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1. Rationale and Objectives

Current and future (projected) market shares of new (or emerg-
ing) photovoltaic (PV) technologies and system configurations
present a significantly increasing trend. This is particularly the

case for bifacial PV, floating PV, and inte-
grated/applied (e.g., in buildings, green-
houses) PV systems. Eventually, such PV
applications require tailored modeling/sim-
ulation approaches (and better understand-
ing) to ensure highly accurate, realistic, and
reliable assessments of their PV energy
yield. In turn, realistic and accurate PV
energy simulations are essential to lower
the level of technical (and economic) risk
as perceived by the financing institutions
or investors, thus bringing further down
the weighted cost of capital (WACC) and
levelized cost of electricity (LCoE) of PV.

Today’s commercial “black-box” solu-
tions for PV energy yield simulations are
widely used for modeling standard PV sys-
tem designs; yet, they present considerable
limitations and are rather insufficient to
address design- and technology-specific

parameters of PV modules and systems.[1,2] Moreover, certain
environmental stressors, mismatches, or losses (e.g., due to soil-
ing, shading, etc.) and the propagation of failure/degradation
mechanisms over time are, in practice, neither precisely
modeled nor adequately considered in standard PV energy yield
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In the framework of the H2020 SERENDI-PV project, it is aspired to tackle
challenges in photovoltaic (PV) modeling and yield simulations, that are
emerging today, on four interrelated aspects: i) improved modeling of loss/
degradation mechanisms, ii) improved modeling of bifacial PV, floating PV, and
building integrated photovoltaics systems, iii) solar resource and uncertainties
modeling, and iv) financial risks modeling. As groundwork for this effort, a
comprehensive 8-month study is carried out, the results of which are presented in
this article. The study has two parts and main objectives: i) a comprehensive
survey addressed to multiple stakeholders, to identify and assess today’s “best
practices” and needs of the PV industry on PV energy yield simulations; ii) a
multi-model multi-case benchmarking and evaluation study, i.e., of eight state-of-
the-art tools/software for PV energy yield simulations of seven real-life PV sys-
tems addressing diverse “scenarios” (different climates, site characteristics, PV
typologies, and technologies).
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simulations.[3,4] These constraints can limit not only the
simulation tools’ accuracy but also their resilience, e.g., data-
driven PV power forecasting, underperformance diagnostics,
or techno-economical assessments.[5] Recent advances in
physics-based models for tailored multi-factor (electrical, optical,
thermal) PV simulations are particularly promising to overcome
the aforementioned limitations.[6,7]

In one of the early research efforts energy yield modeling tai-
lored for PV applications, Reich et al.[8] introduced a simulation
concept for PV yield predictions, leveraging 3D drawing, ray-
tracing, and computer-aided design (CAD) software-based
rendering features. In such concept, the solar irradiation data
used as input were compared to irradiation data derived from
rendered images, thus providing 3D irradiance simulations in
3D CAD sceneries. Although it is versatile for modeling different
PV system designs, such a conventional modeling approach
ignores key aspects of the PV performance in long-term real-field
conditions, such as mismatch losses—which, in certain scenar-
ios has a major contribution to modeling quality and accuracy.

More recently, with the emergence of bifacial PV technology
and the deployment of bifacial PV systems, consequent research
efforts have been focusing on developing physics-based “custom-
ized” models to simulate the PV energy yield, under bifacial
PV-specific conditions (e.g., albedo dependence, rear-side illumi-
nation and mismatches, etc). On the latter, Chudinzow et al.[9]

