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Abstract

Keywords: Computer-Supported Cooperative Work, Component-based Software Devel-
opment, Groupware Frameworks, Distributed Systems, Tailorability, Extensibility

In today’s work environment we are faced with the increasing need to perform tasks
and tackle problems cooperatively, in a team. This need is driven, e.g., by the trend
towards growing distribution of teams, such as in the context of virtual organizations or
extended enterprises, task-specific groups of companies or divisions, working together in
a shared project, on the completion of a common product.

The goal of CSCW (Computer-Supported Cooperative Work) research is the design
and development of systems (often referred to as groupware systems) that support com-
munication, coordination and cooperation between the team members involved in a group
process. Groupware systems enable a distributed group of users to collaboratively work
on shared objects (documents, etc.).

Many of the cooperative work processes which are conducted in these teams are
evolving over time and require the support technology to exhibit a high degree of flexibility
and tailorability. As work processes evolve, the supporting groupware needs to be adapted
to the changing needs and requirements. In this context, we are faced with the need for
groupware applications that are not closed and monolithic, but which can be dynamically
extended, also by the end-users, in order to adapt the tools to the changing requirements.
This thesis aims to provide support for such flexible groupware.

One way of developing flexible, modular systems is component-based software devel-
opment, where systems are constructed from reusable software components, which can be
adapted and combined as required. The development of such components is often based
on an underlying component framework, which governs the way in which components are
created and later combined with each other.

The goal of this thesis is to aid the use and development of extensible component-
based groupware systems. This requires the design and development of a component
framework, which provides support for the flexible coupling of the components and for
dynamic distribution of the components. End-users need to be supported in locating
and retrieving the components that they require for their current task. Additionally, the
framework needs to support end-users as well as groupware developers in adapting the
collaboration support environment to the changing demands.

The thesis introduces Groupware Components as the basis for the development of

iii



iv ABSTRACT

flexible, adaptable groupware systems. Groupware Components are visually interactive
components which allow groups of users to collaboratively view and modify shared data
objects. Groupware Components can be coupled and assembled into comprehensive col-
laboration support environments. The resulting collaboration support environments are
dynamically extensible: New components can be added to the running system and can
immediately be used collaboratively on all connected machines.

The coupling of Groupware Components is based on a common shared domain ob-
ject model, which is dynamically replicated in the distributed system. One problem
which needs to be tackled when building flexible component-based collaboration sup-
port systems is how to support end-users and developers in finding and retrieving the
components required for a specific task. When introducing new components into the
system, the previously available components need to be able to access and invoke these
new components, without the need to modify the older components. In order to support
this, the thesis introduces a programming model termed task-based development. In this
model, components publish tasks which can be performed on instances of a shared object
model. This task information can be queried by the component server and can be used
to determine the required component for a certain activity to be performed on a specific
shared object. The tasks can be invoked either interactively by the end-users or by com-
ponent implementations, leading to an invocation of the related components. In this way,
flexible (loose) bindings between components are possible, which allow the collaboration
support system to by dynamically extended and reconfigured. The task-based program-
ming model and the separation between component and domain model implementation
also allow the coupling of different components (e.g., for different tasks or roles in the
collaborative process) on the same shared data objects.

End-user tailorability of the collaboration support environment is supported by an
interactive composition tool, which allows the combination of components into so-called
configurations. These configurations can be deployed via the server and can be used
collaboratively right away. This creation of configurations is also based on the task-
based programming model, which serves as the central unifying abstraction underlying
the components in the DyCE framework.

When developing component-based environments, developers need to communicate
their design ideas with each other. In order to support the design of component-based
groupware, the thesis introduces a number of extensions to the Unified Modeling Lan-
guage (UML), which allow developers to create design diagrams which specify issues
relevant to component-based groupware, such as component distribution, task bindings,
sessions, etc.

The development of Groupware Components is supported by the development frame-
work DyCE (Dynamic Collaboration Environment), which has been implemented in Java.
The DyCE framework has been used in a number of research projects for developing a
wide range of Groupware Components. A number of this components are presented,
along with the experiences gathered in the course of their development.



