## Packaging Technologies in Power Electronic Modules @Fraunhofer IISB

## Content

#### **Part One**

Some Words on Fraunhofer Institutes - from the general to the specific -

**Part Two** 

Packaging Technologies in Power Electronic Modules



#### FRAUNHOFER GESELLSCHAFT

## **JOSEPH VON FRAUNHOFER** (1787 – 1826)

00 000 0

The **Fraunhofer-Gesellschaft** is a recognized non-profit organization that takes its name from '**Joseph von Fraunhofer**' (1787–1826), the illustrious Munich researcher, inventor and entrepreneur.

- Researcher discovery of the 'Fraunhofer lines' in the solar spectrum
- Inventor new processing method for lenses
- Entrepreneur director and partner in a glassworks
- Fraunhofer foundation in 1949
  - → from military to recent industrial research and engineering (today's staff 24,500)





#### FRAUNHOFER GESELLSCHAFT

## **INSTITUTES AND RESEARCH ESTABLISHMENTS** IN GERMANY

#### Fraunhofer Research Institutes

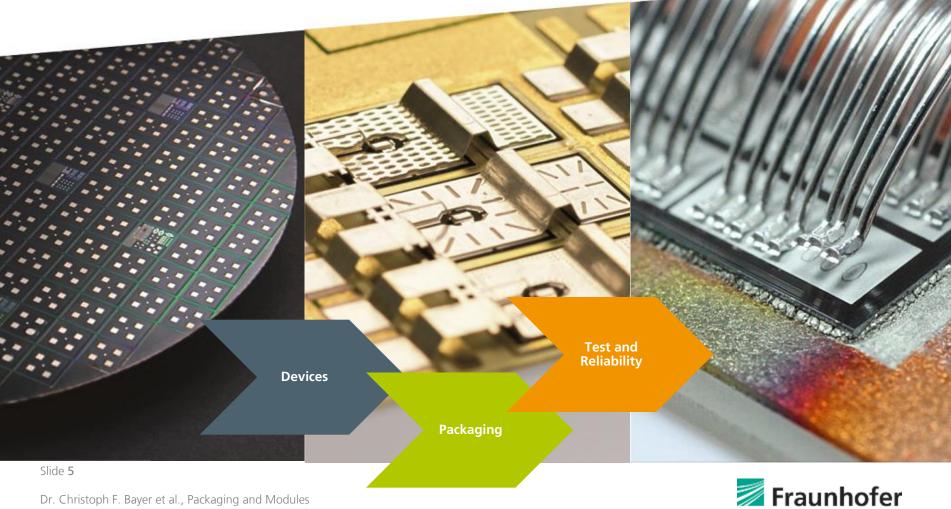
- Legal status: Non-profit association (e.V.)
- Mission: Application-oriented R&D
- 72 institutes with approx. 2.1 billion euros budget
- Through contract research 1.9 billion euros
- About 70 pct. of the Fraunhofer-Gesellschaft's contract research revenue comes from publicly financed research projects





#### FRAUNHOFER GESELLSCHAFT $\rightarrow$ FRAUNHOFER IISB

## POWER ELECTRONIC SYSTEMS


From Material to Power Electronic Applications

SIMULATION MATERIALS TECHNOLOGY AND MANUFACTURING DEVICES AND RELIABILITY VEHICLE ELECTRONICS ENERGY ELECTRONICS



#### FRAUNHOFER IISB → DEPARTEMENT

## **DEVICES AND RELIABILITY**



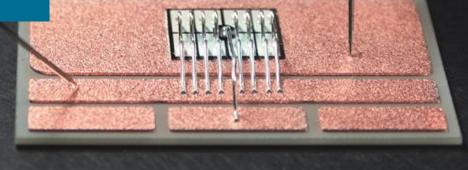
IISB

Departement DEVICES AND RELIABILITY © Fraunhofer IISB

#### DEPARTMENT → GROUP

## **PACKAGING AND MODULES**

New Concepts and Materials for Packaging


High Performance Joining Technologies, Sintering

Thermal, Electrical, and Mechanical Characterization

Lifetime Characterization, Statistical Analysis

Analysis of Failure Mechanism

Lifetime Modeling



Slide 6



## Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics

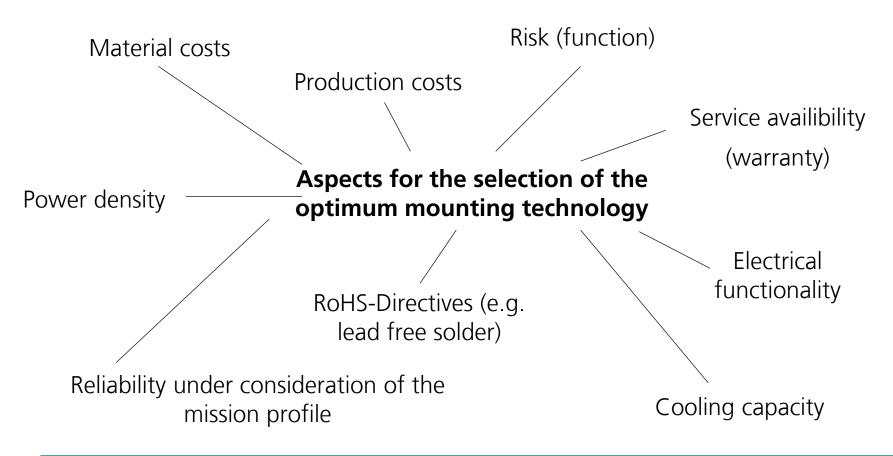
- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide 7



## Packaging Technologies in Power Electronic Modules

#### Packaging and interconnection technologies for power electronics


- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide **8** 

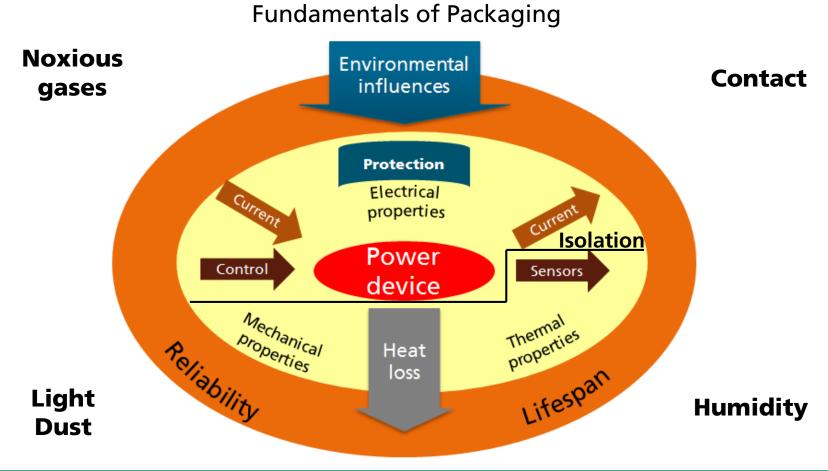


### **Basics and materials**

## What should be considered?



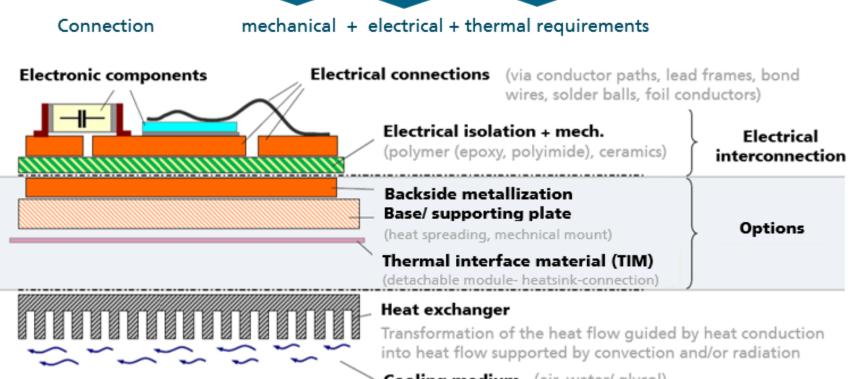



Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

#### **Basics and materials**

| Material costs                                          | Production/process costs                                                   | Risk costs                                                                     |
|---------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <b>Semiconductor</b><br>(Diode, MOSFET, IGBT, etc.)     |                                                                            |                                                                                |
| <b>Die attach</b><br>(Solder, Sinterpaste, etc.)        | <b>Machinery and equipment</b><br>(stencils, soldering adapters,           | <b>Failure</b><br>(malfunction after assembly,<br>damage during assembly, pre- |
| Substrate/ circuit carriers<br>(PCB, DCB, IMS, etc.)    | bonding tool, etc.)                                                        | damaged components due to delivery, etc.)                                      |
|                                                         | Employee                                                                   |                                                                                |
| <b>Bonding wires</b><br>(thin/thick wire, Cu, Al, etc.) | (preliminary tests, main tests,<br>optimization, quality control,<br>etc.) | <b>Reserve</b><br>(backup stock of<br>semiconductors, die attach,              |
| <b>Heat sink, base plate</b> (Al, Cu, Graphite, etc.)   |                                                                            | tools, etc.)                                                                   |
| Housing                                                 |                                                                            |                                                                                |



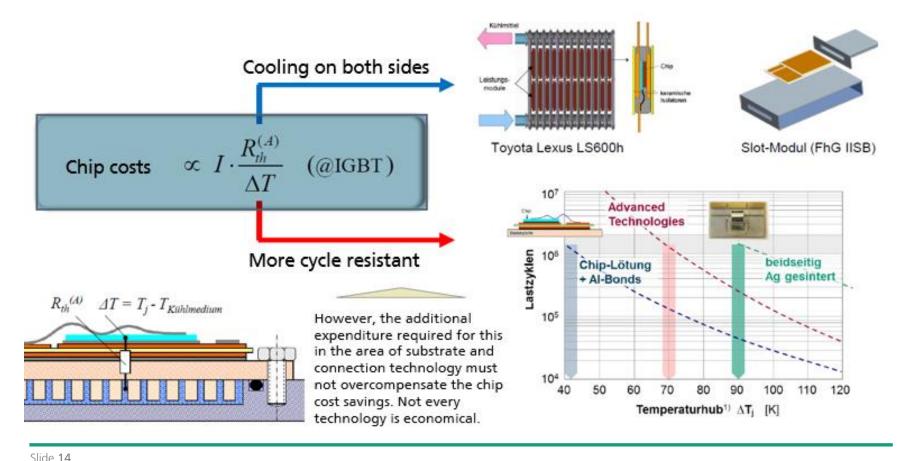

**Basics and materials** 





#### **Basics and materials**

Packaging technology: fixation, contact and cooling of the components




Cooling medium (air, water/glycol)



## **Basics and materials**

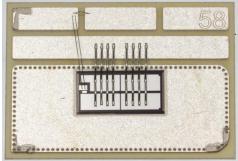
Cost reduction through better cooling and/or higher chip temperatures





## Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics


- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

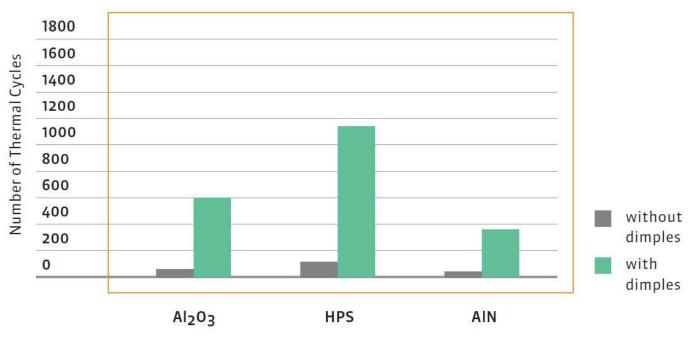
Slide 15



### Substrate technologies - Inorganic

- Direct Copper Bonded (DCB)
- Composite of ceramic and metal
- Very often used for PE applications
- Ceramic  $\rightarrow$  Al<sub>2</sub>O<sub>3</sub> / ZTA / AlN / Si3N4
- Metallization  $\rightarrow$  Cu / Al




| Ization → Cu / AI                            | Al <sub>2</sub> O <sub>3</sub> | ZTA       | AIN       | Si <sub>3</sub> N <sub>4</sub> |
|----------------------------------------------|--------------------------------|-----------|-----------|--------------------------------|
| K1C in MPa⋅m <sup>1/2</sup>                  | 4 - 5.5                        | 4.4 - 5   | 2.7       | 5 – 8.5                        |
| Elastic modulus<br>in GPa                    | 400                            | 380       | 310       | 290 - 330                      |
| Flexural strength<br>in MPa                  | 230 - 580                      | 400 - 480 | 200 - 360 | 700 - 1100                     |
| Thermal conductivity<br>in W/mk              | 15 - 30                        | 15        | 180 - 220 | 15 - 85                        |
| CTE in 10⁻⁵K⁻¹<br>(30 - 1000 °C)             | 6 - 8                          | 9 - 11    | 4.5 - 5.6 | 2.5 - 3.5                      |
| Dielectric strength<br>in kVmm <sup>-1</sup> | 15 - 17                        |           | > 20      | 20                             |

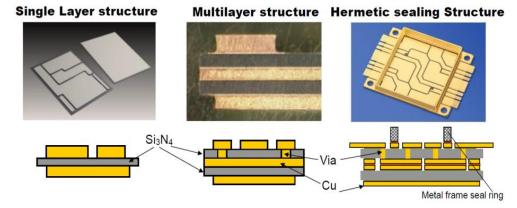




### Substrate technologies - Inorganic

- Direct Copper Bonded (DCB)
- DCBs with dimples  $\rightarrow$  up to 10 times longer service life
  - Test condition from -50 °C to +150 °C




Lifetime

CURAMIK ELECTRONICS GMBH: DBC technology : Design Rules Version 12/2014, 2014

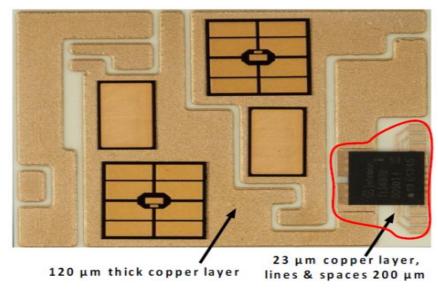


### Substrate technologies - Inorganic

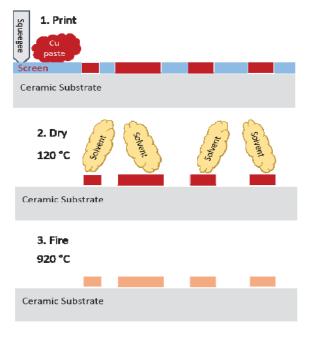
- Active Metal Brazing (AMB)
- Composite of ceramic and metal with active solder
- Alternative to DCB
- Ceramic  $\rightarrow$  Al<sub>2</sub>O<sub>3</sub> / AlN / Si3N4
- Metallization → Cu



|                                            | Cu thickness<br>in mm | Cycles<br>from<br>-40 to 125 °C |
|--------------------------------------------|-----------------------|---------------------------------|
|                                            | 0.2                   | > 3000                          |
| Si₃N₄                                      | 0.3                   | > 3000                          |
| (0.32t)                                    | 0.4                   | > 3000                          |
|                                            | 0.5                   | > 3000                          |
| AIN<br>(0.635t)                            | 0.2                   | 300                             |
|                                            | 0.3                   | 200                             |
|                                            | 0.4                   | Crack at AMB<br>Process         |
|                                            | 0.5                   | Crack at AMB<br>Process         |
|                                            | 0.2                   | 500                             |
| Al <sub>2</sub> O <sub>3</sub><br>(0.635t) | 0.3                   | 300                             |
|                                            | 0.4                   | 200                             |
|                                            | 0.5                   | 100                             |


KYOCERA: AMB Cu-Bonded Ceramic Substrates for Power Modules, 2014





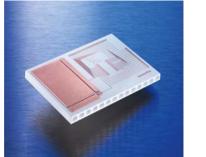

## Substrate technologies - Inorganic

- Thick Film Technology (TFT)
- Copper paste metallization
- Steps in metallization possible for signal and power
- Ceramic  $\rightarrow$  Al<sub>2</sub>O<sub>3</sub> / ZTA / AlN



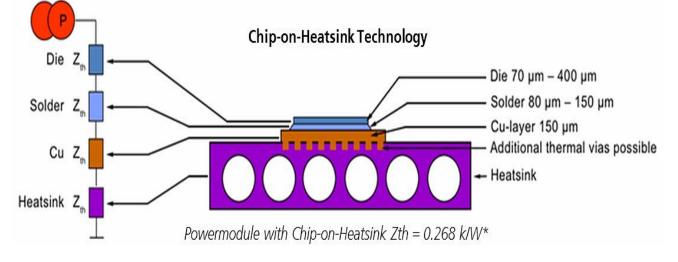





GUNDEL, Paul et al.: Thick Printed Copper as Highly Reliable Substrate Technology for Power Electronics. In: PCIM Europe 2015



Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

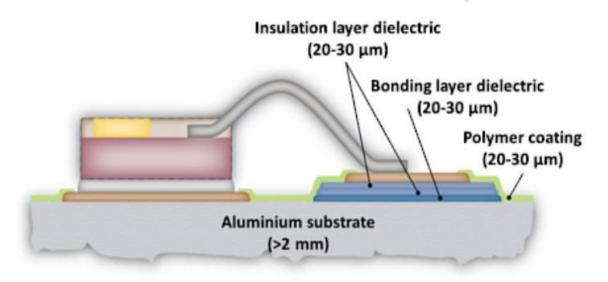

## Substrate technologies - Inorganic

- Structured Copper Technology (SCT)
- Copper paste metallization
- Ceramics as substrate **and** heat sink
- Saving of the connection levels
- Ceramic  $\rightarrow$  Al<sub>2</sub>O<sub>3</sub> / AlN





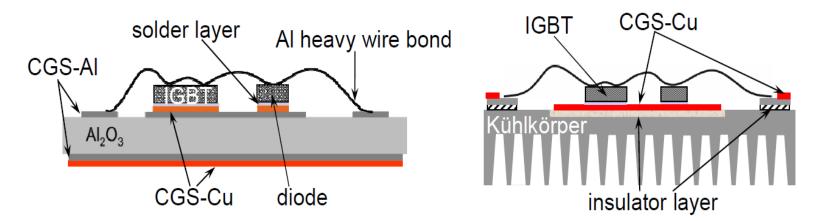





CERAMTEC: Advanced Ceramic Material Properties for the Electronics Industry

Fraunhofer

### Substrate technologies - Inorganic

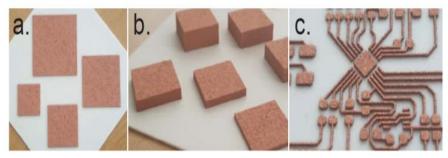

- Anotherm
- Copper paste metallization
- Ceramics as substrate and heat sink
- Saving of the connection levels
- Ceramic  $\rightarrow Al_2O_3 / AlN$

