SPALLATION OBSERVED IN HARD METALS DURING TAYLOR-IMPACT-TESTS

Frank Bagusat, Torsten R. Lässig, Siegfried Pfändler, Martin Sauer

04.09.2018

Example of Spallation Sphere Impact

Strain Rate Regimes and Applications Test Methods

Planar Plate Impact Test VISAR signals

Planar Plate Impact Test

Wave processes

I. Rohr, H. Nahme, K. Thoma, Int. J. Impact Eng., 31 (2005), p. 401-433

Spallation in Planar Plate Impact Tests

$$f_t^{dyn} \approx \frac{1}{2} \rho c \Delta v_{pb}$$

Classical Taylor Test Determination of yield stress according to Taylor (1948)

$$\sigma_{Y}^{T} = \frac{\left(L_{0} - L_{pl}\right)\rho v_{p}^{2}}{2\left(L_{0} - L_{1}\right)\ln\left(L_{0} / L_{pl}\right)}$$

Assumptions:

- Constant velocities of plastic front and rod end
- Homogeneous deformation over cross section
- Strain rate as approximate global value

EMI Setup for Modified Taylor-Impact Test (MTT)

Inverse impact – anvil on rod Gun barrel Velocity Pins Projectile Sample Sabot VISAR Projectile Mounted in sabot sample Sample Mirror

G. Kuscher, PhD-Thesis, RWTH Aachen/Fraunhofer EMI, 1985 I. Rohr, H. Nahme, K. Thoma, J. Phys. IV France, 110 (2003), p. 513-518 I. Rohr, H. Nahme, K. Thoma, Int. J. Impact Eng., 31 (2005), p. 401-433

MTT: Wave Propagation in Impacted Rods

I. Rohr, H. Nahme, K. Thoma, J. Phys. IV France, 110 (2003), p. 513-518

Planar Plate Impact Test -> Spallation also possible in case of MTT?

I. Rohr, H. Nahme, K. Thoma, Int. J. Impact Eng., 31 (2005), p. 401-433

HSS Steel Spall Cracking in Modified Taylor Test

Taylor Rod, HSS Steel, 6 mm diameter, 62.8 mm length, marked with black dots, impacted at 208 m/s

HSS Steel Spall Cracking in Modified Taylor Test

Taylor Rod, HSS Steel, 6 mm diameter, 62.8 mm length, marked with black dots Elastic wave velocity c_L 5200 m/s Impacted by hardened C45 steel projectile at 208 m/s Observation: Shimadzu HPV-X high-speed video camera, 1 frame/µs, and VISAR velocity measurement at the free end.

Comparison of 3 Similar Tests with HSS Steel

Phenomenological Simulation of Taylor Test with Generic Brittle Metal

- Unloading wave from the front is triggered from failure at the rod tip
- Attempt to simulate fragmentation and unloading effect

Conclusions

Modified Taylor Test method presented

- In the past, failure occurred in Taylor Tests with brittle hard metals, which made interpretation of VISAR signals difficult
- First successful use of high-speed camera (> 1 Mio frames/sec) to observe failure processes in Modified Taylor Tests at EMI
- With the help of these camera observations, the VISAR measurements can now be correlated with fragmentation processes
- Development of quantitative evaluation method is ongoing, one option is to use DIC to evaluate strains on the rod surface
- First evaluation gives spall strength (1D-stress) of about 2 GPa
- The observation might be relevant for fragmentation of penetrator rods

Fraunhofer EMI Contact

Materials at Highest Strain Rates Group

Contact:

Dr. Frank Bagusat or Dr. Torsten Lässig

Fraunhofer-Institut for High-Speed Dynamics Ernst-Mach-Institut, EMI Ernst-Zermelo-Straße 4 79104 Freiburg, Germany Phone.: +49 761 2714-469

Frank.Bagusat@emi.fraunhofer.de Torsten.Laessig@emi.fraunhofer.de