Zusammenfassung

Schlüsselworte: Computer-Unterstützte Gruppenarbeit, CSCW, Komponentenbasierte
Software-Entwicklung, Groupware Frameworks, Verteilte Systeme, Anpassbarkeit, Er-
weiterbarkeit

Unsere tägliche Arbeitswelt ist zunehmend geprägt von der Notwendigkeit, in Teams
gemeinsam Probleme zu bearbeiten und Aufgaben zu lösen. Diese Notwendigkeit ergibt
sich z.B. durch den wachsenden Trend zu orts- und zeit-übergreifenden Kooperations-
prozessen, z.B. im Kontext Virtueller Organisationen, durch aufgabenbezogene Firmen-
oder Abteilungsverbünde, die mit dem Ziel einer gemeinsamen Projektdurchführung oder
Produkterstellung auf Zeit zusammenarbeiten.

Inhalt der Forschungsrichtung CSCW (Computer-Supported Cooperative Work) ist
die Erforschung und Entwicklung von Systemen (sog. Groupware), welche die Kommuni-
kation, Koordination und Kooperation zwischen an Gruppenprozessen beteiligten Team-
Mitgliedern adäquat unterstützen. Groupware-Systeme ermöglichen es räumlich oder in
der Zeit verteilten Gruppen von Benutzern, miteinander an gemeinsamen Objekten (Do-
kumente, etc.) zu arbeiten.

Die kooperativen Arbeitsprozesse, die in diesen Teams durchgeführt werden, erfordern
hierbei ein großes Maß an Flexibilität und Gestaltungmöglichkeiten. In dem Maß, wie sich
die Kooperationsprozesse über die Zeit entwickeln, müssen sich die Arbeits- und Koopera-
tionsumgebungen diesen geänderten Erfordernissen anpassen. In diesem Zusammenhang
wird es wichtig, kooperative Anwendungen zu entwickeln, welche nicht monolithisch und
geschlossen sind, sondern welche sich dynamisch - von den Anwendern - erweitern lassen,
um die Arbeitsumgebungen an sich weiterentwickelnde Projektanforderungen anzupas-
sen. Hierzu soll die vorliegende Arbeit einen Beitrag leisten.

Ein Weg, flexible und modular erweiterbare Systeme zu konstruieren, ist der kompo-
nenten-basierte Ansatz. Die Entwicklung komponentenbasierter Anwendungen erfolgt oft
auf der Basis eines Entwicklungs-Frameworks. Ein solches Framework definiert das den
Komponenten zugrundeliegende Komponentenmodell ebenso wie die Art und Weise, in
der die Komponenten miteinander verbunden werden können.

Ziel der vorliegenden Arbeit ist es, die Realisierung komponentenbasierter koopera-
tiver Anwendungen zu unterstützen. Dies erfordert den Entwurf und die Realisierung
eines Entwicklungs-Frameworks, welches die Entwicklung kooperativer Komponenten er-
laubt. Innerhalb dieses Frameworks sind Mechanismen für die Kopplung der kooperativen
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vi ZUSAMMENFASSUNG

Komponenten ebenso vorzusehen wie für die dynamische Verteilung der Komponenten.
Endbenutzern muss die Suche nach und der Zugriff auf solche kooperativen Komponenten
ermöglicht werden. Darüber hinaus sollen sich die auf Basis des Frameworks entwickelten
Komponenten von Endbenutzern kombinieren und an so die Kooperationsumgebung ihre
aktuellen Aufgabenanforderungen anpassen lassen.

In der vorliegenden Arbeit werden für die Realisierung flexibler kooperativer Umge-
bungen kooperative Komponenten mit dem Namen Groupware Components vorgestellt.
Groupware Components sind visuell interaktive Komponenten, welche mehreren Benut-
zern die kooperative Anzeige und Modifikation gemeinsamer Objekte ermöglichen. Auf
der Basis eines gemeinsamen Objektmodells lassen sich diese Komponenten miteinander
koppeln und zu umfassenden kooperativen Anwendungen zusammenstellen.

Für die Entwicklung von Groupware Components wurde das Java-Framework DyCE
(Dynamic Collaboration Environment) realisiert, welches in der Arbeit vorgestellt wird.