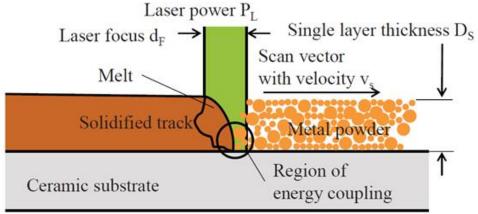




### Substrate technologies - Inorganic

- Cold Gas Spraying (CGS)  $\rightarrow$  under development
- Apply metal powder to ceramic substrate
- Electrical conductivity ~ 80 % of DCB metallization
- $R_{th} \rightarrow \sim 13$  % higher than DBC
- Metallization  $\rightarrow$  Cu / Al
- Ceramic  $\rightarrow Al_2O_3$





WILDE, J.; WIELAGE, B.: Case Study: Cold Gas Spraying (CGS) Metallization Based Ceramic Substrates., 2010



## Substrate technologies - Inorganic

- Selective Laser Melting (SLM)  $\rightarrow$  under development
- Applying metal powder to ceramic by means of laser technology
- Steps in metallization possible
- Metallization  $\rightarrow$  Cu
- Ceramic  $\rightarrow$  Al<sub>2</sub>O<sub>3</sub>

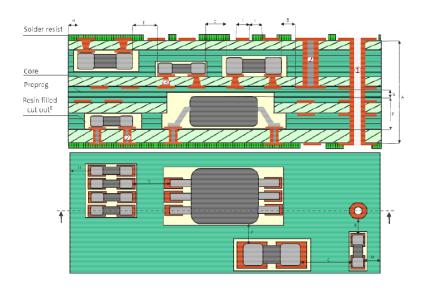


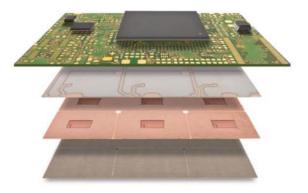


SYED-KHAJA, Aarief ; PEREZ, Philip Patino ; FRANKE, Joerg: Production and Characterization of High-temperature Substrates through Selective Laser Melting (SLM) for Power Electronics. 2016



## Substrate technologies - Organic


- Printed Circuit Board (PCB)
- Organic materials  $\rightarrow$  FR4, Polyimide, Epoxide, Teflon, etc.
- Metallization  $\rightarrow$  Cu
- Less expensive than ceramic substrates


|                                                 | Standard<br>FR4 | Polyimide               | ВТ-Ероху   | СЕ-Ероху          | Teflon<br>(PTFE)  |
|-------------------------------------------------|-----------------|-------------------------|------------|-------------------|-------------------|
| Glass transition temperature in °C              | 125 – 140       | 25 – 140 220 – 260 ~ 20 |            | ~ 250             | 200 – 230         |
| CTE in ppm/K                                    | < 70            | < 55                    | < 40       | < 25              | < 70              |
| Dielectric constant<br>1 MHz<br>1 GHz<br>10 GHz | 4.7<br>4.3<br>- | 4.0<br>3.8<br>3.8       | 4.4<br>4.1 | 3.9<br>3.7<br>3.5 | 2.6<br>2.4<br>2.2 |
| Dielectric strength in kV/mm                    | 50              | 45                      | 70         | 65                | 45                |
| Copper adhesion in N/mm                         | 1.5             | 1.0                     | 1.6        | 1.6               | 1.3               |
| Cost comparison<br>with standard FR4            | 1.0             | ~ 3 – 5                 | ~ 2.5      | ~ 2.5             | ~ 4 - 8           |



## Substrate technologies - Organic

- Printed Circuit Board (PCB) Embedding
- Semiconductor embedded in multilayer PCBs with vias
- Metallization  $\rightarrow$  Cu
- Flexible 3-D designs





Smart p<sup>2</sup> Pack layup SCHWEIZER ELECTRONIC: PCBs - Products and Solutions, 2015

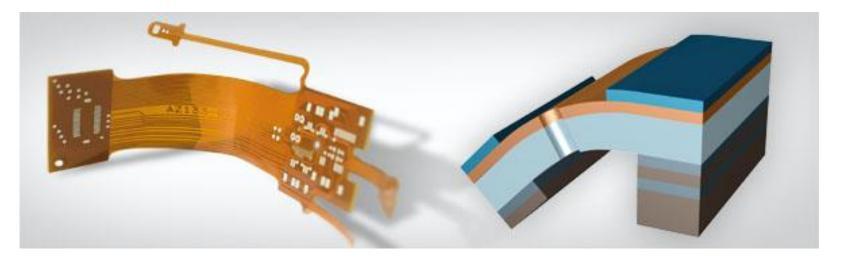
ILFA Feinstleiter Technologie: Embedding Datasheet., 2020



### Substrate technologies - Organic

#### High temperature PCB

- For applications at 175 °C or higher
- PCB material temperature resistant up to ~ 220 °C


| *Differential scanning calorimetry<br>**Dynamic mechanical analysis | Isola B | Benzo       |
|---------------------------------------------------------------------|---------|-------------|
| Resin manufacturer                                                  | Isola   | Huntsman    |
| Polymer basis                                                       | Ероху   | Benzoxazine |
| Halogen-free                                                        | yes     | yes         |
| T <sub>g</sub> (DSC)* in °C                                         | ~ 175   | ~ 200       |
| T <sub>g</sub> (DMA)** in °C                                        | ~ 195   | ~ 220       |
| CTE-z (below T <sub>g</sub> )<br>in ppm/K                           | 40      | 38          |
| Soldering bath at 288 °C<br>(with Cu) in min                        | > 10    | > 10        |
| Thermal conductivity<br>in W/mK                                     | 0.7     | 0.7         |
| Copper adhesion<br>(35 µm/HTG) in N/mm                              | ≥ 1.4   | ≥ 1.4       |

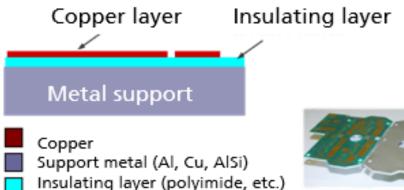
TROEGER, K. et al.: Tailored Benzoxazines as Novel Resin Systems for Printed Circuit Boards in High Temperature E-mobility Applications, 2014

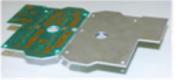


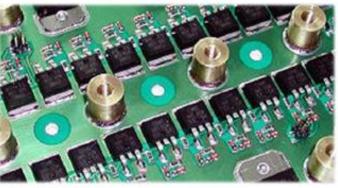
### Substrate technologies - Organic

- Flexible printed circuit boards
- Suitable for compact, complex, space/weight minimizing superstructures
- Base film  $\rightarrow$  Polyimid, PET, PEN
- Metallization  $\rightarrow$  Cu / Ag / Au




https://ats.net/de/produkte-technologien/produkt-portfolio/flexible-starr-flexible-leiterplatten/flexible-leiterplatten/





Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

## Substrate technologies - Organic

- Insulated Metal Substrate (IMS)
- Organic materials  $\rightarrow$  see PCB
- Less expensive than ceramic substrates
- Base material Al / Cu / stainless steel

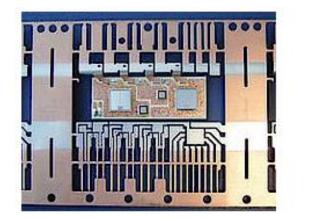


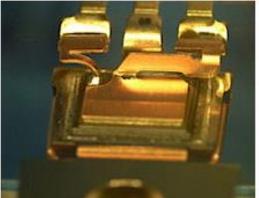




Bildquelle: aurel s.p.a.




Bildquelle: Schweizer AG




### Substrate technologies - Metallic

#### Copper leadframe

- Cost-effective (Cu as carrier material)
- No substrate-internal CTE mismatch (substrate made of Cu only) → good for substrate lifetime
- But high CTE mismatch to bare dies
- Very high flexibility in terms of design

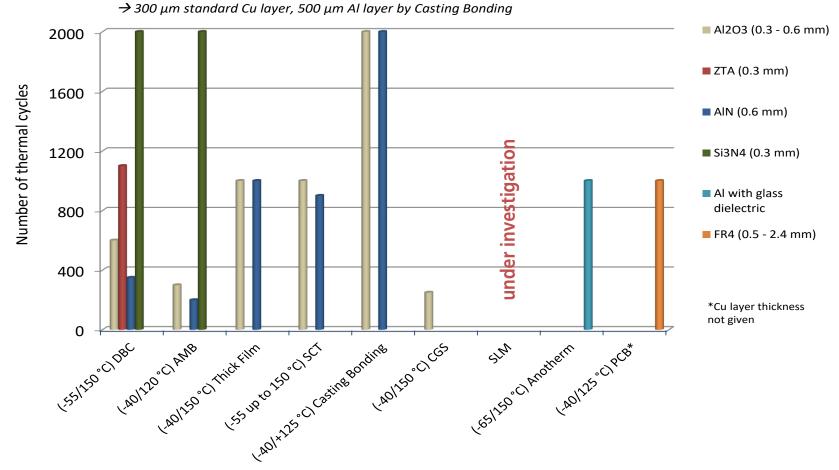






https://www.zestron.com/de/anwendungen/leistungselektronik/reinigung-von-leadframes.html




## **Comparison and Evaluation of packaging methods**

### Substrate Technologies - Summary

|                                         | Special features                                                                           | Service life or TWB<br>strength                                                                        | Current carrying<br>capacity                               | Steps in<br>metallization                                                | Thermal conductivity<br>in W/mK    | Dielectric strength in<br>kV/mm    | Temperature<br>resistance                     |      |
|-----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------|------|
| LTCC                                    | Good electrical<br>conductivity; through-<br>connection possible;<br>expensive             | Adapted to Si                                                                                          | Medium, max. layer<br>thickness 0.2 mm                     | Not possible, but not<br>absolutely necessary,<br>due to layer structure | absolutely necessary,              | 2.8 – 5                            | 20 - 40                                       | Good |
| нтсс                                    | Mechanical stability;<br>through-connection<br>possible                                    | Adapted to overall structure                                                                           | Bad, because electrical conductivity is poor               |                                                                          |                                    |                                    | 13 – 25<br>(Al2O3)<br>140 – 200<br>(AlN)      | > 22 |
| DCB/ AMB Al <sub>2</sub> O <sub>3</sub> |                                                                                            | medium                                                                                                 |                                                            | Possible, but step                                                       | 15 - 30                            | 15 – 17                            |                                               |      |
| DCB/ AMB AIN                            | Different metallizations<br>possible; distance<br>between conductor                        | Poor passive TC, thick<br>AIN necessary                                                                | Good                                                       | height limited                                                           | height limited                     | 180 – 220                          | > 20                                          | Good |
| DCB/ AMB Si <sub>3</sub> N <sub>4</sub> | tracks is larger than on printed circuit boards                                            | Very good passive TW                                                                                   | Very good, thick<br>copper layers                          | Possible, due to<br>experience based large<br>tolerances                 | 15 - 85                            | ~ 20                               | Good                                          |      |
| SCT/ Thick-film                         | Different ceramics & metallization possible                                                | Passive TW very good,<br>possibly CTE smaller<br>compared to A <sub>I2</sub> O <sub>3</sub><br>DCB/AMB | Cu-paste, electrical<br>conductivity 50% of<br>bulk copper | possible                                                                 | 20 – 30                            | 10 – 20                            | Good                                          |      |
| Copper lead-frame                       | No CTE mismatch, low<br>cost                                                               | High CTE                                                                                               | Good, depending on<br>the thickness                        | possible                                                                 | 30 – 380                           |                                    | Good                                          |      |
| Flex printed circuit<br>board           | Flexible design possible<br>Through-connection<br>possible                                 | Not suitable for high<br>temperature, high CTE                                                         | Good                                                       | Not possible, but not<br>absolutely necessary,<br>due to layer structure | 1.3 – 2.2 depending<br>on material | 120 – 150 depending<br>on material | Up to approx. 210 °C<br>depending on material |      |
| IMS                                     | Mechanical stability,<br>Structure is like printed<br>circuit board; Rth<br>worse than DCB | Not suitable for high<br>temperature, high CTE                                                         | Good                                                       | Not known                                                                | 0.4 - 12                           | 60<br>depending on<br>dielectrics  | Not known                                     |      |



## Comparison and evaluation of packaging methods Substrate technologies - comparison of thermal stability

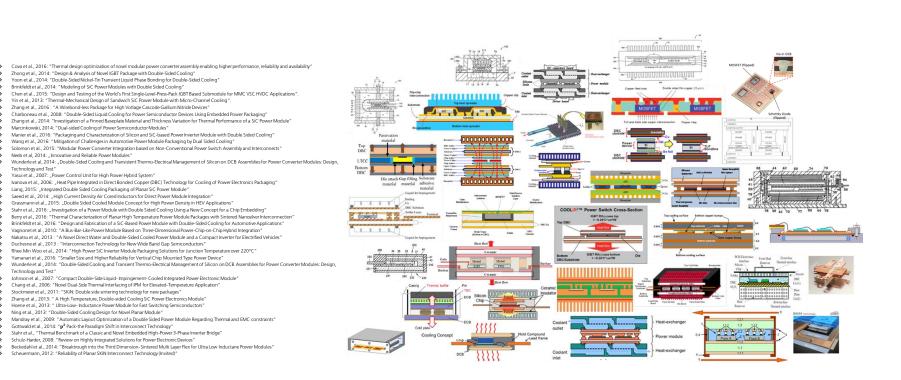




## Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics

Comparison and evaluation of packaging methods

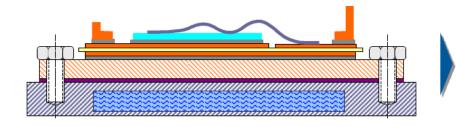

#### Packaging concepts

- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

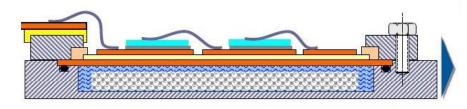
Slide 33



## Packaging and interconnection technologies for power electronics Packaging concepts




Slide 34




### Packaging concepts

#### Single-sided cooled power modules - basic concepts





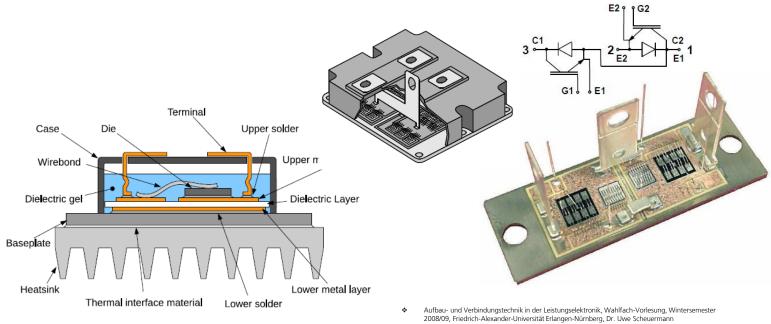


#### Indirect cooling

- Module (with or without base plate) on heat sink
- The mechanical separation point also represents a significant thermal barrier with thermal interface material (TIM)
- CTE's of a wide range of materials must be matched
- Error prone (TIM) and expensive assembly

#### **Directly cooled base plate**

- Low thermal resistance
- CTE's of a variety of materials are have to be • matched to each other
- Seal required

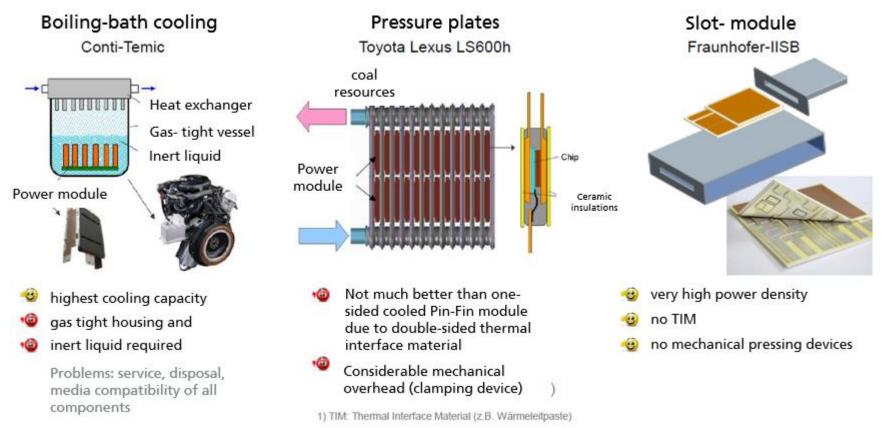

#### **Directly cooled substrate**

- Smallest number of interfaces and materials
- Low thermal resistance e.g. by means of turbulence bodies in the cooling oil channel (see ShowerPower<sup>™</sup>)
- Low heat capacity in case of coolant flow disturbances (e.g. air bubbles)
- Seal required



Packaging concepts – assembly standard

Standard assembly

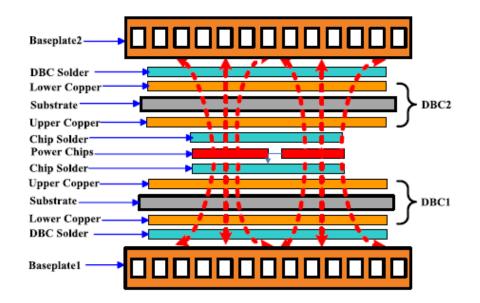



Packaging for Power Electronics, Laboratoire Ampère, Lyon, France, 2015, Cyril BUTTAY



## Packaging concepts

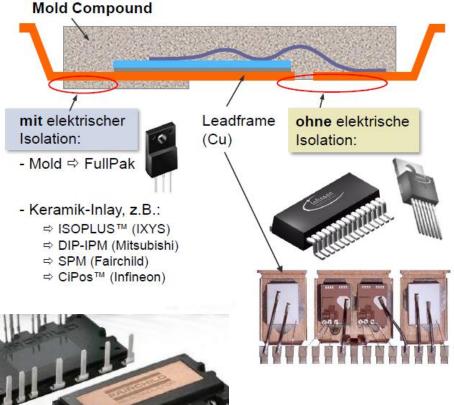
#### Double-sided cooled power modules - Basic concepts






### Packaging concepts

#### **Double-Sided Ceramic Substrate Technology**

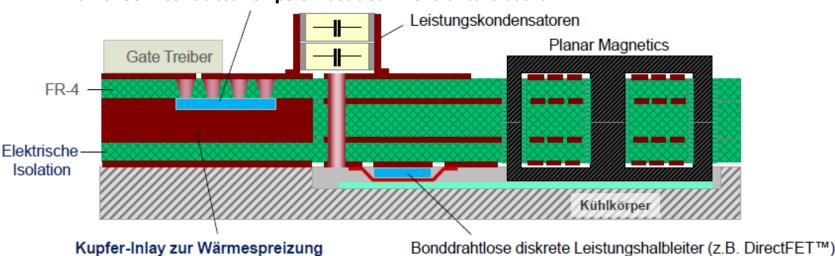

- Sandwich concept, chips connected on both sides with DCBs and base plate
- Requires extra insulation layer on the heat sink
- Challenge regarding layout design and production process
- Better power distribution
- High thermal conductivity,  $R_{th}$  up to -50 %
- Low inductive, short switching times
- Reduction of volume and weight
- Stackable cooling concept
- Highest integration and power density





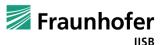
### Packaging concepts

- Leadframe-Molded Module
- Overmoulded stamped grid structure as circuit carrier
- Mold mass or ceramic inlay as electrical insulation
- Very cost-effective, high volume production
- High protective effect (dirt, mechanical stress, etc.)



