification methods. Similar
effects can be observed for the DDI corpus. We assessed the
overall agreement between methods and the two distantly
labeled corpora using Cohens «. For PPI we observe values
ranging between 0.07 to 0.19 and for DDI we observe &
values of 0.03. The low « values show a comparably small
agreement between classification methods and distantly la-
beled corpora and more sophisticated filtering techniques
might be required to make optimal use of the corpus. Results
in terms of precision, recall and F} can be seen in Table 6.

3.4. Baselines for Distantly Supervised Models

For each experiment we sample random subsets of 10,000
entity pairs from the proposed corpora. All experiments are
performed five times to reduce the influence of sampling
different subsets. We apply the method proposed by Bobié
et al. (2012), with dependency parsing based features and

PPI DDI
Method P R Fy P R F
SL 35.1 314 332 64 187 95
SpT 274 16.0 202 45 153 7.0
ST 352 27.1 306 55 251 0.l
SST 323 214 257 62 186 93
APG 36.0 25.1 296 58 167 8.6

Table 6: Comparison of all methods on both distantly labeled
corpora. (P denotes precision, R recall and F the harmonic
mean of P and R)

filtering auto-interacting entities. For PPI, trigger-based
filtering is applied (compare to Section 2.2.). Table 7 shows
the average performance trained on the distantly labeled PPI
and DDI corpora.

Note that the instance labels used for training the model are
based solely on database knowledge. The information pro-
vided by five supervised methods (addressed in Section 2.3.)
are not taken into account for generating baseline results,
although they are available to be used in future work.

Our system outperforms co-occurrence results for all five
PPI corpora, as shown in Table 7. F} measure of AlMed
and Biolnfer, for which we assume to have the most re-
alistic pos/neg ratio, outperforms the baseline by around
9 percentage points (pp). HPRD50, IEPA and LLL have an
improvement of 4.7 pp, 5.3 pp and 0.8 pp respectively, due
to high fractions of positive instances (leading to a strong
co-occurrence baseline).

Evaluation on corpora that have different properties than
the training set leads to decreased performance (Airola et
al., 2008; Tikk et al., 2010). Often, the properties of a
test corpus (like MEDLINE) are not known for real world
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Figure 1: Boxplot on distance to the hyperplane of all used methods for both corpora.

Our system (lex)

Our system (lex+dep)

Co-occ. Tikk et al. (2010)

Corpus P R F P R

F1 P R F1 P R Fl

AlMed 256 784 386 250 819 384 17.1 100 29.3 283 86.6 42.6
Biolnfer 404 66.7 503 403 669 503 262 100 415 628 365 462
HPRD50 45.7 85.1 594 449 863 59.0 37.6 100 54.7 569 687 62.2
IEPA 500 872 635 499 858 63.1 41.0 100 582 71.0 525 604
LLL 564 83.1 672 563 832 672 497 100 664 79.0 573 664
DDI 332 392 360 330 441 37.7 10.7 100 194 — — —

Table 7: Results (in %) achieved when training on 10,000 distantly labeled instances and testing on 5 PPI corpora and the

DDI test corpus, respectively.

applications. Thus cross-learning’ is considered to provide
a more realistic scenario to compare the performance of
distantly supervised systems to fully supervised systems.
Our approach outperforms the state-of-the-art cross-learning
results from Tikk et al. (2010) in three out of five corpora,
most notably in case of Biolnfer where an increase of more
than 4 pp in I measure is observable.

In the case of drug-drug interaction, it is noteworthy that
the manually annotated corpora are generated from web
documents discussing drug effects which are not necessar-
ily contained in MEDLINE. Hence, this evaluation corpus
can be considered as out-domain and provides additional
insights on the robustness of distant-supervision. Table 7
shows that compared to co-occurrence, a gain of more than
18 pp is achieved when training on a distantly labeled DDI
corpus. Taking into account the high class imbalance of
the DDI test set (see Table 1), which is most similar to the
AlMed corpus, a '} measure of 37.7 % is encouraging.

Application of distant supervision to five substantially differ-
ent PPI corpora and further utilization of the same workflow
to DDI confirms its robustness and usability.

"For five PPI corpora: train on four, test on the remaining.