Grundlage der Groupware Components ist die Trennung zwischen Komponenten-
implementierung und Datenmodell. Für die Entwicklung des objektorientierten anwen-
dungsbezogenen Datenmodells (domain data model) werden in Form eins Metamodells
Klassen im Entwicklungsframework bereitgestellt, welche von den Entwicklern entspre-
chend erweitert werden müssen. Die von den Komponenten gemeinsam genutzten Date-
nobjekte werden im verteilten System dynamisch repliziert und mittels transaktionsba-
sierter Modifikationen in einem konsistenten Zustand gehalten. In der Arbeit wird ein
Transaktionsmodell und eine Realisierung in Java vorgestellt, welches Konflikte, die bei
gleichzeitigen Modifiaktionen der gemeinsamen Datenobjekte entstehen, erkennen lässt
und diese Konflikte mittels selektivem Undo und partieller Neu-Replikation auflöst. In
der Arbeit wird des weiteren ein objektgebundener Ereignis-Verteilungs-Mechanismus
präsentiert, der dazu dient, Gruppen von Komponenten mittels Ereignissen zu koppeln,
die sich nicht direkt auf den gemeinsamen Objektzustand auswirken.

Die realisierten Groupware Components werden in einem Server gespeichert und ver-
waltet, von dem sie zur Laufzeit von den Benutzern abgerufen werden können. Neu ent-
wickelte Groupware Components lassen sich in den Komponenten-Server einfügen (re-
gistrieren) und stehen unmittelbar an allen angeschlossenen Clients für den Einsatz in
kooperativen Arbeitsprozessen zur Verfügung. Auf diese Weise lassen sich die Koopera-
tionsumgebungen dynamisch zur Laufzeit um neue Werkzeuge erweitern.

Eine spezielle Unterklasse der Groupware Components erlaubt die Ausführung einer
Komponente auf dem Server. Server-seitige Komponenten erleichtern die Realisierung
solcher kooperativen Arbeitsumgebungen, in denen einige Aufgaben nicht sinnvoll von
einem bestimmten Client (oder allen Clients) ausgeführt werden können, z.B. weil ihre
Ausführung nicht an einen bestimmten Nutzer oder eine bestimmte Nutzergruppe gekop-
pelt ist, sondern auch geschehen soll, wenn keine Benutzer eingeloggt sind. Beispiele für
solche Server-seitigen Komponenten sind Workflow Enactment Engines, welche auf dem
Server unabhängig von einem speziellen Client ausgeführt werden können und den Fort-
gang der Workflow-Prozesse steuern. Die Server-seitigen Komponenten können hierbei,
wie alle Komponenten, mit den gemeinsamen Daten interagieren und diese modifizieren.
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Ein Problem, welches bei dr Realisierung flexibler kooperativer Anwendungen auf
Basis gemeinsam genutzter Objekte zu lösen ist, ist das Auffinden von und der Zugriff auf
die für die kooperativen Aufgaben zu verwendenden Komponenten. Hierbei müssen auch
bereits existierende Komponenten auf neu registrierte Komponenten zugreifen können,
ohne dass an ihnen nachträgliche Änderungen erforderlich sind.

Grundlage hierfür ist das in dieser Arbeit vorgestellte Programmiermodell der Aufga-
bengestützten Entwicklung (”task-based development”). Eine Komponente greift hierbei
nicht direkt auf andere Komponenten zu und sie wird auch nicht direkt aufgerufen. Viel-
mehr publizieren alle Komponenten sogenannte ”Tasks”, welche sie auf Objekten des
gemeinsamen Objektraumes ausführen können. Tasks können dann sowohl von Kompo-
nenten selbst als auch durch Benutzeraktionen (z.B. durch Auswahl des gewünschten
Tasks aus einem Auswahlmenü in der Benutzungsschnittstelle) ausgeführt werden. Sie
dienen zur Laufzeit dazu, die benötigte Komponente für die kooperative Arbeit an ei-
nem gemeinsam genutzten Objekt zu ermitteln. Für die Kooperation unter Verwendung
mehrerer verschiedener Komponenten werden laufende Tasks in Kooperationssitzungen
(Sessions) zusammengefasst. Wird in einer Session eine Task auf der Instanz einer Klasse
des Anwendungsmodells ausgeführt, so ermittelt der ComponentBroker im Server aus
den Informationen im Task-Modell die benötigte Komponente. Die Komponentenimple-
mentierung wird dynamisch zu allen in der Session zusammengefasst Clients übertragen
und dort instanziiert.