introduced a bifacial PV model, with which they investigated
and quantified experimentally the influence of ground size, cast
ground shadows as well as ground reflectivity on the energy yield
of the bifacial PV system. Sensitivity analysis-based results of
their model showed that the extension of ground area, which con-
tributes to ground-reflected irradiation, resulted in a slight,
asymptotical increase of the energy yield. With the same model,
it was possible to show, through ground shadow-free simula-
tions, that the presence of ground shadows can reduce the annual
bifacial PV yield by almost 4%, while the influence (and contri-
bution) of ground reflectivity on the energy yield was modeled
and validated for five different ground surfaces (dry asphalt,
grass, dry grassland, white gravel, and white membrane).
Durković et al. in ref. [10] presented a model for a more accurate
calculation of irradiation for large bifacial PV power plants, i.e.,
PV power plants characterized by significantly bigger lengths
than heights of PV rows. The model is claimed convenient for
hourly meteorological data, which enables calculations of typical
daily and annual electricity production of PV power plants.
Unlike other existing similar models, the model proposed in
ref. [10] considered the fact that less diffuse irradiation incident
onto the surface between PV rows which are in the shade of pre-
vious PV rows, than entire horizontal diffuse irradiation; thus
view factors (VFs) are calculated by simple algebraic relations
instead of solving of a double integral. The obtained results indi-
cate that, using the proposed and existing irradiation model,
deflection in the production of the typical configuration of a bifa-
cial PV plant can be as high as 10% or more. Similarly, Ledesma
et al. also developed in 2019 and presented in ref. [11] their VF-
based 2D model for calculating the rear irradiance in large bifa-
cial PV plants has been developed now, then integrated into
SISIFO (a free simulation tool developed at IES-UPM) for static
structures and also for horizontal single-axis trackers. In either
modeling approaches aforementioned, uncertainties (errors) in

corresponding energy yield estimation derive primarily from
the intrinsic non-uniformities of rear-side irradiance. Finally,
in an effort to focus on modeling bifacial PV systems with sin-
gle-axis tracking, Pelaez et al.[12] evolved the Radiance bifacial PV
model,[13] including additional modeling steps, i.e., for calculat-
ing the array tilt, ground clearance, and row-to-row spacing for
each time step. Unlike the conventional fixed-tilt simulation
workflow (annual average bifacial gain calculation based on a
single annual sky source), for a tracked system, multiple scene
geometries were considered (for each tracker tilt in 5° incre-
ments), along with the solar resource (cumulative hourly values)
corresponding to each tracker tilt angle.

In addition to the aforementioned efforts mostly in bifacial PV
modeling, the need for understanding, modeling, and quantify-
ing loss mechanisms (related to, e.g., degradation, soiling, and
snow) and their impact on PV energy yield simulations accuracy,
represents an active research field as well. In ref. [14], Fountoukis
et al. investigated the dust-induced daily PV energy yield losses
within an arid environment (Doha, Qatar) comparing actual ver-
sus simulated data derived from a 3D dust dispersion model.
Among the key outcomes of this study, it has been found that
there is a rather low correlation between the observed concentra-
tions of PM for particles with diameters up to 10 μm (PM10), as
inputs in the model, and the change in daily energy yield, while
modeling results showed that the ambient PM concentration,
even for particles larger than 10 μm, is a surprisingly weak pre-
dictor of daily PV energy yield loss. Recently, Smestad et al.,[15]

developed an empirical modeling approach for PV soiling losses,
yet rather on the basis of optical characterization, in terms of
both spectral and particle size distribution. Polo et al.,[16] in con-
trast, focused on soiling loss modeling for rooftop PV applica-
tions in urban/suburban environment, evaluating two models
(Kimber and HSU), determining that a cleaning threshold value
in the range of 4–6mm is adequate for accurate simulations/
predictions and eventually pointing out the need of precise
determination of deposition velocity. More recently, You
et al.[17] developed a modeling framework to predict PV soiling
losses both in PV energy yield and economic terms, in function
of relative humidity, precipitation, and PV array’s tilt angle.
Øgaard et al.[18] introduced a modeling approach for PV energy
yield losses due to snow, on the basis of the Marion model,[19] for
determining the snow depth dependent clearing rate coefficient.
The model approach was evaluated in seven roof-mounted PV
plants prone to regular snow cover and losses, achieving a satis-
factory fit between measured and modeled yield loss estimations.
Besides, it has been observed that the thinner the snow cover, the
higher the uncertainty introduced in the model-based loss esti-
mations. In ref. [20], Hashemi et al. proposed prediction models
for PV yield losses due to snow, for the region of Ontario
(Canada), using and assessing different machine learning algo-
rithms (i.e., regression trees, gradient boosted trees, random for-
est, feed-forward, and recurrent artificial neural networks, and
support vector machines), solely based on meteorological data.
Their validation, through comparison with actual PV yield data,
showed that gradient-boosted trees obtained the minimum
prediction error and thus the best-performing simulation of
the PV energy yields under the impact of snow. In a rather
different approach, to overcome the limitation in underlying
statistics for snow losses estimations in PV, van Noord
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et al.[21] investigated the estimation of snow losses using a PV
system’s yield data together with freely available gridded weather
datasets, enabling snow loss modeling for high numbers of PV
systems and winter seasons using existing large datasets. Finally,
with regard to the modeling of PV degradation mechanisms and
their impact on energy yield losses estimations, a comprehensive
review study from Lindig et al.[22] shed light on several analytical
models for degradation mechanisms, notably for corrosion and
PID, in three different climatic zones/stress profiles. As in the
case of[23] as well, principal conclusions from most modeling
efforts on PV service lifetime prediction and degradation model-
ing indicate that most simulations/models are still based on
numerous assumptions and simplifications and validation is
only possible through indoor (accelerated) aging tests; which,
in turn, have intrinsic uncertainties in revealing and propagating
most PV degradation mechanisms.