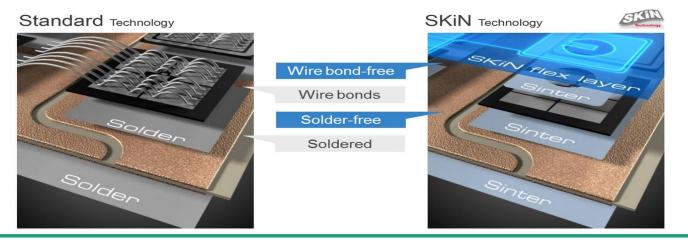

Infineon, Fairchild, STM




#### Packaging concepts

- Embedding Technology
- Chips embedded in insulating substrates
- Miniaturization  $\rightarrow$  Elimination of bonding wires and housings
- Low inductive designs  $\rightarrow$  short current paths, electrical vias, 3D integration
- Double-sided cooling, thermal vias  $\rightarrow$  up to 60 % R<sub>th</sub> improvement for double-sided liquid-cooled embedded packages




#### Power semiconductor chips embedded in the circuit board

#### Slide 40



#### Packaging concepts

- SKiN Module (SEMIKRON International GmbH)
- Use of flexible conductor foils
- R<sub>th</sub> reduction compared to classic power modules
- Elimination of solder layers and bonding wires
- Increased service life by factor ~200 compared to classic power modules
- Lifetime increase by factor ~40 compared to state-of-the-art industrial power modules
- Reduction of volume and weight (to ~ 40 % of classic power modules)

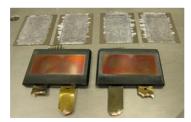




#### Packaging concepts

#### Further packaging concepts and products

- Toshiba TPW1R306PL; 5.0 mm × 6.0 mm × 0.73 mm; MOSFET; 60 V 260 A; 2015/2017 http://www.powerelectronicsworld.net/article/0/101041-toshiba-addsdouble-sided-cooling-to-60-v-power-mosfets.html
- Infineon HybridPACK<sup>™</sup> DSC; 42 mm x 42.4 mm x 4.77 mm; IGBT; 700 V 200/400 A; 15 nH; 0.1 K/W (0.12 K/W HybridPACK 1); PCIM 2016 http://www.infineon.com/cms/de/about-infineon/press/marketnews/2016/INFATV201605-056.html
- International Rectifier/Infineon COOLiR<sup>2</sup>Module™; 50 mm x 45 mm x 7 mm; IGBT; 680 V 300 A; <15 nH; down to 50 % R<sub>th</sub>; Bodo's Power Systems 2012


http://www.powerguru.org/coolir2%E2%84%A2-high-powersemiconductor-platform/

- Hitachi DCPM Double-sided-cooling Full-SiC Power Module; Tokyo Motor Show 2015 http://www.hitachi.com/New/cnews/month/2015/09/150928a.html
- Fuji LS600h Lexus power module; 47.9 mm x 38.1 mm x 5.3 mm; vol. 54 no 2 fuji electric review 2008 or Oak Ridge National Laboratory 2009





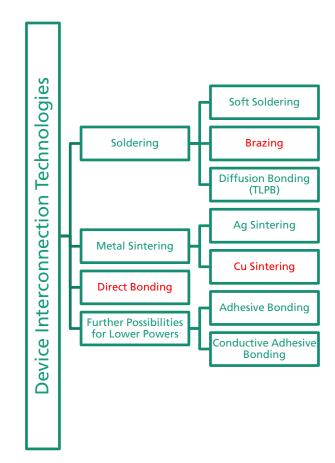






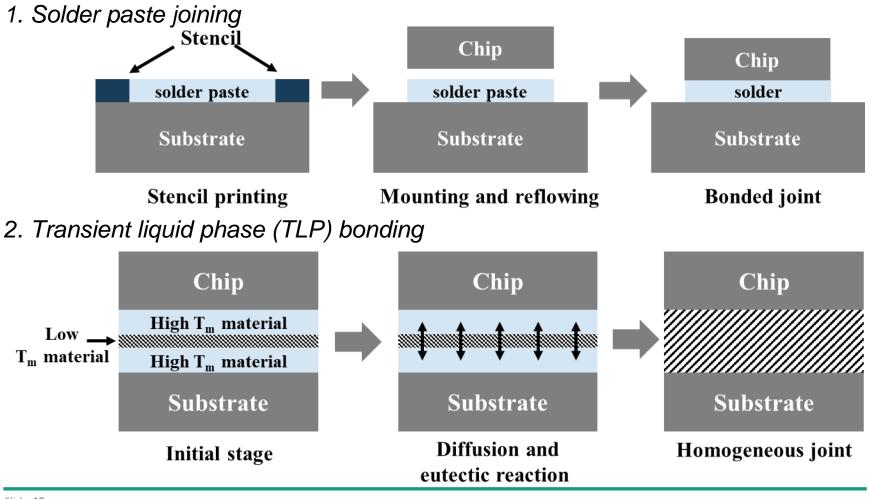
### Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics


- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide 43

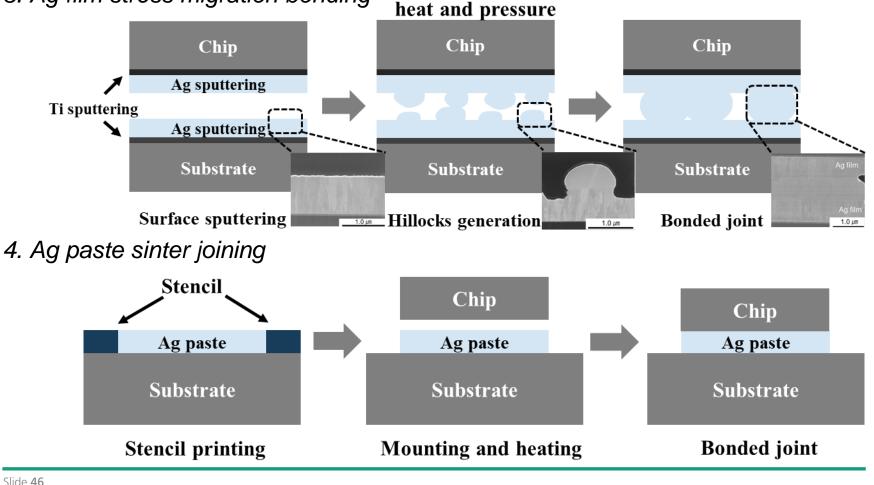



#### Interconnection technologies

- Besides everlasting interest in further integration, minimization, modularization, high temperature and high voltage capability, new materials such as wide bandgap semiconductors come up and find their way into recent application. Thus it appears that SiC semiconductor devices are now used in power electronics mainly for switching high electrical currents (up to several 100 A) and high voltages (≥ 1 kV) in automotive drives, energy transmission and traction applications.
- Possible device interconnection technologies in power electronics packaging (red: research topics)






#### Interconnection technologies





#### Interconnection technologies

3. Ag film stress migration bonding





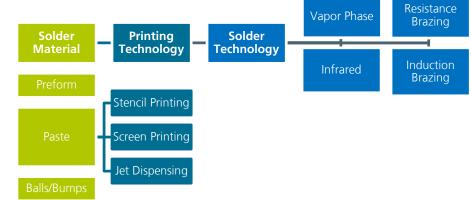
#### Interconnection technologies

#### A comparison of different bonding materials

| Series                         | Processing<br>Temperature<br>in ºC | Maximal<br>Temperature<br>in ºC | Electrical<br>Resistivity<br>in mΩ·cm | Thermal<br>Conductivity<br>in W/m⋅K | Bonding quality |
|--------------------------------|------------------------------------|---------------------------------|---------------------------------------|-------------------------------------|-----------------|
| Ag paste                       | 200~250                            | Up to 900                       | ≤ 0.005                               | ≥ 200                               | High            |
| Conductive<br>adhesive         | 120~175                            | 250                             | ~7 <sup>[1]</sup>                     | ~ 3 – 10                            | Low             |
| High-<br>temperature<br>solder | 50 ⁰C above<br>Tm                  | 50 °C below<br>Tm               | ~15 <sup>[2]</sup>                    | ≤ 100                               | High            |
|                                | Before sinterin                    | ng Below<br>250 °C              |                                       | After sintering                     |                 |



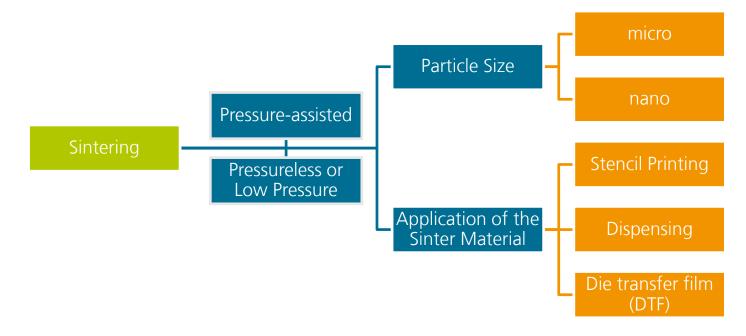
nm x5 00k SE(U)


Ag particles and solvent



Micron-porous Ag structure

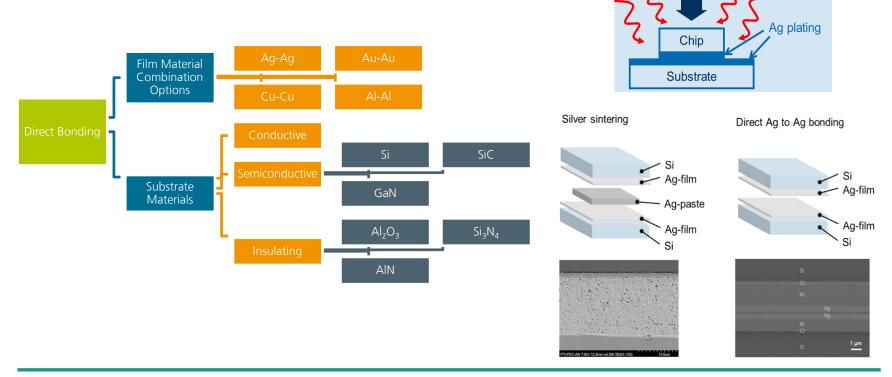
#### Interconnection technologies


- Overview of soldering technology for power modules
- Selection of solder materials for power electronics applications



| Solder<br>composition  | T <sub>Liquidus</sub> in °C | Electrical<br>Conductivity<br>in m/Ωmm <sup>2</sup> | Thermal<br>Conductivity<br>in W/mK | CTE in<br>ppm/K |
|------------------------|-----------------------------|-----------------------------------------------------|------------------------------------|-----------------|
| BiPb(32)Sn(15.5)       | 95                          | 1.5                                                 |                                    | 16.6            |
| BiSn(43)               | 139                         |                                                     | 19                                 |                 |
| InPb(50)               | 215                         | 3.3                                                 | 22                                 | 24.4            |
| SnPb(37)               | 183                         | 7.4                                                 | 70                                 | 24.3            |
| SnAg(3.5)Cu(0.9)       | 217                         |                                                     | 60                                 |                 |
| SnCu(1)                | 227                         | 8.8                                                 | 60                                 |                 |
| Sn(96.5)Ag(3.0)Cu(0.5) | 217/221                     |                                                     |                                    |                 |
| Sn(96.5)Ag(3.5)        | 221                         |                                                     |                                    |                 |
| Sn(95)Ag(5)            | 221/245                     |                                                     |                                    |                 |
| Sn(99.3)Cu(0.7)        | 227                         |                                                     |                                    |                 |
| Sn(97)Cu(3)            | 227/300                     |                                                     |                                    |                 |
| Sn(100)                | 232                         |                                                     |                                    |                 |
| Pbln(19)               | 276                         |                                                     |                                    |                 |
| PbSn(5)Ag(2.5)         | 280                         | < 5                                                 | 44                                 | 29              |
| PbSn(5)                | 315                         | < 5                                                 | 45                                 | 29              |
| PbSn(2)                | 325                         | 4.9                                                 |                                    |                 |
| Pb(100)                | 327                         |                                                     | 37                                 | 29.3            |
| AuSn(20)               | 280                         | < 5                                                 | 46                                 | 16              |
| AuGe(12)               | 356                         | 7                                                   | 34                                 | 13.4            |
| AuSi(3)                | 363                         | 25                                                  | 26                                 |                 |

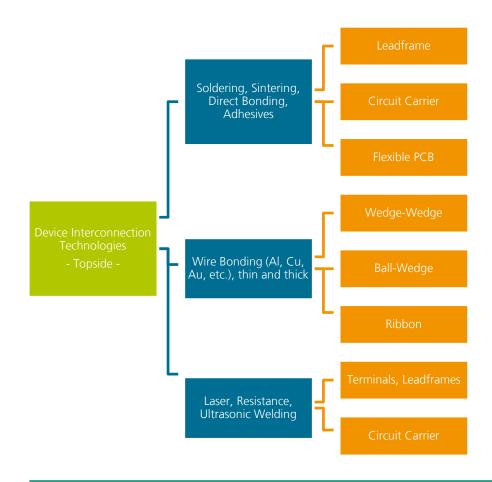
#### Interconnection technologies


Variety of metal sintering technology for die attach, e.g. mainly silver but also copper or copper-silver sinter paste

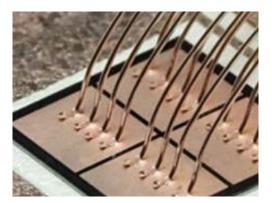




#### Interconnection technologies


Direct bonding examples in power electronics – substrate materials rank as carriers of the needed metallization
Pressure




#### Slide 50

Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB Heat

#### Interconnection technologies







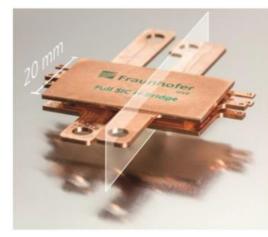


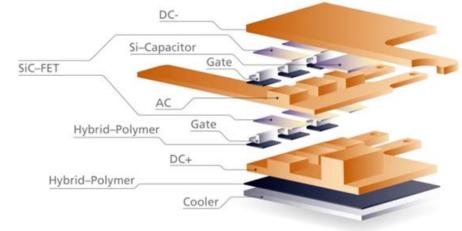


Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

### Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics


- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

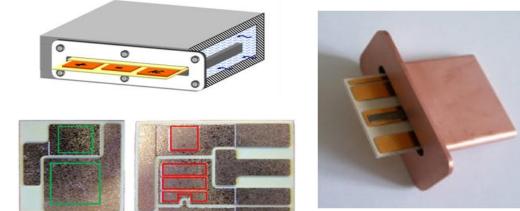

Slide 52

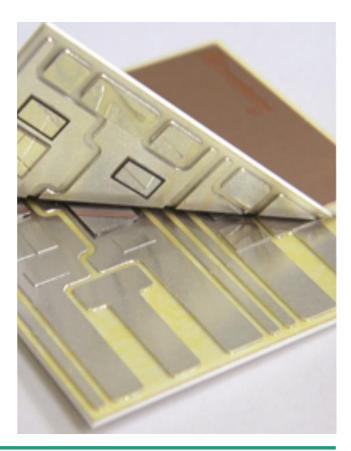


#### Packaging at Fraunhofer IISB

- Fraunhofer IISB concepts from public projects
- Project EMILE (Full SiC Busbar Power Module)
- Double-sided assembly concept by means of Ag-sintering
- Chips on copper bus bar in the smallest space high power density
- Very high switching speed Inductance < 1 nH</p>
- Cooling on both sides possible
- Cost-effective  $\rightarrow$  no ceramic circuit carriers, only copper



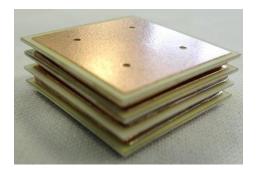




Slide 53



#### Packaging at Fraunhofer IISB

- Fraunhofer IISB concepts from public projects
- Project ULTIMO (Double-sided Power Module)
- Chips sintered on both sides in DCBs
- High power density
- Low number of different materials
- Cooling on both sides possible

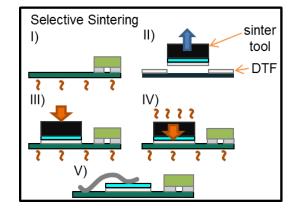


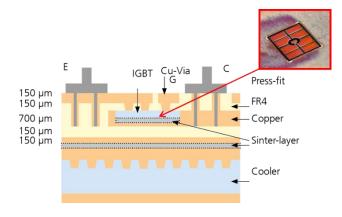



Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

#### Packaging at Fraunhofer IISB

- Fraunhofer IISB concepts from public projects
- Projekt DiaLe (Ceramic/ DCB Embedding)
- WBG components embedded in DCBs
- Multilayer DCB stack realizable
- Flexible generation of vias in DCB
- High temperature resistance > 300 °C
- High dielectric strength > 3.3 kV





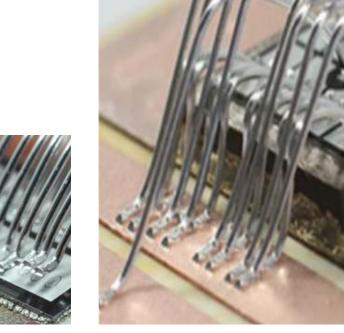

### Packaging at Fraunhofer IISB

- Selective silver sintering
- Sintering of bare dies or SMD components on PCB
- Sintering on leadframe for chip embedding










#### Slide 56

#### Packaging at Fraunhofer IISB

#### Chip metallization and wire bonding

- Bonding wires Al, Cu, AlCuCore, Au...
- Metallization as desired for bonding, soldering, silver sintering, etc...