Das objektorientierte Task-Modell wird in der Arbeit zusätzlich um Informationen
über die verwendeten Endgeräte und die jeweiligen Benutzer ergänzt. Auf diese Weise
können Komponentenentwickler Tasks publizieren, welche z.B. nur bei Verwendung be-
stimmter Endgeräte ausgeführt werden können. Je nach verwendeter Infrastruktur wird
für die Ausführung einer Task unterschiedliche Komponenten ermittelt. Diese Komponen-
ten können allerdings auf denselben Daten operieren und die komponentenübergreifende
Kooperation erlauben. Dies ermöglicht die Realisierung spezieller Komponenten (z.B. mit
einer angepassten Benutzungsschnittstelle) für die Verwendung auf mobilen Endgeräten
(PDAs).

Im Rahmen der Softwareentwicklung ist es von besonderer Bedeutung, dass die Ent-
wickler in der Lage sind, ihre Entwürfe miteinander zu besprechen und als Bestandteil der
Projektdokumentation festzuhalten. Zu diesem Zwecke werden Entwurfsnotationen wie
die UML (Unified Modeling Language) mit definierter Syntax und Semantik verwendet.

Die Arbeit schlägt eine UML-basierte Entwurfsnotation für den Entwurf kooperati-
ver komponentenbasierter Systeme vor. Die Elemente der Entwurfsnotation verwenden
hierbei eine der in UML vorgesehenen Möglichkeiten, die UML-Notation zu erweitern:
die sogenannten Stereotype. Es werden für den Entwurf kooperativer Systeme auf Basis
des DyCE-Framework Stereotype für Elemente des gemeinsamen Objektmodells, für die
kooperierenden Komponenten und für die Beschreibung von laufenden Kooperationsit-
zungen vorgeschlagen und in der Arbeit für die Beschreibung der präsentierten Konzepte
verwendet.

Eine wichtige Anforderung an flexible Groupware ist, dass sich die kooperative Anwen-
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dung an die Anforderungen der Benutzer anpassen lässt. Eine Form der Unterstützung,
die in dieser Arbeit präsentiert wird, ist die Erweiterung der Arbeitsumgebung um zusätz-
liche Komponenten sowie der dynamische Zugriff auf Groupware Components. Die zweite
Form der Unterstützung, die im DyCE-Framework realisiert ist, ist die Bereitstellung ei-
nes Werkzeugs, mit dem Endbenutzer vorhandene Komponenten auf grafisch interaktive
Weise miteinander kombinieren können. Die auf diese Weise entstandenen Konfiguratio-
nen von Komponenten können wiederum über den Server verteilt und kooperativ mit
anderen Benutzern verwendet werden.

Die Grundlage für die Kombination der Komponenten bildet ebenfalls das Aufgaben-
gestützte Programmiermodell. Das Anpassungswerkzeug bietet den Benutzern interakti-
ven Zugriff auf das Task-Modell. Instanzen des anwendungsspezifischen Objektmodells
lassen sich in diesem Werkzeug zu komplexeren Datenmodellen kombinieren und die
auf den Elementen dieses Modells auszuführenden Tasks können interaktiv ausgewählt
werden. Wird eine solche Konfiguration, bestehend aus Datenmodell-Instanzen und zu-
gehörigen Tasks, später im Rahmen einer kooperativen Sitzung verwendet, erhalten alle
Benutzer in der Sitzung die kombinierten Komponenten sowie die spezifizierten Instan-
zen des Objektmodells. Auf diese Weise können elementarere Komponenten auf einfache
Weise miteinander zu komplexen Funktionalitäten kombiniert und kooperativ verwendet
werden.

Das in der Arbeit vorgestellte Entwicklungsframework DyCE wurde im Rahmen eniger
Forschungsprojekte zur Realisierung mehrerer kooperativer Komponenten eingesetzt. In
der Arbeit werden einige dieser Komponetne sowie die bei ihrer Entwicklung gesammelten
Erfahrungen vorgestellt.