In overall, so far, most of the described modeling efforts are
hardly compatible for integration into state-of-the-art commercial
PV simulation tools. Moreover, most modeling approaches are
computationally intensive, thus not suitable for calculating the
lifetime performance of PV systems, especially utility-scale ones.
Considering, for instance, the case of bifacial PV, as presented
earlier, to avoid the increasing computational complexity and
runtime, most of the existing physics-based models simplify
the bifacial PV module’s response to ambient conditions by
modeling a single, “typical” module within the array and then
extrapolate the results to a full-size array. As a result, the impact
of mismatch effects caused by spatial variations of bifacial
irradiance is not considered.

In the EU-funded project SERENDI-PV, we aspire—among
other aimed innovations—to tackle exactly these emerging chal-
lenges in PV modeling and yield simulations, on 4 interrelated
aspects: i) improved modeling of loss/degradation mechanisms,
ii) improved modeling of bifacial PV, floating PV and building
integrated photovoltaics (BIPV) systems, iii) solar resource and
uncertainties modeling, and iv) financial risks modeling. As

groundwork in this effort, we carried out a comprehensive
8-month study with a twofold objective: 1) Identification and
assessment of today’s “best practices” and needs of the PV indus-
try on PV energy yield simulations 2) “Benchmarking” and eval-
uation of multiple commercial and state-of-the-art tools for PV
modeling and energy yield simulations, for different cases
—“scenarios” PV systems.

2. Approach—Methodology Aspects

2.1. Survey on Industry Best Practices and Needs

To identify and assess the PV industry’s state-of-play (best prac-
tices and needs) in PV energy yield simulations, we carried out a
detailed survey, addressed to multiple stakeholders/actors in
the field. The survey was organized into seven sections:
i) respondents profiling (anonymized), ii) meteorological data
(base) being used, iii) modeling/simulation software being used,
out of 35 options listed, iv) evaluation of PV losses (degradation,
soiling, snow), v) modeling/simulation of new PV technologies
(bifacial, floating and building-integrated PV), vi) uncertainties,
and vii) economical assessment. The survey was distributed from
the involved SERENDI-PV partners through multiple communi-
cation channels, including direct emailing, newsletters, profes-
sional social networks, and the project’s website. Figure 1
and 2 provides a snapshot of the stakeholders-respondents
profile, in terms of business segment, country of origin, and
portfolio (simulated PV systems size and technology).

2.2. Benchmarking and Evaluation Study of PV Modeling/
Simulation Tools

2.2.1. The Simulation Tools

In this context, we benchmarked and evaluated eight PV simu-
lation tools: Archelios PRO (Cythelia Energy), PVsyst, Evaluate

Figure 1. Profile of the survey’s participants, in terms of business/activity (left) and country (right).
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(Solargis), TriFactors (CEA), Zenit (Fraunhofer), LUSim
(LuciSun), SISIFO (IES-UPM)[11] and SAM (System Advisor
Model–NREL). These tools comprise either widely used commer-
cial solutions or (proprietary) in-house software tools (prototypes)
of certain SERENDI-PV partners. To minimize uncertainties due
to user bias, all partners-participants in the benchmarking study
defined common parameters and hypotheses (assumptions) for
their respective simulations. An overview of such assumptions
for the different modeling steps and losses at the system, mod-
ule, and/or site level, is given in Table 1. For confidentiality, soft-
ware names have been anonymized throughout the presentation
and discussion of the results (Section 3).