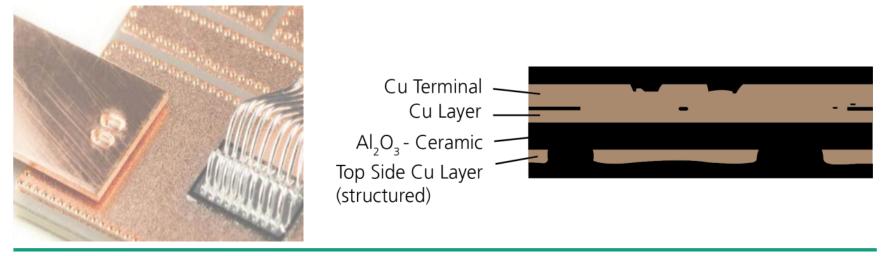






Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

#### Packaging at Fraunhofer IISB


- Top side chip contacting
- Pressureless silver sintering with leadframe
- High current carrying capacity and reliability





#### Packaging at Fraunhofer IISB

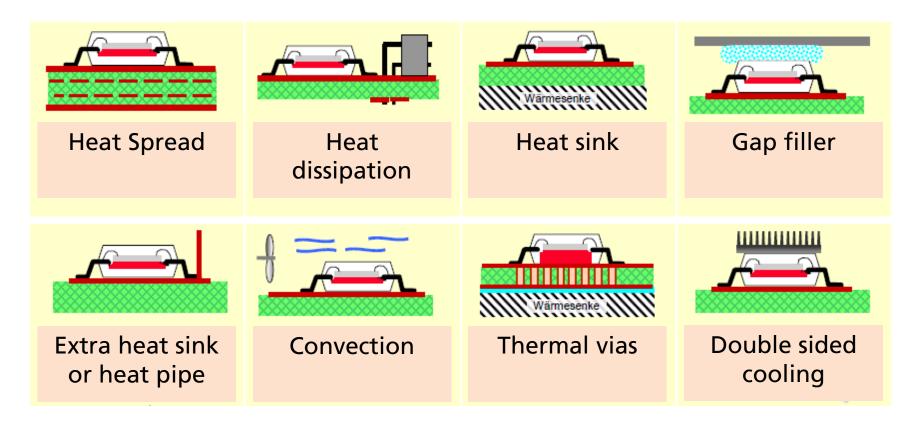
- Resistance spot welding of copper terminals on DCB
- Cu-Cu bonding
- No intermediate / connection layer
- Low thermomechanical stress formation during the process
- High reliability





### Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics


- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
- Test procedure and analysis
  - General
  - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide 60



#### Thermal design

#### Thermal optimization possibilities of the assembly technology





### Insulation coordination - principles, terms and standards

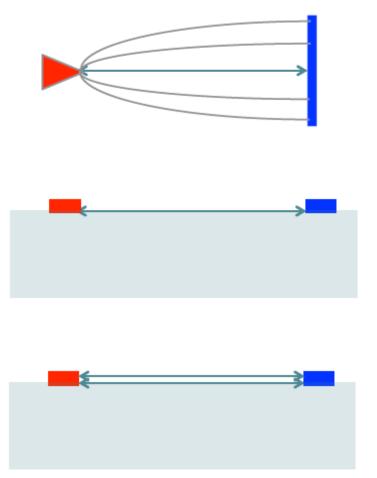
- Aim of the insulation coordination
  - Prevention of hazards to people and malfunctions in electrical equipment during its entire service life in the intended environment
  - Sparkover of airgap
  - Leakage currents on insulating material surfaces
  - Breakdowns of solid insulating materials
- Procedure

- Dimensioning of insulating sections to the voltage stress, which is expected during operation
- Standards for insulation coordination for minimum values



### Insulation coordination - principles, terms and standards

#### **European Standards**


### Basic standards EN 61140 / protection against electric shock

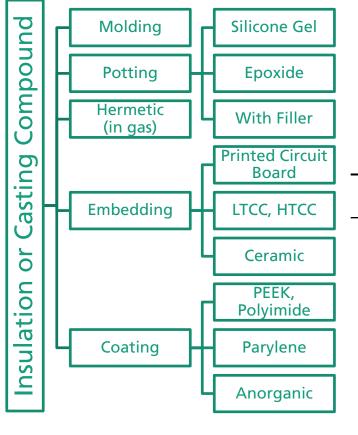
- Field of application  $\rightarrow$  Electrical installations, systems and equipment without limitation of voltage, current, type of current and for frequencies up to 1 kHz
- Product family standards EN 60664-... / Insulation coordination for electrical equipment in low voltage systems
  - Application range  $\rightarrow$  Up to 1000 V AC with rated frequencies up to 30 kHz and 1500 V DC up to an operating altitude of 2000 m above sea level
- Product standards EN 61800-... / Variable-speed electrical drives
  - Field of application  $\rightarrow$  Excluded are railway drives and electric vehicle drives

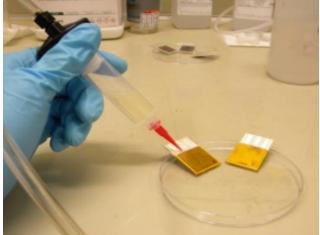


### Insulation coordination - principles, terms and standards

- Air gap
  - Shortest distance in air between two conductive parts
- Creepage distance
  - Shortest distance along the surface of an insulating material between two conductive parts
- A creepage distance must not be smaller than the associated clearance
  - The smallest possible creepage distance is at least as large as the associated clearance







#### Insulation coordination - principles, terms and standards

- Further remarks on insulation coordination
- > The determination of clearance and creepage distances requires not only knowledge of the standards but also a great deal of knowledge of circuit technology, the function and the operating conditions of the equipment
- $\succ$  With complex circuit boards or substrates, the dimensioning of the clearance and creepage distances can be a very confusing and tedious challenge
- Software support is a good facilitation for the control of clearance and creepage distances



Insulation concepts





|     |                                                                         | Silikone                                           |                                                    |                                                    |                   |  |
|-----|-------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|--|
| CC  | Potting examples                                                        | gel                                                |                                                    | Polyimide                                          | PEEK              |  |
|     | Dielectric strength in kV/mm                                            | 14 25                                              | 18 45                                              | 22 25                                              | 20                |  |
| ic  | Electric conductivity $\sigma$ in ( $\Omega$ m) <sup>-1</sup>           | 10 <sup>-13</sup> 10 <sup>-</sup><br><sup>14</sup> | 10 <sup>-13</sup> 10 <sup>-</sup><br><sup>14</sup> | 10 <sup>-12</sup> 10 <sup>-</sup><br><sup>13</sup> | 10 <sup>-14</sup> |  |
| de  | Relative permittivity $\boldsymbol{\varepsilon}_r$                      | 2,73,0                                             | 3,3 7,2                                            | 2,8 3,6                                            | 3,2               |  |
|     | CTE in 10 <sup>-6</sup> K <sup>-1</sup>                                 | 290 400                                            | 40 170                                             | 54                                                 | 50                |  |
| e   | Flexural strength in MPa                                                |                                                    | 55 125                                             | 116                                                |                   |  |
|     | Modulus of elasticity in Gpa                                            |                                                    | 1,1 5,0                                            | 3,3                                                | 3,0               |  |
| nic | Thermal conductivity $\lambda$ in W m <sup>-</sup> $^1$ K <sup>-1</sup> | 0,20 1,10                                          | 0,48 2,1                                           | 0,35                                               | 0,25              |  |
|     | Operating temperature in °C                                             | <260                                               | <240                                               | <300                                               | <260              |  |

#### Slide 66



Insulation concepts – risk of corrosion

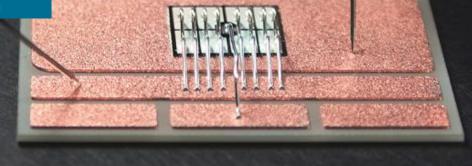
Electrochemical Migration ECM - clip (https://www.iisb.fraunhofer.de/en/research\_areas/packaging\_reliability/corrosion.html)



## Thank you for your attention!



New Concepts and Materials for Packaging


High Performance Joining Technologies, Sintering

Thermal, Electrical, and Mechanical Characterization

Lifetime Characterization, Statistical Analysis

Analysis of Failure Mechanism

Lifetime Modeling



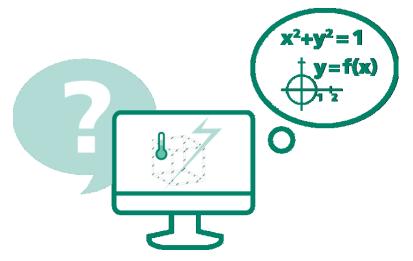
Slide 68



### Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics

- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
- Test procedure and analysis
  - General
  - AQG 324 (LV 324)
- Test setups and parameters
  - Summary


Slide 69



## Simulation methods and theoretical consideration *Fundamentals of simulation*

### What is simulation?

"The simulation or simulation is...



...a procedure for the analysis of systems that are too complex for theoretical or formulaic treatment. In simulation, experiments are carried out on a model to gain knowledge about the real system. The procedure of the simulator with concrete values (parameterization) is called simulation experiment. Its results can then be interpreted and transferred to the system to be simulated."



### Simulation methods and theoretical consideration Fundamentals of simulation

### Expectations

- Building understanding of the problem and the materials involved
- Extension of the understanding of the effects of physical processes and behavioral prediction
- Reduction of development time, development costs and production costs, saving of material, reduction of test series
- Early detection of weak points, failure prediction
- Quality improvement and optimization of the construction
- Flexible adaptation to subsequent constructions
- Further training
- And much more...



## Simulation methods and theoretical consideration *Fundamentals of simulation*

### Requirements

- Modelling understanding (experiment  $\rightarrow$  calculation model)
- FEM theory: Knowledge of the basics
- Training period for the software
- Powerful and problem specific software (ABAQUS, COMSOL, PLM, CST, ANSYS, JMAG, ISAFEM, MECHANICA, NASTRAN, PERMAS, CD-Adapco, FEMM, OpenFOAM, Keysight ADS, 6SigmaET, and many more)
- Powerful hardware (PC, Workstation, Mainframe, Cluster, Cloud)
- Expert or engineering knowledge for critical evaluation of the results





### Simulation methods and theoretical consideration Fundamentals of simulation

### Simulation possibilities

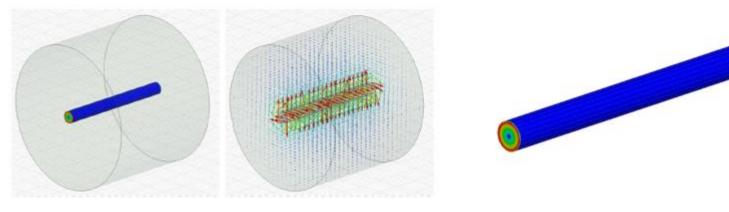
- Static and dynamic strength calculations, electrical, electromagnetic, magnetic, thermal, mechanical, thermomechanical, vibration mechanics problems
- Chemical and physical reactions, separation or combustion processes
- Vibration analysis on electrical machines, stresses and deformations (elastic and plastic, e.g. virtual crash tests using finite element methods), flow simulation
- Semiconductor devices, heat conduction processes, optical systems, fusion reactors, accelerators and nuclear reactions, doping and diffusion, electromigration
- Electrical properties, circuit simulations
- Couplings, reductions, optimizations, and much more...



## Simulation methods and theoretical consideration *Parasites in power module*

### Physical basics

$$\Phi_j = \sum_i \frac{q_i}{4\pi\varepsilon \left| \vec{r_i} - \vec{r_j} \right|}$$


- Calculation of internal and coupling capacities in FEM
  - Calculation of the charge distributions in conductors and the induced charge distributions on the surface of dielectrics
  - Ratio of voltage to charge gives the capacity  $C = \frac{Q}{U}$
- Calculation of inductances and resistances
  - DC: Calculation of current distribution (FEM) and vector potential (FMM) Inductance and resistance
  - AC: All currents are considered as surface currents (BEM), but are corrected with a skin effect correction factor depending on frequency (magnetic field distribution, current distribution and vector potential result in inductance and resistance)



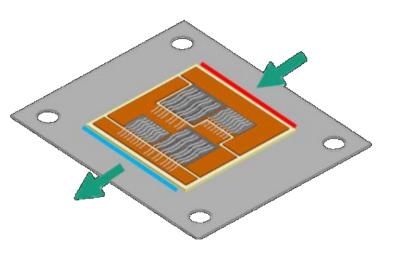
#### Physical basics

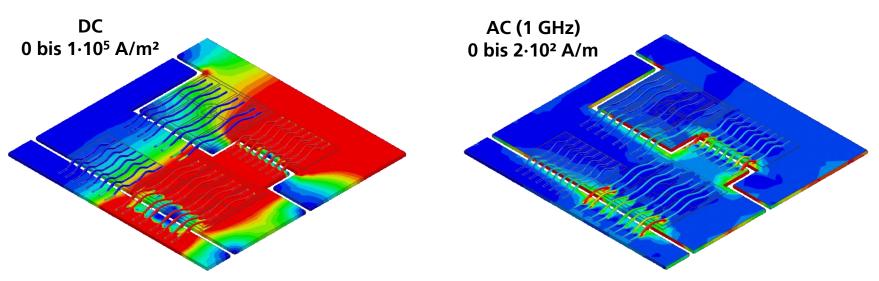
FEM versus BEM (e.g., here Ansys Maxwell versus Ansys Q3D)

| Ansys Maxwell (FEM)                                                                                                                                | Ansys Q3D (BEM)                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Berechnung der Umgebung/ Plenum<br>benötigt<br>- Felddarstellungen in dem umgebenden<br>Material möglich<br>- Künstliche Randbedingungen möglich | <ul> <li>Berechnung der stromleitenden<br/>Volumen</li> <li>Stromdichte/ Felder nur in (DC)<br/>oder auf (AC) berechneter Geometrie</li> <li>Ziemlich schnell</li> </ul> |





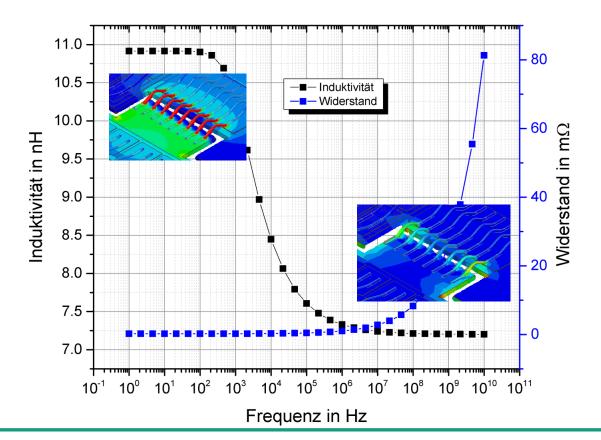

#### What can be simulated?


- Calculation of the own capacities and coupling capacities of the individual conductors → Capacity matrix
- Low-frequency (DC) and high-frequency (AC) inductors and resistors
   Inductance matrix
- C, L and R are simulated for different conductor and dielectric arrangements for two-dimensional and three-dimensional problems
- Export of component properties for circuit simulations
- Creation of equivalent circuit diagrams for Maxwell Spice, Berkley Spice, HSPICE, PSPICE, Spreadsheet Format, IBIS Package Model, Ansoft Serenade, Cadence DML, etc.



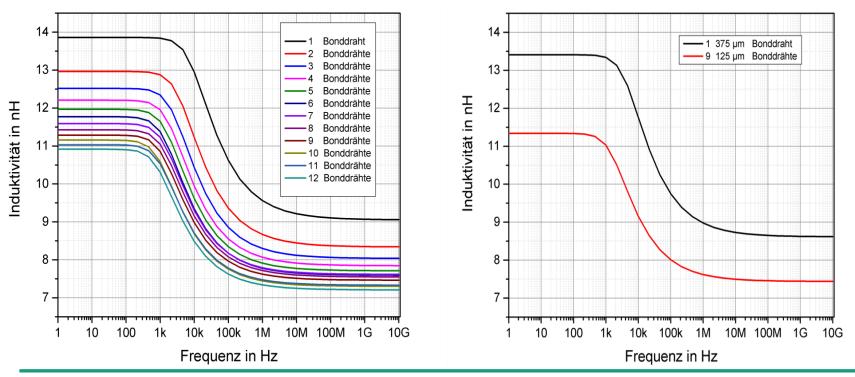
Parasites in power module

- What can be simulated?
- Frequency dependent current density distribution





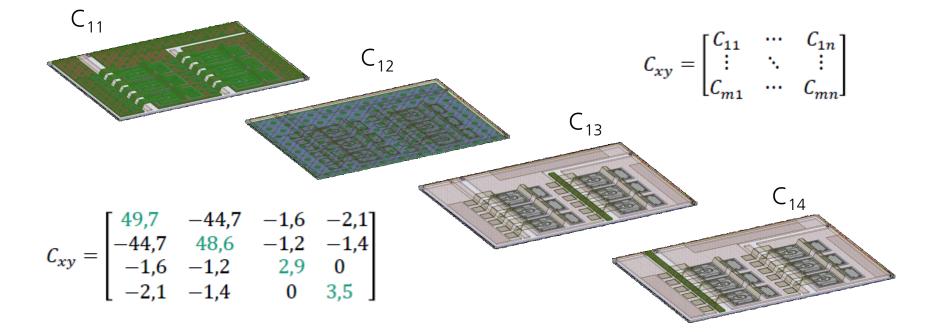




Slide 77

- What can be simulated?
- Frequency dependent inductance



#### What can be simulated?


Example Variation of the number and thickness of bond wires in the power module



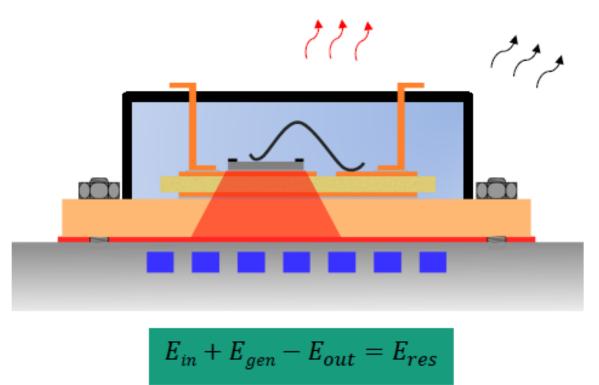


#### What can be simulated?

- Capacity and coupling capacitances in pF
- Frequency dependence only with loss factor  $tan(\delta)$  in the dielectric



Slide 80


#### Risks, problems and inaccuracies

- Disregard of the simulation restrictions
  - Explicit calculation for 'good' electrically conductive materials only for very low frequencies (DC) and very high frequencies (AC)
  - Estimate skin effect for materials used
  - Observe distances of conductive components (due to wave propagation HFSS)
- Inaccuracies in networking
  - Self-generated short circuits due to 'surface-penetrating' crosslinking
  - Insufficient networking or poor aspect ratio
  - Checking the current density distribution



#### Physical basics

Heat transfer mechanisms





Slide **82** 

#### Physical basics

Unsteady/ transient heat conduction

$$> \boldsymbol{\rho} \cdot \boldsymbol{c} \boldsymbol{p} \cdot (\frac{dT}{dt}) + \boldsymbol{\lambda} \cdot \boldsymbol{\nabla}^2 \cdot \mathbf{T} = \mathbf{P}_{\mathbf{V}}$$

Calculation of thermal behaviour in case of overloads/ surge currents

Thermal capacity C<sub>th</sub> of a structure

$$C_{th} = c_{th} \cdot \rho \cdot V$$

 $\rho \cdot c_{th}$ 

|                                  |    | kg′m³ | kJ/kgK | W/mK | 10 <sup>-6</sup> m²/s |
|----------------------------------|----|-------|--------|------|-----------------------|
| Thermal diffusivity $\alpha$     | AI | 2,7   | 0,88   | 237  | 98,8                  |
| $\alpha = \frac{\lambda}{2 + c}$ | Cu | 8,9   | 0,382  | 399  | 117                   |

ρ



α

λ

Cth

### Physical basics

Coupling of a temperature field with structural mechanics

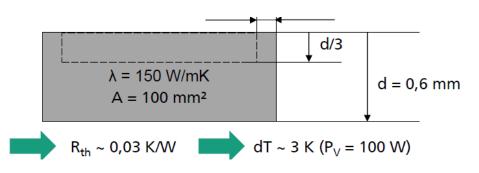
Temperature increase of a material causes a change in length  $\Delta \varepsilon$  or thermal expansion as a function of the thermal expansion coefficient CTE

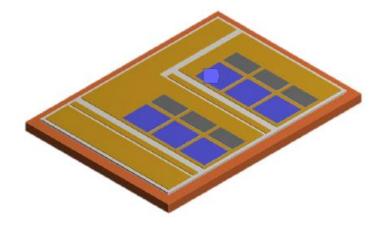
$$\Delta \varepsilon = CTE \cdot \varepsilon_0 \cdot \Delta T$$