4. Discussion

This paper introduces two distantly labeled corpora created
for the purpose of protein-protein and drug-drug interaction
extraction. Corpus generation and the process of automatic
pair labeling using database information are presented, to-
gether with strong baseline results for distantly supervised
relation extraction.

In addition to entity-pair annotation based on a knowledge
base, we add predictions from five relation extraction sys-
tems, trained on manually annotated corpora. These anno-
tations can be exploited to develop better instance filtering
techniques. Several assessments demonstrated the superi-
ority of ensemble methods, hence it might be beneficial to
combine classifier predictions for the sake of higher method
robustness.

Our distant supervision baseline achieves competitive results
and outperforms co-occurrence in all test cases. Comparison
to fully supervised cross-learning results for PPI argues for
the opportunities of using automatically annotated data.

This paper presents the potential of distant learning to al-
low a fully automated relation extraction process. The PPI
and DDI corpora are made freely available to the commu-
nity such that novel strategies of efficient employment of
database knowledge can be compared.



Figure 2: Scatterplot for distance to the hyperplane between
APG and SL on the distantly labeled PPI corpus. Warm
regions (dark) indicate an accumulation of instances whereas
light regions contain no instances. The 2,000 points in areas
with lowest regional density are plotted separately.
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7. Appendix
An excerpt of the corpus in XML format:

<corpus source="SilverDDICorpus”>
<document id="d3” origId="10796253">
<sentence i1d="d3.s0” origId="10796253.s14"
text="In the subset with initial BUN/creatinine ratio > 20 mg/mg, 2 of 18 patients receiving furosemide
could not complete a 3—dose course of indomethacin because of toxicity.”>
<entity charOffset="87-96" 1d="d3.s0.e0” origId="10796253.s14.e0” text="furosemide”
type="drug”/>
<entity charOffset="136—147" id="d3.s0.e1” origId="10796253.s14.e1” text="indomethacin”
type="drug”’/>
<pair e1="d3.s0.e0” e2="d3.s0.e1” 1id="d3.s0.p0” interaction="True” source="DrugBank”
APG="0.32" SL="0.60" sT="-1.08" ssST="0.12" sSpT="0.34"/>
<sentenceanalyses>
<tokenizations>
<tokenization tokenizer="Charniak—Lease”>
<token POS="IN" charOffset="0—1" id="t.1” text="In"/>
<token POS="DT” charOffset="3-5" id="t.2" text="the”/>
<token POS="NN" charOffset="7—12" id="t.3" text="subset”/>

</tokenization>
</tokenizations>
<bracketings>
<bracketing tokenizer="Charniak—Lease” parser="Charniak—Lease” bracketing="(S1 (S (S (PP
(IN'In) (NP (NP (DT the) (NN subset)) (PP (IN with) (NP (NP (JJ initial) (NN BUN/creatinine) (NN ratio) (NN &gt;))
(NP (CD 20) (NN mg/mg)))))) (, ,) (NP (NP (CD 2)) (PP (IN of) (NP (NP (CD 18) (NNS patients)) (VP (VBG receiving)
(NP (NN furosemide)))))) (VP (MD could) (RB not) (VP (VB complete) (NP (NP (DT a) (JJ 3—dose) (NN course))
(PP (IN of) (NP (NN indomethacin)))) (PP (IN because) (IN of) (NP (NN toxicity)))))) (. .)))">
<charOffsetMapEntry sentenceTextCharOffset="0—1" bracketingCharOffset="18—19"/>
<charOffsetMapEntry sentenceTextCharOffset="3—5" bracketingCharOffset="34—36"/>
<charOffsetMapEntry sentenceTextCharOffset="7—12" bracketingCharOffset="43—48"/>

</bracketing>
</bracketings>
<parses>
<parse tokenizer="Charniak—Lease” parser="Charniak—Lease”>
<dependency id="d_1" t1="t.3" t2="t1.2" type="det” origId="det(subset—3, the—2)"/>
<dependency i1d="d2” t£1="t.20" t2="t.3" type="prep-in” origId="prep-in(complete—20, subset—3)"/>
<dependency id="d.3” t1="t.8" t2="t.5" type="amod” origId="amod(&gt;—8, initial—5)"/>

</parse>
</parses>
</sentenceanalyses>
</sentence>

</document >

</corpus>