2.2.2. The Simulated PV Plants

In total, seven (anonymized) PV plants (Table 2) were simulated
by all partners, in the context of this benchmarking study. The
selection of the PV plants was elaborated jointly by the simula-
tion tool owners or users (Cythelia, CEA, Solargis, Fraunhofer
ISE, LuciSun, QPV) and the PV plant/data providers (Akuo,
CNR, QPV), to allow: 1) evaluation on diverse PV system sizes,
designs, technologies or site characteristics; 2) evaluation of
climatic profiles and effect of seasonality, i.e., climate-/
season-specific stressors; 3) availability of actual historic data (PV
production and meteorological data) of at least one year.

Besides, the latter selection was done by the data providers
with two criteria in mind: i) the (a priori) data availability and
ii) the age of the plant, prioritizing the newest possible PV
plants, to minimize the influence of degradation. Indicatively,
the installed capacity of the simulated PV plants ranges from
250 kWp up to 21MWp.

2.2.3. Solar Resource, Meteorological, and Site Data

High-resolution satellite data (including numerical model-based
calculations), provided by the Solargis database and model
approach,[24,25] have been used in all simulations of this study,
for the solar resource, meteorological, and albedo parameters.
This choice was made to ensure a common “reference” for all
simulation partners for such parameters-inputs, while mitigating
potential inconsistencies and/or uncertainties due to the lack

of common information on certain sensors/instruments (type,
calibration, maintenance logs, etc.) in some of the simulated
PV plants.

Solar radiation is calculated by numerical models, which are
parameterized by a set of inputs characterizing the cloud trans-
mittance, state of the atmosphere, and terrain conditions. In the
Solargis approach employed in this study, the solar irradiance is
calculated in five steps: 1) Calculation of clear-sky irradiance,
assuming all atmospheric effects except clouds, 2) Calculation
of cloud properties from satellite data, 3) Integration of clear-
sky irradiance and cloud effects and calculation of global horizon-
tal irradiance (GHI), 4) Calculation of direct normal irradiance
(DNI) from GHI and clear-sky irradiance, 5) Calculation of global
tilted irradiance (GTI) from GHI and DNI.

Irradiation data (time series) were provided in the original
15min time step and 250m spatial resolution, while the meteo-
rological data (time series) in hourly aggregation and 1 km spatial
resolution. Ground albedo data, also provided through the
Solargis database, is derived from the MODerate-
resolution Imaging Spectroradiometer (MODIS), version 6
(MCD43A3).[26–28] Daily value represents the temporally
weighted average of data from 16 days long window. The original
MODIS data is available in 1 to 2 day frequency. The spatial res-
olution is 0.5 km and the temporal resolution is 1 day.

There is a fundamental difference between a satellite observa-
tion and an on-site (ground) measurement, i.e., the signal
received by the satellite radiometer integrates an area (a footprint
of visible and infrared channels represents an area of
several km2) while a ground station represents a pinpoint mea-
surement. This results in a mismatch when comparing instan-
taneous values from these two observation instruments, mainly
during intermittent cloudy weather and changing aerosol load.
A solution to mismatch is to correlate satellite-derived data with
ground measurements to understand the source of discrepancy
and subsequently to reduce the uncertainty of the resulting his-
torical time series. After correlation, site adaptation of the model
is applied with the aim to remove general trends of disagreement
between the measurements and the model data. This principle
also mitigates the propagation of short-term issues in the ground
measurements into the site adaptation results. Therefore, the site
adaptation focuses on seasonal trends. At the monthly level,
some disagreements between the measured and site-adapted