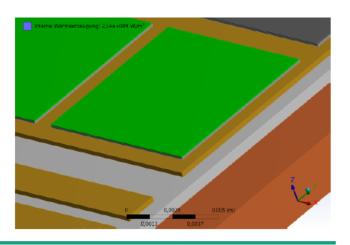
(Thermo-)Mechanical stress 6 as a function of elastic modulus E and thermal strain Δε



Heat dissipation and deformation in power modules


### What can be simulated?


- Temperature distribution (in electronic components)
  - Thermal expansion and thermal influence zones
  - Calculation of the maximum temperatures of semiconductors and derivation of the thermal resistances of different assembly concepts
  - Analysis of heat flows
- Transient temperature distribution
  - Cooling curves (Z<sub>th</sub>)
  - Accidents/impulse loads
- Thermo-mechanical (stationary/instationary)
  - Deformations
  - Mechanical stresses and strains (elastic/plastic)

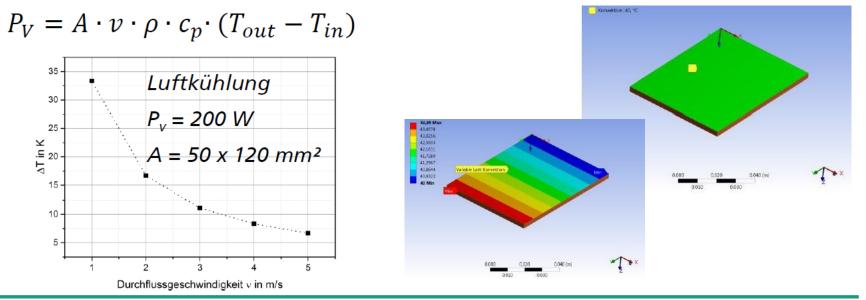



#### Defining boundary conditions

- Obtaining power dissipation
  - Heat flow (on surface)
  - Heat flux density (on surface)
  - Internal heat generation (volume) e.g. 150 W Chip volume
  - Differentiation active/passive chip area useful for HV chips



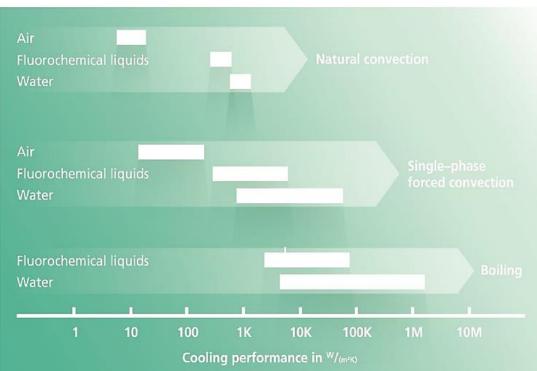







#### Defining boundary conditions

- Assumption of cooling capacities by heat transfer coefficients ( $\alpha$ K)
- Constant coolant temperature
- Variable coolant temperature

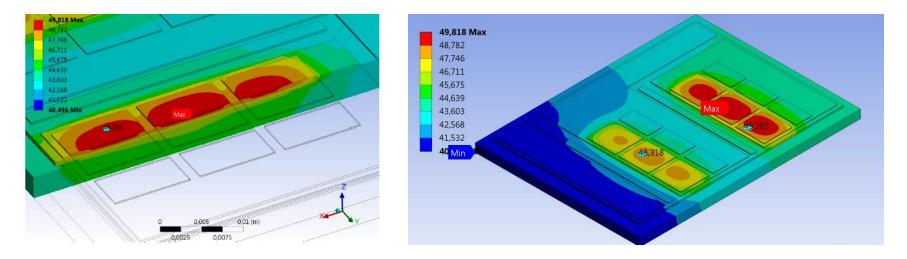

Consideration of heat input and inlet/outlet temperature



Slide 87

#### **Defining boundary conditions**

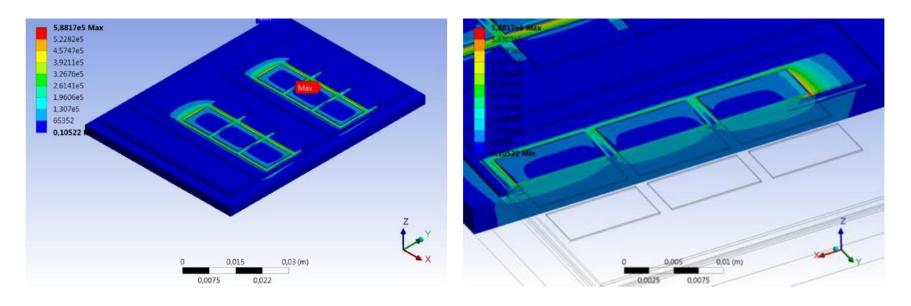
- Assumption of cooling capacities through heat transfer coefficients ( $\alpha$ K) versus coolant temperature
- Air cooling
  - 5 W/m<sup>2</sup>K (natural horizontal)
  - 20 W/m<sup>2</sup>K (natural vertical)
  - 500 W/m<sup>2</sup>K (forced, fins)
- Water-cooling
  - 5.000 W/m<sup>2</sup>K (4 l/min)
  - 20.000 W/m<sup>2</sup>K (12 l/min)
- 2-phase cooling\*
  - 80,000 W/m<sup>2</sup>K




\* S. N. Joshi, E. M. Dede; Thermal management of future WBG devices using

two-phase cooling - PCIM 2016




- What can be simulated? (Example in Ansys Workbench)
- Temperature distribution in the power module
- 150 W/chip (internal heat generation)
- $\alpha_{\rm K}$  = 20,000 W/m<sup>2</sup>K against T<sub>min</sub> = 40 °C

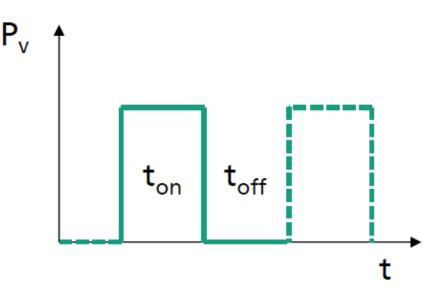


#### Slide 89



- What can be simulated? (Example in Ansys Workbench)
- Heat flow
- 150 W/ chip (internal heat generation)
- $\blacksquare \alpha K = 20,000 W/m^2 K against T_{min} = 40 °C$

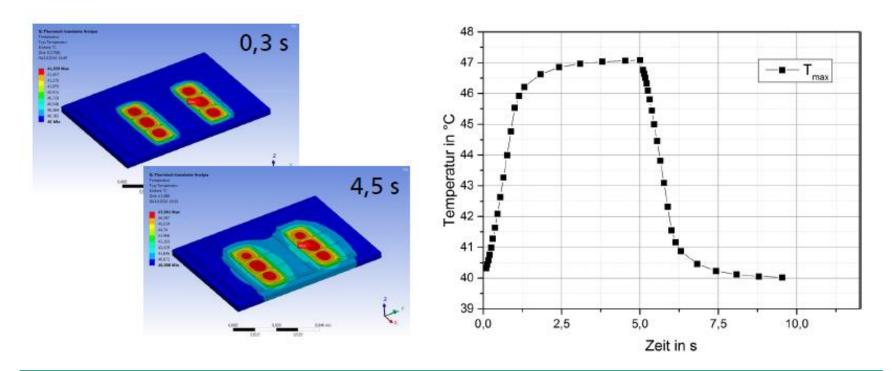





#### Slide 90

Heat dissipation and deformation in power modules

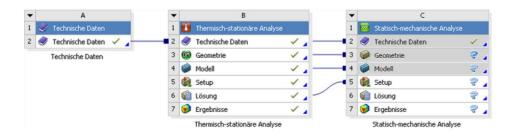
#### What can be simulated?


- Transient temperature distribution
- Simulation of a power cycle
  - $t_{on}$  /  $t_{off}$  every 5 s
  - 150 W/ Chip
  - T<sub>min</sub> = 40 °C
  - $\mathbf{a}_{\mathrm{K}} = 20 \text{ kW/m}^{2}\text{K}$
- Consider material data
  - Spec. thermal capacity
  - Density
- Time dependent internal heat generation
  - Formula → e.g. sinus function
  - Chart  $\rightarrow$  Definition of load steps





#### What can be simulated?

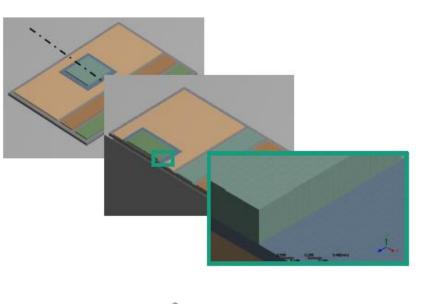

- Transient temperature distribution
- Graphical and chart temperature evaluation as a function of time

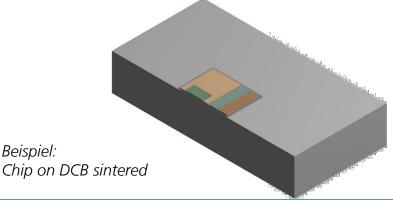


#### What can be simulated?

Coupling of a temperature field with structural mechanics

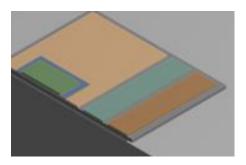
- The thermal simulation results in a change in length of the individual components (deformation), which leads to mechanical tensions/strains
- Contact areas of the individual components influence the stress/strain distribution (example: bond versus frictionless)
- Output temperature and resulting temperature distribution of the bodies serve as input parameters for the mechanical simulation



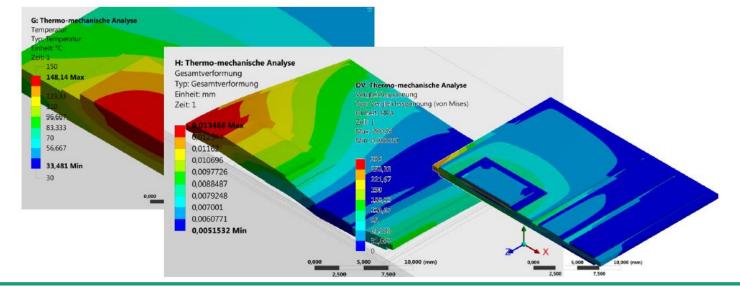




Beispiel:

#### What can be simulated?


- Static-mechanical analysis
  - Temperature field = Imported load
  - Bearings
    - Model friction-free on base plate
    - Base plate fixed
    - Gravitational acceleration on geometry
  - Technical data
    - CTF
    - E-Modulus







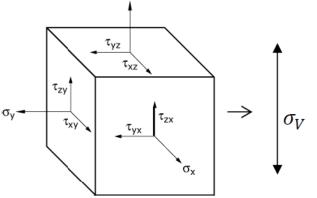

- What can be simulated?
- Static-mechanical analysis
- CTE- Mismatch of the individual layers leads to
  - Deformation of the model



Occurrence of mechanical stresses in the model



#### Slide 95


Evaluation

Mises equivalent stress (GEH hypothesis)

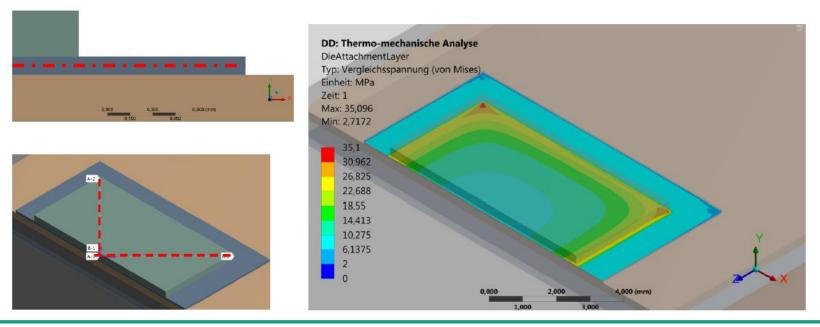
The stress tensor

The hypothesis)  

$$\begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{bmatrix}$$



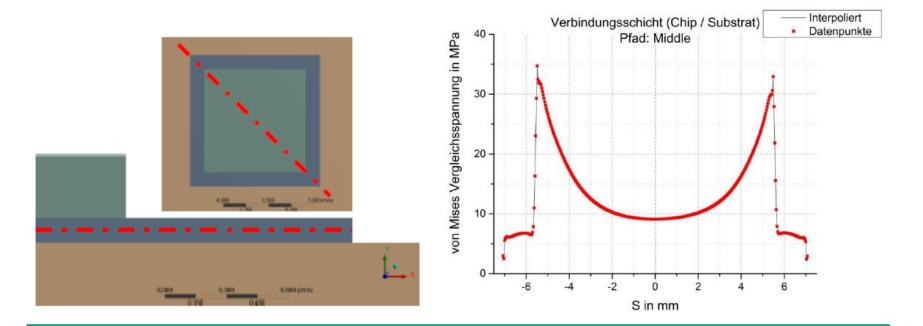
with elements of the normal stress  $\sigma i$  and the shear stress  $\tau ij$  can be reduced to a uniaxial stress by means of a comparative stress  $\sigma V \rightarrow$  Comparison with tensile strengths possible


$$\sigma_V = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 - \sigma_x\sigma_y - \sigma_x\sigma_z - \sigma_y\sigma_z + 3(\tau_{xy}^2 + \tau_{xz}^2 + \tau_{yz}^2)}$$

Application for ductile materials  $\rightarrow$  Solder/sinter connections, Cu, etc.



#### Evaluation


- Mechanical stresses in ductile compound layers
  - Cutting planes
  - Paths



#### Slide 97

#### Evaluation

- Mechanical stresses in compound layers along diagonal
  - Evaluation in the middle of the layer  $\rightarrow$  Boundary layer network-dependent
  - Margin area not evaluable  $\rightarrow$  singular



### Fraunhofer

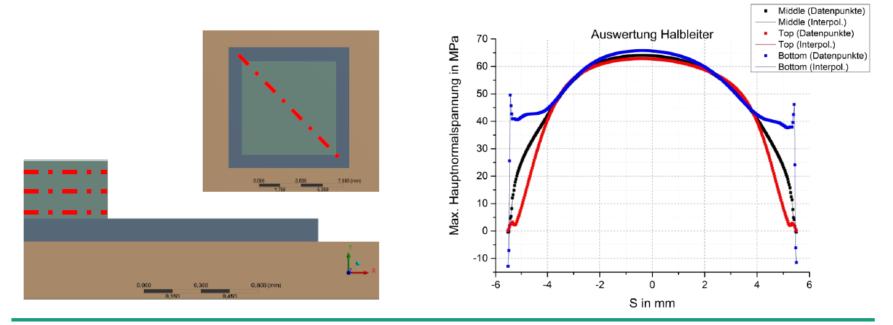
Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

#### Evaluation

Normal stress hypothesis (plane stress state)

$$\sigma_v = \sigma_{1,2} = \frac{1}{2} \left[ \left( \sigma_x + \sigma_y \right) \pm \sqrt{\left( (\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2 \right)} \right]$$

Greatest normal stress = 1. Main stress


- Application for brittle materials  $\rightarrow$  Si-Chip, Ceramic
- Tensile fracture strength of a Si chip is approx. 50 200 MPa\*  $\rightarrow$ Borders not taken into account!
- Evaluation (in Ansys):
  - Positive normal stress = tensile stress
  - Negative normal stress = compressive stress

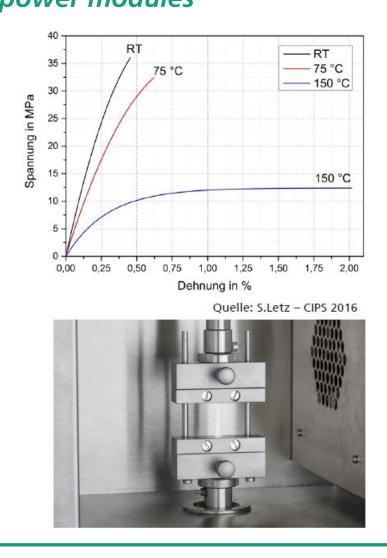


#### Evaluation

Mechanical stresses in semiconductors along diagonal

- Evaluation on diagonals in several planes of the chip
- Margin area not analyzable → singular

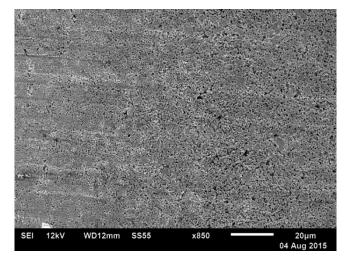



#### Slide 100

Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB 🗾 Fraunhofer

#### Further possibilities

- Thermal simulation
  - Unsteady material properties
    - Phase transitions
      - Latent heat storage
      - 2 2 Phase cooling
  - Flux simulations (CFX/CFD)
    - Pressure drop in the cooling channel
    - Optimization of cooling structures
- Mechanical simulation
  - Plastic properties
  - Lifetime modelling
  - Crack propagation

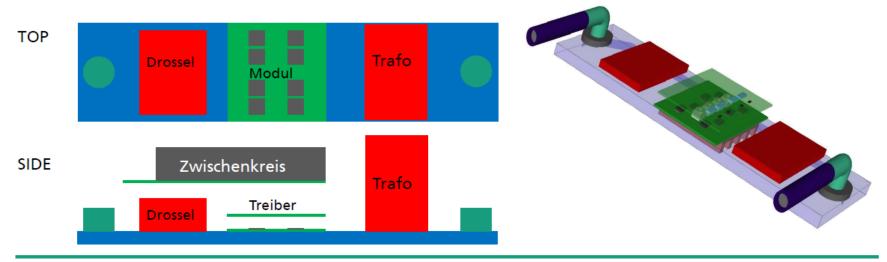







Heat dissipation and deformation in power modules

- **Risks**, problems, inaccuracies
- Material data
  - Temperature dependence
  - Plastic material data difficult to obtain (e.g. "What copper do I really have?"  $\rightarrow$  Cu-OFE? Cu-HCP? Cu-ETP? Cu-DHP?)
  - Influence of manufacturing processes?  $\rightarrow$  Recrystallisation
- Network fineness (vs. computing time)
- Cooling capacities/ inflow conditions
- Evaluation at singular points not practical
- Idealization
  - Active volume in the chip
  - Layer thickness / homogeneity
  - Constant heat dissipation via cooling surfaces
  - Neglect of temperature-related process steps






*Thermal simulation of electronic systems during design - Conjugate Heat Transfer* 

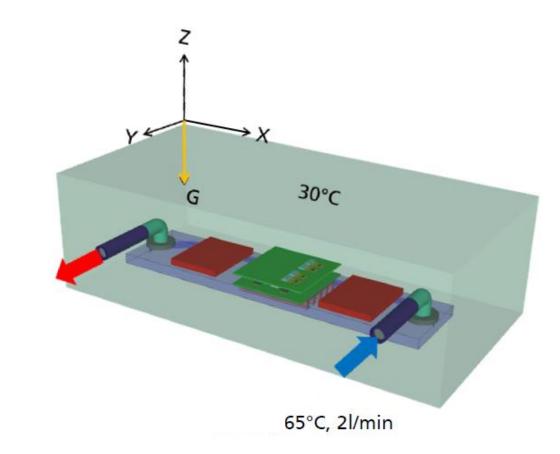
#### Example simulation with 6SigmaET

- Simulation of an isolating DC/DC converter
- Goals
  - Compliance with the component-specific boundary conditions
  - Identify challenges early on and develop solutions



#### Slide 103

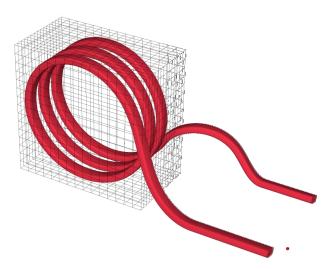
## *Thermal simulation of electronic systems during design - Conjugate Heat Transfer*

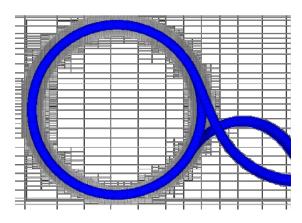

- Idealization
  - Right-angled edges
  - Ideal contact surfaces, solid-solid and fluid-solid
  - No roughness (with restriction)
  - No rounding (special networking)
  - Classification of the components according to their relevance
    - Detailed, Flow obstruction, Decorative
- Material data
  - Characteristic values for each material suitable for the desired simulation
  - See data sheet information
  - Verification of the data



Thermal simulation of electronic systems during design - Conjugate Heat Transfer

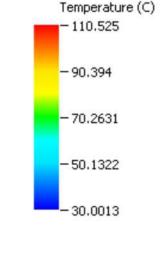
- Boundary conditions
  - Temperature
    - **Environment**
    - Coolant
  - Current
    - Components
    - Speed
    - Volume flow
  - Gravitation
  - Radiation

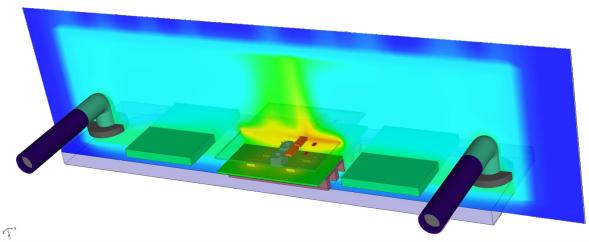

Slide 105






Thermal simulation of electronic systems during design - Conjugate Heat Transfer


- Networking
  - Cartesian grid
  - Too large elements can lead to unwanted contact points
  - Grid Control Variants
    - Direction
      - Quantity
      - Size
      - Approximating the geometry
        - Size of the cells in the structure
        - Size of the cells in the surrounding fluid
        - Inflation



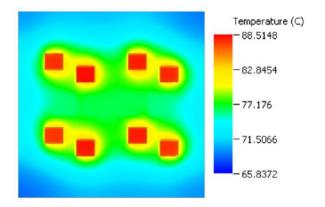


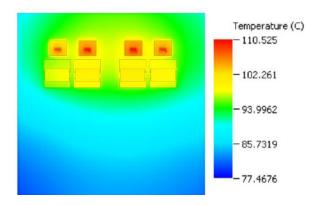



- The computing time depends on
  - parallelization, number of cells, type of cells, etc.
- Display of results
  - Temperature (component, environment, distribution)
  - Speed, pressure
  - Ohmic losses



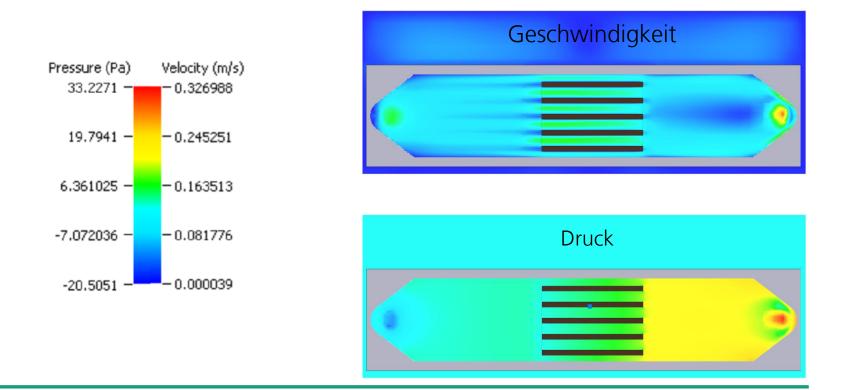






Slide 107

#### Simulation result (example 6SigmaET)

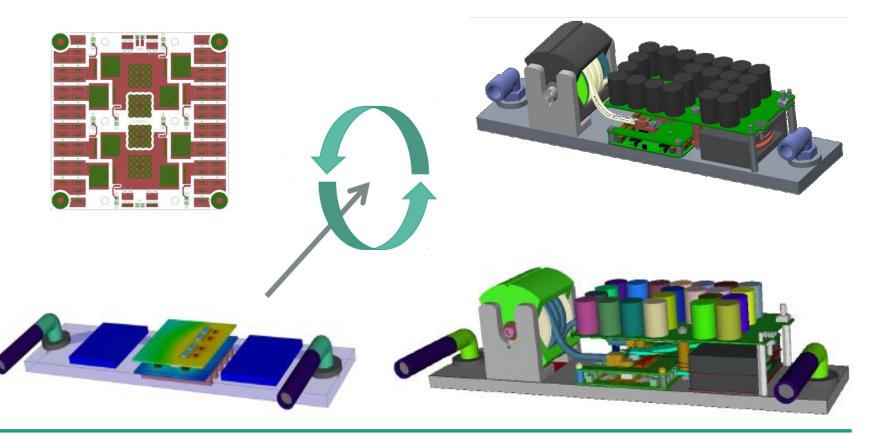
#### List of the temperature of each component


| Owner PCB    | Junction<br>Temperature                                                                                                                                            | Mean Volume<br>Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Driver_Board | 108.1                                                                                                                                                              | 108.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driver_Board | 110.1                                                                                                                                                              | 110.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driver_Board | 110.6                                                                                                                                                              | 110.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driver_Board | 109.2                                                                                                                                                              | 109.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Module       | 87.89                                                                                                                                                              | 87.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Module       | 87.39                                                                                                                                                              | 87.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Module       | 87.83                                                                                                                                                              | 87.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Module       | 87.2                                                                                                                                                               | 87.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Module       | 87.99                                                                                                                                                              | 87.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Module       | 87.4                                                                                                                                                               | 87.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Module       | 88.43                                                                                                                                                              | 88.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Module       | 87.69                                                                                                                                                              | 87.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driver_Board |                                                                                                                                                                    | 97.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driver_Board |                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Driver_Board |                                                                                                                                                                    | 100.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Driver_Board |                                                                                                                                                                    | 99.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Driver_Board<br>Driver_Board<br>Driver_Board<br>Driver_Board<br>Module<br>Module<br>Module<br>Module<br>Module<br>Module<br>Module<br>Driver_Board<br>Driver_Board | Owner PCBTemperatureDriver_Board108.1Driver_Board110.1Driver_Board110.6Driver_Board109.2Module87.89Module87.39Module87.2Module87.99Module87.4Module87.4Module87.69Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0Driver_Board0 </td |








- Simulation result (example 6SigmaET)
  - Flow simulation

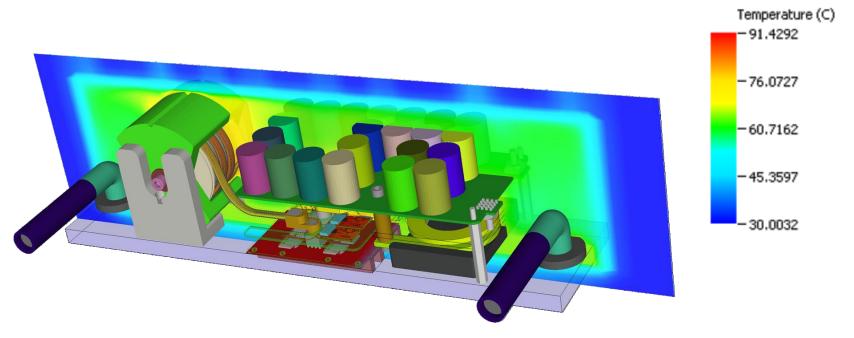




#### Slide 109

Model iterations  $\rightarrow$  Import of CAD data, layout programs

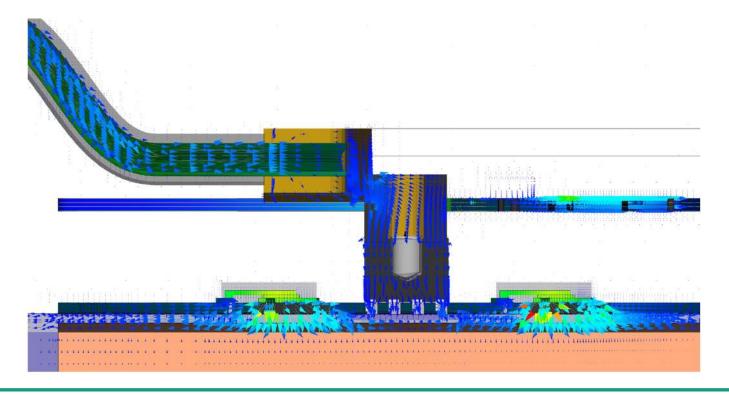



Slide 110

Fraunhofer

#### Simulation methods and theoretical consideration Thermal simulation of electronic systems during design - Conjugate Heat Transfer

#### Simulation results of the final model (example 6SigmaETO)


DC/DC converters



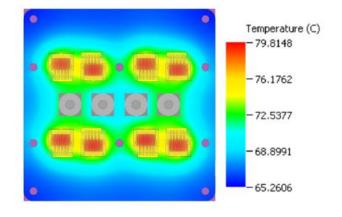
### Simulation methods and theoretical consideration Thermal simulation of electronic systems during design - Conjugate Heat Transfer

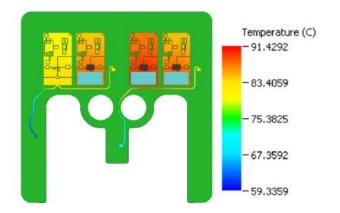
Simulation evaluation (example 6SigmaETO)

Heat flow transformer coiling, connection, module



Slide 112





#### Simulation methods and theoretical consideration Thermal simulation of electronic systems during design - Conjugate Heat Transfer

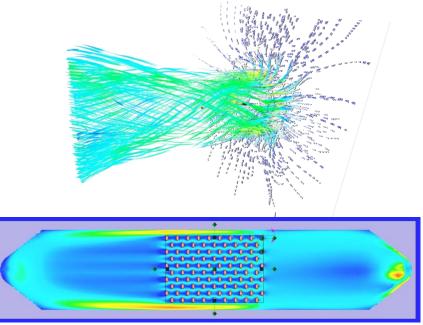
#### Simulation result (example 6SigmaET)

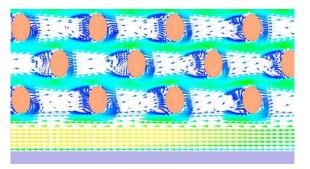
#### List of the temperature of each component

|                            | Owner PCB    | Junction<br>Temperature | Mean Volume<br>Temperature |
|----------------------------|--------------|-------------------------|----------------------------|
| Gate_switch_1 (Case)       | Driver_Board | 85.3                    | 85.3                       |
| Gate_switch_2 (Case)       | Driver_Board | 89.47                   | 89.47                      |
| Gate_switch_3 (Case)       | Driver_Board | 91.81                   | 91.81                      |
| Gate_switch_4 (Case)       | Driver_Board | 89.82                   | 89.82                      |
| Switch_1 (IPT020)          | Module       | 75.91                   | 75.91                      |
| Switch_2 (IPT020)          | Module       | 76.42                   | 76.42                      |
| Switch_3 (IPT020)          | Module       | 76.55                   | 76.55                      |
| Switch_4 (IPT020)          | Module       | 76.1                    | 76.1                       |
| Switch_5 (IPT020)          | Module       | 76.3                    | 76.3                       |
| Switch_6 (IPT020)          | Module       | 76.49                   | 76.49                      |
| Switch_7 (IPT020)          | Module       | 76.44                   | 76.44                      |
| Switch_8 (IPT020)          | Module       | 76.35                   | 76.35                      |
| Gate_Resistor_1 (Resistor) | Driver_Board |                         | 83.43                      |
| Gate_Resistor_2 (Resistor) | Driver_Board |                         | 87.71                      |
| Gate_Resistor_3 (Resistor) | Driver_Board |                         | 89.89                      |
| Gate_Resistor_4 (Resistor) | Driver_Board |                         | 88.14                      |









# Simulation methods and theoretical consideration

Thermal simulation of electronic systems during design - Conjugate Heat Transfer

#### Further possibilities

- Radiation
  - Within the system
  - Solar radiation
- Replacement models
  - Fan
  - Peltier element
- Transient
- Hybrid cells
  - Further refinement of the geometry mapping





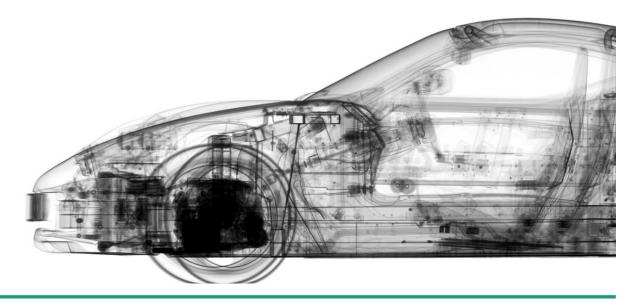


# Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics

- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration

#### Test procedure and analysis


- General
- AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide 115



#### **Reliability and requirements**

- Reliability is the probability that a product will properly meet its specific requirements for a specified period of time under certain environmental conditions (VDI Guideline 4001)
- Reliability is a function of time and time can be measured in various ways:
  - Operating time
  - Performance
  - Life time
  - Load Cycles





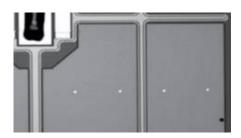
# Packaging Technologies in Power Electronic Modules

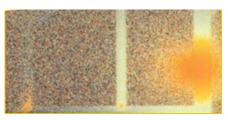
Packaging and interconnection technologies for power electronics

- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
- Test procedure and analysis
  - General
  - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide 117




#### **Overview - Test and reliability**


#### Non-destructive examination methods

- Optical microscopy
- 3D laser scanning (laser profilometer)
- Ultrasonic microscopy
- Measurement of electrical quantities/ parameters
- Lock-in thermography

#### **Destructive examination methods**

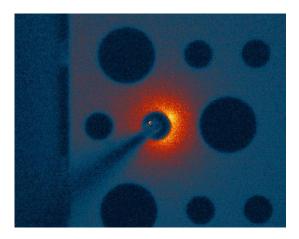
- Metallographic preparation / grinding technique
- Shear and pull test
- Partial discharge measurement
- Nano-Indentation
- FIB preparation (Focused Ion Beam)

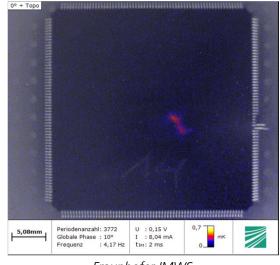












### **Test procedure and Analysis** Lock-In Thermography - Hotspot Troubleshooting

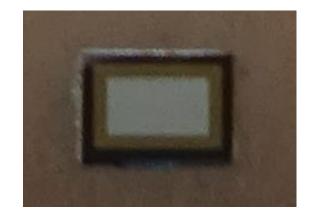
### Non-destructive examination method

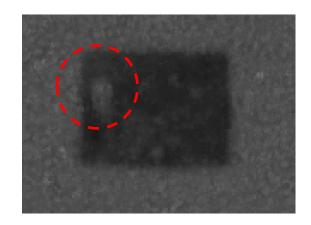
Electrical defects in test item

- Principle/ process steps
  - Stimulation of the test object with electrical pulses
  - Localization of the hotspots (power loss) in the test object by means of infrared camera






Fraunhofer IMWS




### Test procedure and Analysis Ultrasonic microscopy/ acoustic microscopy

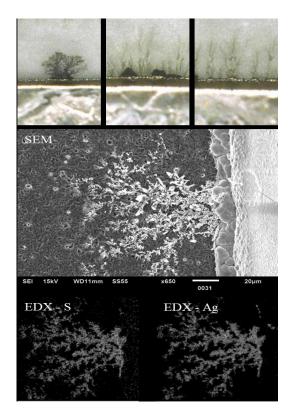
### Non-destructive examination method

- Defects, material properties and material changes
- Blowholes, cracks, etc. in solder and sintered layers
- Wetting behaviour between semiconductor and substrate
- Principle/ process steps
  - Generation of images from the interior of an object by means of ultrasonic pulses








Slide 121

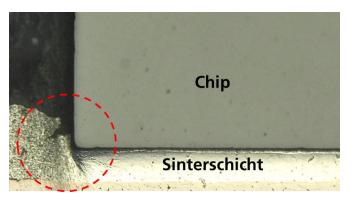
# Test procedure and Analysis

# Partial discharge measurement/ investigation of the insulation strength

# Destructive examination method

- Insulation strength or defects in the insulation system
- Exceeding the limit of the material typical breakdown field strength
- Sliding discharges, internal and external partial discharges (corona)
- Principle/ process steps
  - Partial discharge measuring device/plant
  - Determination of the application-related partial discharge interruption voltage
  - Measure and evaluate PD pulses from the test object



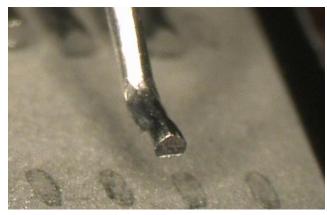



Metallographic preparation / microsection analysis

#### Destructive examination method

- Quality of the interconnection layers (e.g. solder and sinter layer) between chip and substrate)
- Material grain boundaries/structure
- Principle/ process steps
  - Disconnect
  - Embedding (warm, cold)
  - Grinding
  - Polishing







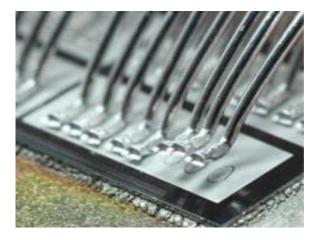

Shear strength analysis/ investigation of mechanical adhesion

#### Destructive examination method

- Quality and reliability of bonding wires, soldered and sintered semiconductor devices
- Principle/ process steps
  - Measurement of contact strength in force per area
  - Shear tester with shear blade






🗾 Fraunhofer IISB

Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

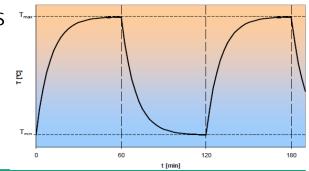
#### Test procedure and Analysis Overview - Service life and reliability

- Active Power Cycling
- Passive Power Cycling / Thermal Shock Test
- Storage Tests (HTRB, HTGB, H3TRB)
- Statistical analysis
- Lifetime modelling