Figure 2. Profile of the survey’s participants, in terms of installed power of simulated photovoltaics (PV) systems in their portfolio (left) and typology/
technology of the PV systems they simulate (right).
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data may exist. To achieve reasonable results, high-quality
ground measurements should be available for a period of about
one year, so that all seasons are included. In case of a tight time
schedule, a shorter period may be considered for on-site meas-
urements. However, such data may not be capable to cover all
deviations. In the optimal case, two years of data provide more
robust results and allow decreasing uncertainty of resulting
site-adapted data. In this context, prior to the comparison with
satellite-based solar resource data, the ground-measured irradi-
ance data underwent: 1) quality control (QC), through automatic
QC tests (identification of missing values; correction of time
shifts; evaluation of measurements against sun position; evalua-
tion of the consistency of GHI, DNI, and diffused irradiance) and
2) visual quality control, aiming to identify and flag erroneous
patterns (near and far shading; regular data error patterns;
irregular patterns; comparison of measurements from different
instruments, if available).

Finally, prior to the use of the data measured by the electricity
meter (i.e., energy delivered to the distribution grid), the record-
ings (provided by Akuo Energy, CNR, QPV) were also quality
controlled (QC) by Solargis. Automatic tests and manual visual
control were performed to detect missing values, time shifts,
extreme or unusual static values. The data readings, not passing
one or more QC tests, were flagged and excluded from further
analysis.

2.2.4. Key Performance Indicators (KPIs) in Benchmarking

The evaluation of the “performance” (simulated vs actual mea-
sured PV energy yield) of the different modeling/simulation
tools for each case PV plant, was done on the basis of nine
KPIs, i.e., relative difference, mean bias error (MBE), root mean
square error (RMSE), normalized mean bias error (NMBE),
normalized root mean square error (NRMSE), mean bias
weighted error (MBWE), and root mean square weighted error
(RMSWE).

Table 1. Overview of the applied (common) assumptions applied for the
different modeling steps/losses for all simulations.

Modeling
steps/losses

Information from
PV plant owner

Explanation/
Applied assumption

Transposition
model

Perez model was chosen for all the
plants (commonly available in all

software).

Albedo No For each plant, monthly albedo values
were determined from Solargis

database.

Soling losses No Measurement of soiling is not
available. Annual loss factor was
estimated for each plant based on
local microclimatic conditions.

Spectral
correction

Not considered in simulations.

Module quality/
Tolerance

Yes From module datasheet. Quarter of
the difference between min and max

values.

LID losses No 2% default value for all plants
(p-type silicon modules).

Module
mismatch

For one PV
plant only

If not already estimated by the plant
owner, default values of 0.5% or 1%
depending on the age of the plant.

Module
ventilation

No Default value except for roof-
integrated (less ventilation) and

floating (higher ventilation, to reflect
the a priori lower ambient
temperature) systems.

Annual
degradation
factor

No Default value of 0.5%/year.

Bifacial: shed
transparency

No Conservative value: 0%.

Bifacial: non
uniformity of
rear irradiance

Default value: 10%.

Bifacial: shadow
from structure

No Default value: 15%. As the bifacial
PV plant is a greenhouse

installation, this value is high to
consider the optical losses

between the rows.

DC cables losses For some
PV plants

If not available, 1% at STC, which is
the recommended value in the
countries were the PV plants are

located.

AC cables losses For some
PV plants

If not available, 1% at STC, which is
the recommended value in the
countries were the PV plants are

located.

Transformer
losses

For some
PV plants

Not available.
0.1% for iron losses and 1% for

resistive losses.

Auxiliaries No Not considered.

Unavailability No Not considered.
Unavailability is corrected post-
simulations based on actual

production data.

Table 2. Overview of the simulated PV plants in this study.