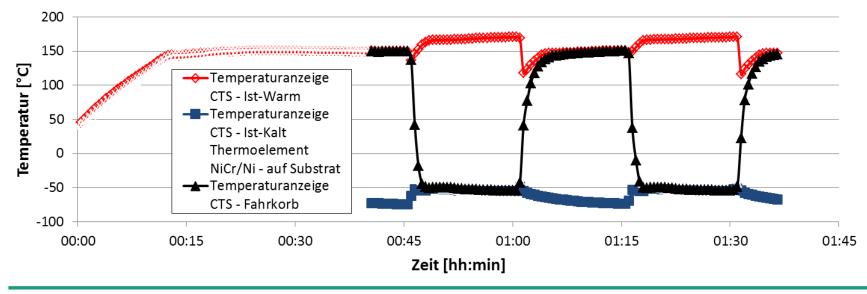
Fraunhofer


Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB

Temperature shock test or passive load cycle test

#### Destructive examination method

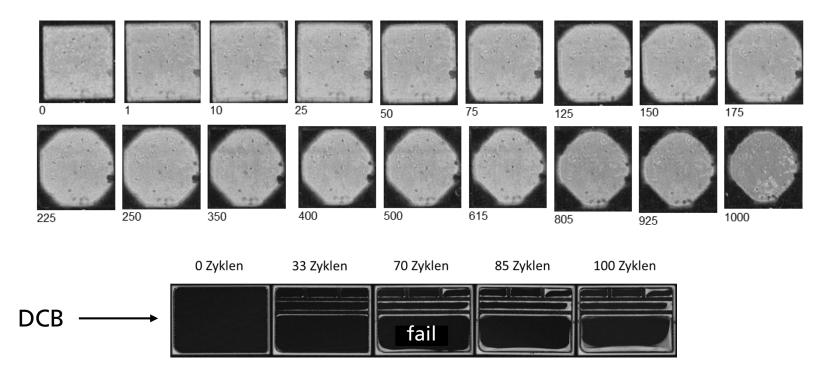
- Thermal shock resistance of materials, joints and superstructures
- Failure prediction (first bond? solder point? potting? etc.)
- Principle/ process steps
  - Thermal chamber with hot and cold sections
  - Temperatures from -50 °C to +150 °C
  - With and without holding time
  - Typical number of load cycles: 100 to 1000 cycles
  - Failure criteria such as delamination (e.g. solder), crack length, electrical damage








Temperature shock test or passive load cycle test


- Problems and effects on the test result
  - Concept of the inspection equipment
  - "not directly visible" setting parameters (maintenance, etc.)
  - Thermal mass of the test specimen
  - Filling level of the test chamber (thermal resistance)





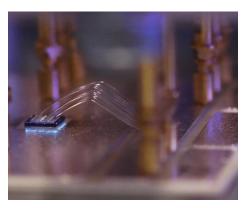
Temperature shock test or passive load cycle test


- Problems and effects on the test result
  - Evaluation is difficult → Limits of the failure criterion can only be interpreted subjectively



Slide 127

Temperature shock test or passive load cycle test


- Evaluation with software support
  - Detection of delamination via grey values or via edge search
  - Automatic recognition of several components on one SAM image
  - Failure detection according to defined criteria (e.g. 20% area reduction)



### **Test procedure and Analysis** Active Power Cycling

#### Destructive examination method

- Quality of the interconnection layers (e.g. solder and sinter layer between chip and substrate)
- Thermal impedance measurement Z<sub>th</sub> at each cycle
- Principle/ process steps
  - Individual setting of the gate voltage for each test object
  - Automatic End-of-Life Detection
  - Heating current from 0.1 A to 2 kA
  - Heating voltage up to 35 V
  - Heating and cooling capacity up to 20 kW
  - Cooling temperature from -60 °C to +350 °C

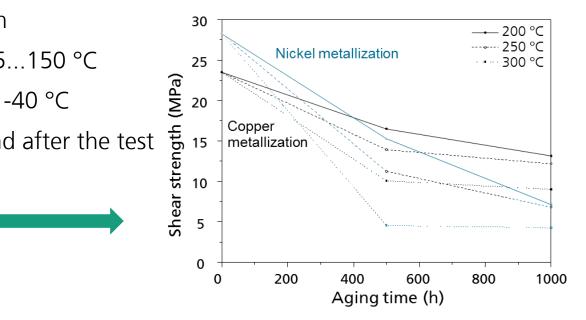




#### High temperature and cold storage

#### Destructive examination method

Change of solder materials, adhesives, packaging and interconnection technology and semiconductor properties


#### Principle/ process steps

- Uninterrupted bearing stress
- Standard test time 1000h
- Constant temperature 85...150 °C
- Standard cold storage at -40 °C
- Measurements during and after the test
- Example:
  - Chip on substrate
  - PbSn5 Solder material
  - shear strength over time

Slide 130

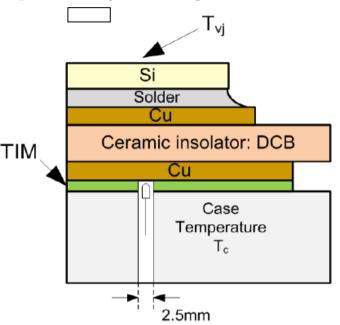
# 🗾 Fraunhofer

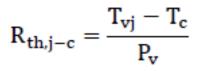




# Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics

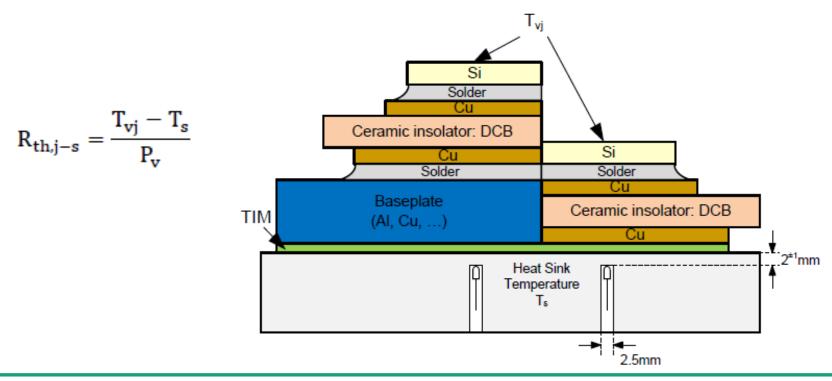

- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary


Slide 131



#### Characterization of modules according to AQG 324 (LV 324)

- Determination of the **thermal resistance** of individual components in the power module
- DIN EN 60747-15:2012, clause 5.3.6.1: **R**<sub>th</sub>, **j-c**
- Important:
  - The position and distance of the temperature sensor that determines the reference point for defining the **reference temperature T**, must be documented
  - The temperature sensor must be located as close as possible to the power module
  - When measuring  $T_c$ , a hole (Ø 2.5 mm) must be made centrally under the DUT (device under test)
  - Information on the TIM material must be given (manufacturer, designation, thickness, thermal conductivity)

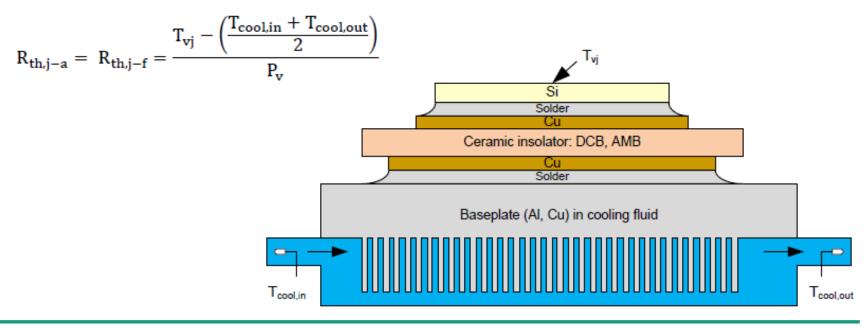







Characterization of modules according to AQG 324 (LV 324)

- Determination of **the thermal resistance** of individual components in the power module
- DIN EN 60747-15:2012, clause 5.3.6.4: Rth, j-s
- Reference point, **reference temperature**  $T_s \rightarrow$  Heat sink




#### Slide 133

Dr. Christoph F. Bayer et al., Packaging and Modules Departement DEVICES AND RELIABILITY © Fraunhofer IISB 🗾 Fraunhofer

### Characterization of modules according to AQG 324 (LV 324)

- Determination of the **thermal resistance** of individual components in the power module
- Supplementary test to DIN EN 60747-15:2012
- Reference point, **reference temperature T<sub>cool,in</sub> / T<sub>cool,out</sub> →** Liquid cooling systems
- Documentation  $\rightarrow$  Coolant, pressure of the coolant circuit and coolant flow



# Packaging Technologies in Power Electronic Modules

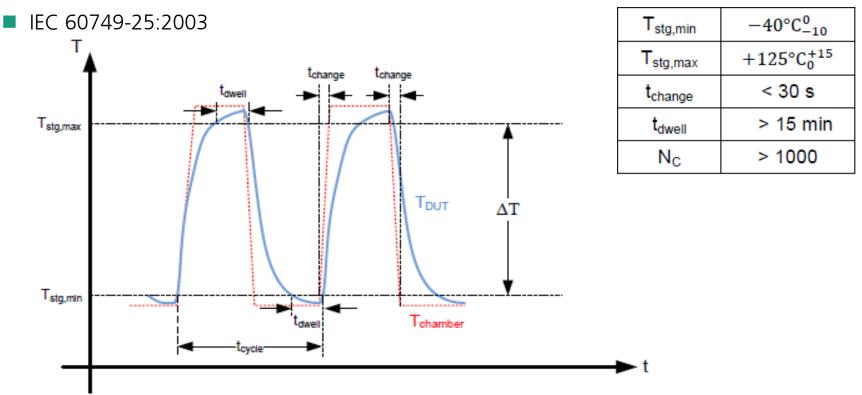
Packaging and interconnection technologies for power electronics

- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
  - Test procedure and analysis
    - General
    - AQG 324 (LV 324)
- Test setups and parameters
  - Summary

Slide 135



#### Characterization of modules according to AQG 324 (LV 324)


Determination of the resistance to mechanical stress due to passive temperature changes

- IEC 60749-25:2003
  - Testing only in a two-chamber system (air/air), single-chamber or three-chamber system not permitted
  - Focus on cycle frequency for solder joints (1 2 cycles per hour)
  - T<sub>dwell</sub> > 15 min (dwell time) for the highest / lowest temperature
  - Testing of power modules  $\rightarrow$  T<sub>stg,min</sub> = -40 °C / T<sub>stg,max</sub> = +125 °C
  - t<sub>change</sub> < 30 s (transfer time)
  - Minimum number of cycles without failures/errors  $\rightarrow$  N<sub>C</sub> > 1000



Temperature shock test (TST) according to AQG 324 (LV 324)

Determination of the resistance to mechanical stress due to passive temperature changes



#### Slide 137

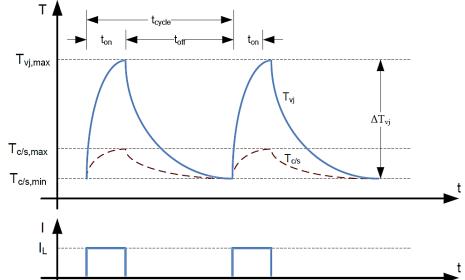


#### *Power Cycling (PC<sub>sec</sub>) Test according to AQG 324 (LV 324)*

- Targeted generation of stress situations in power modules under highly accelerated conditions → causing wear and tear
- QL-01 Power Cycling (PC<sub>sec</sub>): Stress formation in the near area of the chip connection (die-attach and top side contact) by limiting the parameter t<sub>on</sub> < 5 s (on-time of the load current)
- IEC 60749-34:2011

| Parameter                   |                 | Value                                  |
|-----------------------------|-----------------|----------------------------------------|
| On-time of the load current | t <sub>on</sub> | < 5 s                                  |
| Value of load current       | ۱L              | > 0.85·I <sub>CN</sub> <sup>a, b</sup> |
| Gate voltage                | Vgate           | typically 15 ∨ <sup>c</sup>            |

<sup>a</sup> The value of the load current > 0.85 I<sub>CN</sub> must only be used for one node.


<sup>b</sup> A value < 0.85·I<sub>CN</sub> can be selected for the second node in order to allow a suitable difference of the temperature rises to be set.

<sup>c</sup> The gate voltage for testing IGBT and MOSFET can fall below the 15 V (e.g., when contact currents become too high), if – due to the thermal properties of the module – the desired temperature rise cannot be achieved with on-times of t<sub>on</sub> < 5 s. For this, however, it must always be ensured that the switch is permanently operated in the saturated range. In these cases, the gate voltage used must only be set once at the start of the tests and documented in each case.



Power Cycling (PC<sub>sec</sub>) Test according to AQG 324 (LV 324)

- QL-01 Power Cycling (PC<sub>sec</sub>)
- Test conditions:
- The DUTs must be energized at least until the first EOL criterion occurs
- However, it is strongly recommended that T<sub>c/s,max</sub> the DUTs continue to be loaded after the first EOL criterion is reached to improve the evaluation of the results



| Parameter                                                     |                       |  |
|---------------------------------------------------------------|-----------------------|--|
| Temperature rise of virtual junction temperature (starting    | $\Delta T_{vj,start}$ |  |
| value for test after settling process)                        |                       |  |
| Duration of settling process (in cycles)                      | N <sub>start</sub>    |  |
| Load current                                                  | ١L                    |  |
| On-time of the load current (heating period)                  | t <sub>on</sub>       |  |
| Off-time of the load current (cooling period)                 | t <sub>off</sub>      |  |
| Minimum virtual junction temperature at the start of the test | T <sub>vi,min</sub>   |  |
| Maximum virtual junction temperature at the start of the test | T <sub>vj,max</sub>   |  |
| Coolant feed temperature                                      | T <sub>cool</sub>     |  |
| Gate voltage                                                  | Vgate                 |  |



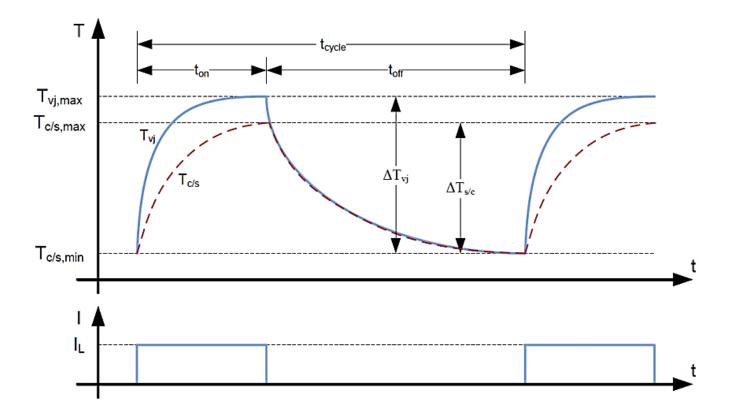
#### Power Cycling (PC<sub>sec</sub>) Test according to AQG 324 (LV 324)

- QL-02 Power Cycling (PC<sub>min</sub>): Stress formation both in the chip-remote connection (system soldering) and in the near area of the chip connection (die attach, top-side contacting)
- t<sub>on</sub> > 15 s (on-time of the load current)
- Test conditions:

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | Value                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| On-time of the load current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t <sub>on</sub>                                                                           | > 15 s                                                                                          |
| Value of load current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ١L                                                                                        | > 0.85·I <sub>CN</sub> <sup>a</sup>                                                             |
| Gate voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>gate</sub>                                                                         | typically 15 V <sup>b</sup>                                                                     |
| <ul> <li><sup>a</sup> A value &lt; 0.85·I<sub>CN</sub> can be selected for the second stest conditions in order to allow a suitable difference be set.</li> <li><sup>b</sup> The gate voltage for testing IGBT and MOSFET can contact currents become too high), if – due to the module – the desired temperature rise cannot be at ton &gt; 15 s. For this, however, it must always be en permanently operated in the saturated range. In the used must only be set once at the start of the test</li> </ul> | ce of the te<br>an fall below<br>thermal pro<br>achieved w<br>sured that t<br>nese cases, | w the 15 V (e.g. when<br>operties of the<br>ith on-times of<br>he switch is<br>the gate voltage |



*Power Cycling (PC<sub>sec</sub>) Test according to AQG 324 (LV 324)* 


- QL-02 Power Cycling (PC<sub>min</sub>)
- Test conditions:

| Parameter                                                   |                       |  |
|-------------------------------------------------------------|-----------------------|--|
| Temperature rise for virtual junction temperature (starting | $\Delta T_{vj,start}$ |  |
| value for test after settling process)                      |                       |  |
| Duration of settling process (in cycles)                    | N <sub>start</sub>    |  |
| Load current                                                | ١L                    |  |
| On-time of the load current (heating period)                | t <sub>on</sub>       |  |
| Off-time of the load current (cooling period)               | t <sub>off</sub>      |  |
| Average junction temperature                                | T <sub>vj,avg</sub>   |  |
| Maximum junction temperature at the start of the test       | T <sub>vj,max</sub>   |  |
| Heat sink temperature (indirect cooled modules)             | Ts                    |  |
| Base plate temperature (modules with base plate)            | T <sub>c</sub>        |  |
| Coolant inlet temperature                                   | T <sub>cool</sub>     |  |
| Gate voltage                                                | V <sub>gate</sub>     |  |
| Thermal resistance (determined in the module test)          | R <sub>th</sub>       |  |



*Power Cycling (PC<sub>sec</sub>) Test according to AQG 324 (LV 324)* 

- QL-02 Power Cycling (PC<sub>min</sub>)
- Test conditions:





Slide 142

Power Cycling (PC<sub>sec</sub>) Test according to AQG 324 (LV 324)

#### Failure and evaluation criteria

- **QL-01** Power Cycling ( $PC_{sec}$ ) and QL-02 Power Cycle ( $PC_{min}$ )
- It is recommended to inspect the test specimens for cracks in the solder joints, substrates, tool parts and housings after the end of the test using ultrasonic microscopy. Other relevant thermal and mechanical connections with effects on the EOL criteria should be checked.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  | Change from<br>standard value |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|
| Forward voltage                                                                                                                                                                                                                                                                                                                                                                                                                       | IGBT: V <sub>CE,sat</sub><br>MOSFET: V <sub>DS</sub><br>Diode: V <sub>F</sub> , V <sub>FSD</sub> | +5% <sup>a</sup>              |
| Increase of thermal resistance Rth,j-c, Rth,j-s, Rth,j-f                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  | +20%                          |
| <ul> <li><sup>a</sup> Note: See also the notes on the settling process under test conditions</li> <li><sup>b</sup> Note: It has to be ensured that the duration of temperature rise is sufficient for the calculation of static R<sub>th</sub>, or an additional online R<sub>th</sub> measurement should be performed without removing the power modules from the test bench, when TIM or a baseplate is part of the DUT.</li> </ul> |                                                                                                  |                               |



#### High Temperature Storage (HTS) Test according to AQG 324 (LV 324)

Storage of power modules at elevated temperatures

#### IEC 60749-6:2002

- If the specimens to be tested are classified for a temperature above 125 °C, this higher temperature must be used for the test
- In the case of intermediate measurements (if agreed with the purchaser), the test specimens must be removed from the test chamber at TRT and replaced at TRT
- It is recommended that the DUT be examined by SAM analysis at the above defined times during this test and the degree of delamination at the connection points be documented

| Parameter                               | Value    |
|-----------------------------------------|----------|
| Test duration                           | 1000 h   |
| Ambient temperature $T_a = T_{stg,max}$ | ≥ 125 °C |