Type/technology Climate profile

PV Plant 1 Monofacial, Fixed tilt Warm temperature/
Mediterranean

PV Plant 2 Bifacial, Fixed tilt Inter-tropical zone,
tropical/oceanic

PV Plant 3 Monofacial, 1-axis tracker Warm temperature/
Mediterranean

PV Plant 4 Monofacial, 1-axis tracker Highly arid,
warm (desert)

PV Plant 5 Monofacial, Roof-mounted Warm temperature/
Mediterranean

PV Plant 6 Monofacial, BIPV Warm temperature/
Mediterranean

PV Plant 7 Monofacial, Floating PV Warm temperature/
Mediterranean/water
reservoir microclimate
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3. Results and Discussion

3.1. Industry Needs and Best Practices—Survey Results

Figure 3–7 presents indicative (key) findings of the conducted
survey. On the simulation of common PV loss mechanisms,
responses indicated degradation and soiling as of higher impor-
tance (Figure 3). For the latter, for instance, it is worth observing
that only 33% of today’s simulation tools perform well for soiling-
prone PV systems, with the majority of them giving overesti-
mated (50%) or underestimated (17%) energy yield assessments
(Figure 4, left). It should be clarified that as “overestimating” or
“underestimating” simulations we consider those that present
deviations from the actual PV yield beyondþ2% or�2%, respec-
tively (and less than �5%). Eventually, simulations deviating
from actual PV yield data within the �2% are considered as
“performing well.” Besides, in the vast majority (74%) of PV proj-
ects, the soiling is still determined empirically through expert
estimates or statistically through databases, rather than through
actual data-driven modeling approaches (14%) (Figure 4, right).

Figure 3. Perceived importance of different loss mechanisms in PV
systems’ simulations, according to the respondents.

Figure 4. Evaluation of energy yield simulations in PV systems prone to soiling losses (left) and determination of soiling losses in PV energy yield
simulations today (right).

Figure 5. Evaluation of energy yield simulations in PV systems prone to snow losses (left) and determination of soiling losses in PV energy yield
simulations today (right).
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In contrast, for snow loss modeling, more than half (57%) of
today’s simulation tools provide results well in line with the
actual yield and losses, while 29% and 14% of the respondents
indicate overestimated or underestimated, respectively, energy
yield assessments of PV systems with snow losses (Figure 5, left).
In the latter case, again, for the majority of PV projects, snow
losses are still determined empirically through expert estimates,
other observations, or statistically through databases, rather
than through actual measurement data-driven modeling (5%)
(Figure 5, right).

In terms of new/emerging PV technologies, as shown in
Figure 6, the majority of the respondents indicate the importance
of specific needs in yield simulations of bifacial PV (62.5%) and
floating PV (53.3%). Such needs to be addressed in PV simula-
tions/modeling include for instance: i) 3D shadows and reflec-
tions, back tracking, variable albedo, better validation and gain
estimates, for bifacial PV and ii) the impact of water temperature
and waves, for floating PV. For the particular case of bifacial PV
systems, a PV systems’ typology of increasing interest and mar-
ket share, it is worth observing that, still, only nearly half (46%) of
today’s tools simulate well bifacial PV energy yields, while a con-
siderable 54% delivers overestimated or highly overestimated
assessments (Figure 7).

As a general remark, we should of course point out that the
observed results and conclusions of this survey are prone to a
certain degree of subjectivity, since some responses can be

affected significantly by the profile of the participants and
country/region- and site-specific experiences or needs. In
particular, the perceived importance of different PV system loss
mechanisms is dependent on the participants’ profile: for
instance, lower importance of snow is expected as only around
10% of participants are from countries having significant snow
cover events.

3.2. PV Modeling/Simulation Benchmarking Results

A direct comparison between the actual yield of the studied PV
plants and their yield simulated from the different simulation
tools/software (S1 to S8) is presented in Figure 8.

S1.1 and S1.2 refer to software S1 which was used by two
different partners (“users”), yet with uniform simulation param-
eters and assumptions. The different results in the latter case,
indicate that the human factor remains important in the simula-
tion process, comprising a considerable source of uncertainty.
All simulation tools are used to simulate a “universal” type of
PV systems (i.e., both monofacial and bifacial ones), except
for the case of S5 which is rather optimized for simulating bifa-
cial PV systems, and the output of this software is at the moment
limited to DC power simulations and comparisons. Note also that
the commercial version of software/tool S2 is based on calcula-
tions performed on average days for each month. Therefore, the
hourly and daily KPIs are not calculated for S2; that is, “S2*”

Figure 6. Specific needs (yes/no) in simulations of new PV technologies, as indicated by the survey’s respondents.

Figure 7. Assessment of energy yield simulations for bifacial PV today, according to the respondents’ return of experience.
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indicates the pre-alpha version of S2 that has been used to com-
pute hourly and daily values. Finally, it must be noted that PV
plant 2 has not (yet) been taken into consideration in the bench-
marking (that is why no results are shown in Figure 8), as only
9months of monitoring data have been available so far in this
project. A full 2-year simulation and comparison with the rest
six PV plants will be presented and assessed in future work,
as the project progresses.

Overall, all simulation tools seem to overestimate the yields as
unavailability periods are considered in the simulation and com-
parison. It should be noted that, in principle, significant devia-
tions between simulated and actual PV energy yields, i.e., beyond
a� 10% range (as illustrated with the two red horizontal lines in
Figure 8), are typically considered insufficient. This is particu-
larly the case for the case of S5, in most PV plants, as well as
for the case of PV plant 5 in most simulation tools. The PV plants
which indicate the lowest performing simulations overall, thus
worse KPIs (i.e., the highest MBWE and RMSWE) are the PV
plants 5, 6, and 7, which are either BIPV/rooftop PV or floating
PV technologies. Indicatively, the scatter plots presented in
Figure 9, illustrate a qualitative comparison of hourly simulated
versus hourly measured PV production data, for all simulations
performed by the different tools/software for PV plant 5. These
preliminary observations align with SERENDI-PV partners’ view
and ambition regarding the need for improved simulations/
modeling of such new and emerging PV typologies. The aimed
innovations will be assessed and validated toward the end of this
project, by repeating this benchmarking study with the improved
modeling.

4. Summary/Conclusions and Future Work

In the context of the H2020 SERENDI-PV project, we aim at
upgrading and improving the accuracy of PV modeling and
energy yield simulations, to better address the impact of certain
loss mechanisms (e.g., soiling, snow) on one hand and emerging
new PV technologies (e.g., bifacial PV, floating PV) on the other
hand. To better understand and quantify today’s industry needs,
as well as the current performance and “barriers” for state-of-the-
art modeling tools, we carried out and presented a comprehen-
sive 8-month study with a twofold objective: i) identification and
assessment of today’s “best practices” and needs of the PV
industry on PV energy yield simulations, ii) “benchmarking”
and evaluation of multiple commercial and state-of-the-art tools
for PV modeling and energy yield simulations, for different
cases-“scenarios” PV systems.

Key findings from the comprehensive stakeholders’ survey
(Sections 2.1 and 3.1) reflect the particularly high importance
(and need for) more tailored and accurate models for energy yield
simulations of bifacial PV and PV systems with soiling losses and
degradation. Besides, increasing attention is given recently also
for better understanding and simulating the energy yield of
floating PV systems and cases of PV systems with snow losses.

Through the (preliminary) benchmarking study we presented,
we may conclude that the different commercial or in-house built
modeling tools of SERENDI-PV partners present clear limita-
tions, in terms of accuracy in energy yield assessment. In partic-
ular, all tools at their current development stage, appear to
overestimate the energy yields of the simulated PV plants,

Figure 8. Relative difference in actual versus simulated PV yields, in terms of hourly normalized mean bias weighted error (%). Deviations beyond
a� 10% range are typically considered insufficient.
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especially in the case of BIPV/rooftop PV or floating PV technol-
ogies where the worse KPIs (i.e., the highest MBWE and
RMSWE) are calculated.

Both two concluding remarks aforementioned indicate the
need for further evolving and extending the modelling capabili-
ties of state-of-the-art PV energy yield simulation tools (commer-
cial or in-development prototypes). This direction is exactly
where two ongoing development tasks in SERENDI-PV are aim-
ing to address. The tasks are expected to be concluded within the
next 12months, with two global objectives: i) improved accuracy,
beyond the state of the art, for energy yield simulations of bifacial
PV, floating PV, and BIPV systems, including industry-relevant

loss mechanisms (soiling, snow, degradation) and ii) integration
of the developed upgraded models into commercial or prototype
tools toward commercialization. In that context, we aim to repeat
and extend such benchmarking study in the near future, where
more advanced modeling approaches and more extended data
periods will be evaluated.
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