Departement DEVICES AND RELIABILITY © Fraunhofer IISB

#### Low Temperature Storage (LTS) Test according to AQG 324 (LV 324)

- Storage of power modules at very low temperatures
- Investigation of ageing effects such as embrittlement and crack formation in the power module

#### JEDEC JESD-22 A119:2009

- Test must be performed at -40 °C
- If the specimens to be tested are classified for a temperature below -40 °C, this lower temperature must be used for the test
- In the case of intermediate measurements (if agreed with the purchaser), the test specimens must be removed from the test chamber at TRT and replaced at TRT
- It is recommended that the DUT be examined by SAM analysis at the above defined times during this test and the degree of delamination at the connection points be documented

| Parameter                               | Value    |
|-----------------------------------------|----------|
| Test duration                           | 1000 h   |
| Ambient temperature $T_a = T_{stg,min}$ | ≤ -40 °C |



# High Temperature Reserve Bias (HTRB) Test according to AQG 324 (LV 324)

- Determination of weak points in the layer structure of chip passivation and chip edge sealing as a function of time.
- Focus on production-related ionic impurities that are formed under the influence of temperature and electric fields and thus increase the surface charges
- Especially relevant for chips without passivation such as in IGBT and MOSFET power modules
- Test according to IEC 60747-9:2007 (IGBT) and IEC 60747-8:2010 (MOSFET)

| Parameter                                         | Value                                                                      |
|---------------------------------------------------|----------------------------------------------------------------------------|
| Test duration                                     | ≥ 1000 h                                                                   |
| Ambient temperature T <sub>a</sub>                | T <sub>vj,max</sub> - T <sub>(Pv)</sub> *                                  |
| Collector-emitter voltage<br>Drain-source voltage | $V_{CE} \ge 0.8 V_{CE,max}$ (IGBT)<br>$V_{DS} \ge 0.8 V_{DS,max}$ (MOSFET) |
| Gate voltage                                      | $V_{GE} = 0 \vee (IGBT)$<br>$V_{GS} = 0 \vee (MOSFET)$                     |

\*  $T_{(Pv)}$  defines the heat input in the semiconductor caused by the leakage losses



#### High Temperature Gate Bias (HTGB) Test according to AQG 324 (LV 324)

- Investigation of the combined effect of electrical and thermal loading of semiconductor devices with gate connection (MOSFET and IGBT) as a function of time
  - The integrity of the gate dielectric
  - The state of the semiconductor/dielectric interface
  - The contamination of the semiconductor by mobile ions

| Parameter                          | Value                                                                                                        |                                                                            |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|                                    | Variant 1                                                                                                    | Variant 2                                                                  |  |
| Test duration                      | For each DUT                                                                                                 | 50% of the DUTs, each with                                                 |  |
|                                    | $\geq$ 500 h, V <sub>GE</sub> or V <sub>GS</sub> > 0<br>$\geq$ 500 h, V <sub>GE</sub> or V <sub>GS</sub> < 0 | ≥ 1 000 h, $V_{GE}$ or $V_{GS}$ > 0<br>≥ 1 000 h, $V_{GE}$ or $V_{GS}$ < 0 |  |
| Ambient temperature T <sub>a</sub> | T <sub>vi,max</sub>                                                                                          |                                                                            |  |
| Collector-emitter voltage or       | $V_{CE} = 0 \vee (IGBT)$                                                                                     |                                                                            |  |
| Drain-source voltage               | $V_{DS} = 0 \vee (MOSFET)$                                                                                   |                                                                            |  |
| Gate voltage                       | V <sub>GE</sub> = V <sub>GE,max</sub> (IGBT), DUT switched off                                               |                                                                            |  |
|                                    | $V_{GS} = V_{GS,max}$ (MOSFET), DUT switched off                                                             |                                                                            |  |



#### High Humidity, High Temperature Reverse Bias (H3TRB) Test according to AQG 324 (LV 324)

- Investigation of the weak points in the entire module structure including the power semiconductor
  - Permeability of moisture in the passivation layer
  - Production-related ionic impurities
  - Thermomechanical stresses on the package and interaction with semiconductor chips
  - Formation of increased leakage currents
  - Corrosive substances that are created by the influence of corrosive gas and the interaction of these substances with the packaging technology and the chip



# High Humidity, High Temperature Reverse Bias (H3TRB) Test according to AQG 324 (LV 324)

- Test according to IEC 60749-5:2003
  - Test must be performed with constant voltage load
  - Test must be performed with permanently locked DUTs

| Parameter                                          | Value                                                                                                    |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Test duration                                      | $\geq$ 1000 h (switched off)                                                                             |
| Temperature                                        | 85 °C (constant)                                                                                         |
| Relative humidity                                  | 85 %                                                                                                     |
| Collector-emitter voltage*<br>Drain-source voltage | $V_{CE} = 0.8 \cdot V_{CE,max}$ (IGBT), max. 80 V<br>$V_{DS} = 0.8 \cdot V_{DS,max}$ (MOSFET), max. 80 V |
| Gate voltage                                       | $V_{GE} = 0 V (IGBT)$<br>$V_{GS} = 0 V (MOSFET)$                                                         |

\*To avoid locally reducing the relative humidity influence too strongly through power loss created by leakage currents, the voltage applied to devices must be set to 80% of the specified nominal breakdown voltage



#### Mechanical Shock (MS) Test according to AQG 324 (LV 324)

- Investigation of the resistance of the PCU (Power Electronic Converter Unit) to mechanical shocks (error patterns such as cracks, detachment of the component)
- DIN EN 60068-2-27
  - Mechanical stress during handling, transport and field use
  - Half sinus wave with defined amplitude and time (e.g. 30 g/ 18 ms)

| Peak acceleration                                      | 500 m/s <sup>2</sup> |
|--------------------------------------------------------|----------------------|
| Shock duration                                         | 6 ms                 |
| Shock form                                             | half-sine            |
| Number of shocks per direction $(\pm X, \pm Y, \pm Z)$ | 10                   |
| Number of DUTs                                         | 6                    |



#### Vibration (V) Test according to AQG 324 (LV 324)

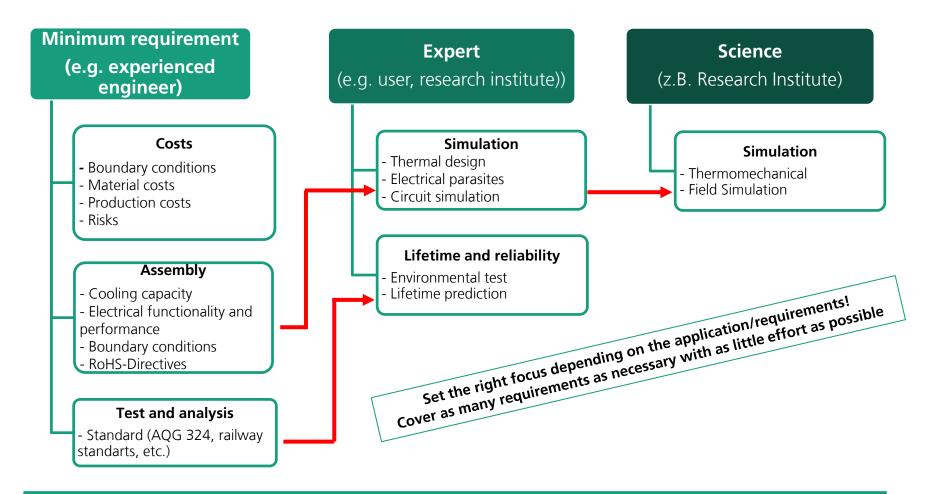
- Investigation of the mechanical structure of PCUs for automotive applications
  - Simulation of the vibration load of a module during operation to validate the module resistance against vibrations (error patterns such as material fatigue, component separation)
- DIN EN 60068-2-6
  - Frequency change of 1 octave/ min (total duration approx. 7 min)
  - Frequency from 10 Hz to 2000 Hz
  - Amplitude approx. 5 g
  - Execution 4 times in x, y and z direction (12 times in total)



# Packaging Technologies in Power Electronic Modules

Packaging and interconnection technologies for power electronics

- Comparison and evaluation of packaging methods
- Packaging concepts
- Interconnection technologies
- Packaging at Fraunhofer IISB
- Thermal design and insulation coordination
- Simulation process and theoretical consideration
- Test procedure and analysis
  - General
  - AQG 324 (LV 324)
- Test setups and parameters
  - Summary


Slide **152** 



# Summary

# Aspects to be considered and procedure for module design

- What is needed?



#### Slide 153



🗾 Fraunhofer

### Summary Concept of component comparison

| Comparative consideration of the main aspects                                                                                                                                                                                                                                                                                                                                                                                                                                   | A | B | C | D |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| Expenses                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |   |   |
| Functionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   |   |   |
| Production possibilities (internal/external)                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |
| Longevity/ reliability                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |   |
| <ol> <li>Thermomechanical<br/>Most critical test: temperature shock test (TCT or TST), cold &amp; hot storage, etc. (possibly function test<br/>under extreme temperature conditions see above) or also load change test)</li> <li>Here, in case of unavailability, thermal and thermo-mechanical simulations are possible or other AVT<br/>options are exhausted until a target test value is reached or the equivalent stresses in the model are<br/>reduced, etc.</li> </ol> |   |   |   |   |
| 2. Vibration, mechanical shock<br>Test according to desired standard, as most critical (vibrometer, possibly HASS/HALT)                                                                                                                                                                                                                                                                                                                                                         |   |   |   |   |
| Here, in case of unavailability, vibrometric simulations (eigenmodes) and partial tests to improve the vibration resistance                                                                                                                                                                                                                                                                                                                                                     |   |   |   |   |
| 3. chemical, environmental compatibility Single gas tests for weak point detection Single gas test with $H_2S$ or $NO_2$ , as the most critical harmful gas tests for weak point detection                                                                                                                                                                                                                                                                                      |   |   |   |   |
| Here, in case of unavailability, examination of the weak points shown and the passivating metallization as well as the insulating coating                                                                                                                                                                                                                                                                                                                                       |   |   |   |   |



# References – mentioned in slides or listed

- M. März Scripts on Power Electronics
- U. Scheuermann Aufbau- und Verbindungstechnik
- AQG324 https://www.ecpe.org/research/working-groups/automotive-agg-324/
- Matlok, S.; Erlbacher, T.; Krach, F.; Eckardt, B., Switching SiC devices faster and more efficient using a DBC mounted terminal decoupling Si-RC element, Konferenzbeitrag European Conference on Silicon Carbide and Related Materials (ECSCRM) 2016, Halkidiki
- Banzhaf, Stefanie; Schwaiger, Stefan; Erlbacher, Tobias; Bauer, Anton J.; Frey, Lothar, Post-trench processing of silicon deep trench capacitors for power electronic applications; International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016, Prague
- F. Krach, N. Thielen, T. Heckel, A.J. Bauer, T. Erlbacher, L. Frey, Silicon integrated RC snubbers for applications up to 900V with reduced mechanical stress and high manufacturability, Konferenzbeitrag, Device Research Conference (DRC), 2016, Newark/DE
- F. Krach, T. Heckel, L. Frey, A. J. Bauer, T. Erlbacher, M. März, Innovative Monolithic RC-Snubber for Fast Switching Power Modules, Proceedings of 9th International Conference on Integrated Power Electronics Systems (CIPS), 2016
- Gruenler S., Rattmann G., Erlbacher T., Bauer A.J., Frey L., Fabrication and Characterization of High-Voltage Monolithic 3D Capacitors based on Through-Silicon-Via Technology, IEEE Internat. Interconnect Technology and Advanced Metallization Conference 2015, 18.-21. May 2015
- Knörr, M., Schletz A., Oertel S., Jank M., Semiconductor Joining through Sintering of Ag-Nanoparticles: Analysis of Suitability of Different Powders Using DSC and TGA Measurements. Proceedings of The World Congress on Particle Technology (WCPT6), Nuremberg, 26- 29-Apr-2010
- Kraft S., Zischler S., Schletz A., Properties of a novel silver sintering die attach material for high temperature high lifetime applications. SENSOR 2013, Nuremberg, DOI 10.5162/sensor2013/B3.3
- Kraft, S.; Schletz, A.; Maerz, M.: Reliability of silver sintering on DBC and DBA substrates for power electronic applications. International Conference on Integrated Power Electronics Systems, 06 – 08.03.2012, Nuremberg, VDE-Verlag, ETG-Fachbericht 133, pp. 439-444
- Kraft, S.; Tinter, R.; Schletz, A. Thermal Resistance Simulation and Measurement of a Double Sided Cooled Power Module. In Proceedings of the 8th European Advanced Technology Workshop on Micropackaging and Thermal management, IMAPS, La Rochelle, 2013.
- Waltrich, U., Bayer, C.F., Zötl, S., Zischler, S., Tokarski, A., Schletz, A., März, M., High Reliable Power Modules by Pressureless Sintering, CIPS 2018 10th International Conference on Integrated Power Electronics Systems, Stuttgart, 19.-22.03.2018
- Waltrich U., Yu Z., Schletz A., Reichenberger M.: Bonding Copper Terminals onto DBC Substrates of Power Modules by Resistance Projection Welding; IEEE EPDC, Nuremberg, 2015
- Fabian, Dresel, Sebastian, Letz, Sigrid, Zischler, Andreas, Schletz, Michael, Novak, (Continental, Division Powertrain), "Selective silver sintering of semiconductor dies on PCB" PCIM 05.-07. Juni 2018
- J. Müller, M. Novak, F. Dresel, C. F. Bayer, A. Schletz, M. März, Selective Silver Sintering on Organic-Based Circuit Boards, PCIM 2019.
- Zechun Yu, Stefan Zeltner, Norman Boettcher, Gudrun Rattmann, Juergen Leib, Christoph Friedrich Bayer, Andreas Schletz, Tobias Erlbacher, Lothar Frey, "Heterogeneous Integration of Vertical GaN Power Transistor on Si Capacitor for DC-DC Converters", ESTC Dresden 18.09.2018
- Zechun Yu, Shize Wang, Sebastian Letz, Christoph Friedrich Bayer, Felix Häußler, Andreas Schletz, Katsuaki Suganuma, " Optimization of Ag-Ag Direct Bonding for Wafer-Level Power Electronics Packaging via Design of Experiments," 2019 International Conference on Electronics Packaging (ICEP 2019), Niigata, Japan, 2019.
- H. L. Bach, Z. Yu, S. Letz, C. F. Bayer, U. Waltrich, A. Schletz, M. März: Vias in DBC Substrates for Embedded Power Modules. 10th Int. Conference on Integrated Power Electronics Systems (CIPS) 2018, pp. 144-148
- H. L. Bach, T. Endres, D. Dirksen, S. Zischler, C. F. Bayer, A. Schletz, M. Maerz: Ceramic Embedding as Packaging Solution for Future Power Electronic Applications. Int. Power Electronics Conference (ECCE IPEC) 2018, Niigata
- Hoang Linh Bach, Zechun Yu, Sebastian Letz, Christoph Friedrich Bayer, Uwe Waltrich, Andreas Schletz, Martin März, Vias in DCB-Substraten für eingebettete Leistungsmodule, PLUS Zeitschrift 2019
- Rauh, H.; Hutzler, A., Bayer, C.; Hofmann, M.: Integrierte E-Antriebsstränge durch intelligente Einzelzähne. Tagung Elektrische Traktions- und Hilfsantriebe für die Elektrifizierung und Hybridisierung von Kraftfahrzeugen, Würzburg 2015
- Bayer, C.F.; Baer, E.; Waltrich, U.; Malipaard, D.; Schletz, A., "Simulation of the electric field strength in the vicinity of metallization edges on dielectric substrates in Dielectrics and Electrical Insulation", IEEE Transactions on, vol.22, no.1, pp.257-265, Feb. 2015
- Bayer, C.F., Rosskopf, A., Grundlagen in der Simulation Basics, Dos, and Don't's, 13.10.2016 Nürnberg, ECPE Cluster-Schulung Simulation in der Leistungselektronik
- Bayer, C.F., Erstellen von Ersatzschaltbildern durch Parameterextraktion zur Optimierung der parasitären Eigenschaften von Schaltungen, 13.10.2016 Nürnberg, ECPE Cluster-Schulung – Simulation in der Leistungselektronik
- Bayer C. F., Waltrich U., Schneider R., Souedan A., Bär E., Schletz A., Partial Discharges in Ceramic Substrates - Correlation of Electric Field Strength Simulations with phase resolved partial discharge measurements, ICEP, Sapporo 2016
- Waltrich U., Malipaard D., Schletz A., Novel Design Concept for Modular Multilevel Converter Power Modules. PCIM, Nuremberg, 2014
- C. F. Bayer, "Korrosion in leistungselektronischen Modulen", Vortrag GMM-Fachgruppe 1.2.6 "Prozesskontrolle, Inspektion & Analytik" am 15. März 2018
- C. F. Bayer, "Electrochemical Corrosion in Power Modules due to Harsh Environments", Semicon West, San Francisco 09.-12.07.2018
- C. F. Bayer, A. Diepgen, Th. Filippi, C. Fuchs, S. Wüstefeld, S. Kellner, U. Waltrich, A. Schletz: Electrochemical Corrosion on Ceramic Substrates for Power Electronics Causes, Phenomenological Description, and Outlook. 10th Int. Conference on Integrated Power Electronics Systems (CIPS) 2018, pp. 161-167
- Hutzler A., Tokarski A., Schletz A., Extending the Lifetime of Power Electronic Assemblies by Increased Cooling Temperatures. ESREF, Arcachon, 2013
- Schletz A., Hutzler A., Müller N., Tokarski A., Design and Material Considerations for Extended Lifetime. ECPE Workshop Power Electronics Packaging. 12-13-Nov-2013, Baden-Dättwil, Switzerland
- Hutzler A., Wright A., Schletz, A., Increasing the Lifetime of Power Modules by Smaller Bond Wire Diameters. IMAPS Wire Bonding Workshop, San Jose, USA, 2014
- Hutzler A., Tokarski A., Kraft S., Zischler S., Schletz A., Increasing the lifetime of electronic packaging by higher temperatures: solders vs. silver sintering. ECTC Conference, Orlando, USA, 2014
- Letz S., Farooghian A., Simon F.-B., Schletz A., Modeling the rate-dependent inelastic deformation of porous polycrystalline silver films, ESREF 2018, 29th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Aalborg, Denmark, October 1-5, 2018
- Simon F.-B., Letz S., Schletz A., Influence of the pulse length and temperature swing on the relative lifetime estimation for sintered/soldered chip-on-substrate samples, Poster presented at ESREF 2018, 29th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Aalborg, Denmark, October 1-5, 2018
- Letz S. A., Lifetime calculation of automotive power modules based on PoF, ECPE Workshop Thermal and Reliability Modeling and Simulation of Power Electronics Components and Systems, Fuerth, 01-December-2016



# THANK YOU FOR YOUR ATTENTION!

#### Fraunhofer IISB

Schottkystraße 10 91058 Erlangen Germany

#### Dr. Christoph F. Bayer et al. christoph.bayer@iisb.fraunhofer.de

www.iisb.fraunhofer.de

#### Contact

Fraunhofer

K. Chuluunbandi, L. Bach, U. Waltrich, A. Schletz, T. Menrath