Die bei der Entwicklung der Komponenten gemachten und in der Arbeit zusammenge-
fassten Erfahrungen zeigen, dass die komponentenbasierte Entwicklung kooperativer An-
wendungen die Verteilung der Aufgaben zwischen mehreren Entwicklern gut unterstützt.
Darüber hinaus gewinnen alle auf Basis von DyCE entwickelten Komponenten durch das
Hinzufügen neuer Komponenten an Flexibilität und Funktionalität. Die so entwickelten
Komponenten lassen sich, ohne vorheriges Wissen voneinander, um andere Komponen-
ten erweitern. So enstehen umfangreiche kooperative Arbeitsräume, in denen Gruppen-
arbeitsprozesse auf vielfältige Weise durchgeführt werden können.
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Chapter 1

Introduction

An increasing portion of people’s tasks within today’s modern work and office environ-
ments is no longer performed individually, by a single employee working alone on his
or her task until completion, but performed collaboratively: A group of people needs to
co-operate closely in order to successfully complete the task at hand. This trend is driven
partly by the increased complexity of the individual tasks and partly by recent trends
towards new management structures and paradigms of work (work in distributed teams,
more team-oriented work practices, e.g., in software development and other creative ac-
tivities). Another influencing factor for this need to co-operate is the advent of ”virtual
organizations” or ”extended enterprises” (c.f. [Gor99]): task-driven structures spanning
several organizational units within a company or even between companies, which are
potentially distributed on a global scale, formed with the specific goal of producing a
certain product or performing a specific project.

CSCW (Computer-Supported Co-operative Work) applications enable such groups of
users (usually distributed over time and/or space) to co-operatively solve a common task
by co-operating on a set of shared artifacts, such as a common document, a graphical
draft, construction model, etc., on which the co-operation takes place. The research
area of CSCW is concerned with the use of computers in group settings. The computer-
based tools used to support such collaborative work are often referred to as groupware.
Coleman’s definition of the use of groupware is that ”groupware supports the efforts of
teams and other paradigms that require people to work together, even though they may
not actually be together, either in time or space.” ([Col97], p.1). Greenberg, in [Gre91],
defines the term ”groupware” as follows:

Groupware is software that supports and augments group work. It is a
technically-oriented label meant to differentiate ”group-oriented” products,
explicitly designed to assist groups of people working together, from ”single-
user” products that help people pursue only their isolated tasks.

The aim of CSCW systems is to aid not only the co-operative tackling of the task at
hand but also the communication between the group members as well as the co-ordination

1
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of the tasks performed individually or in a group. It does this by providing the users
with collaborative applications. [DCS94] broadly defines a collaborative application in
this way: ”A collaborative application is a software application that (a) interacts with
multiple users, that is, receives input from multiple users and displays output to multiple
users, and (b) couples these users, that is, allows one user’s input to influence the output
displayed to another user.” This general definition also holds for the collaborative systems
presented in this thesis.

It is widely accepted that successful groupware applications need to provide support
for what has been termed the ”three Cs of workgroup computing” ([The01]):

• communication: enable exchange of, e.g., ideas and notes in the course of the work;

• coordination: allow structured flow of artifacts between tasks, as well as a means
to schedule and control complex cooperative activities;

• co-operation: provide tools for joint work on a common artifact.

Before proceeding, it is necessary to define a number of terms used in the course of
this thesis.

The setting of collaborative work (or collaborative setting) is understood
to be comprised of a group of users at one or more locations using a set of tools,
jointly manipulating shared objects at the same time or at different times, to
work together towards a common goal. The users’ work environments and
the tools used to perform the work need not necessarily be the same for all
users. Variation between different settings of collaborative work can be along
any of the aforementioned dimensions, i.e., the number of users involved, the
time bounds placed on interaction, the locations of the participants, the set
of tools used by the users and the set of shared objects on which collaboration
is taking place.

The set of all tools used in a collaborative setting, plus the architectural
elements such as client and server applications will often be referred to as the
groupware system.

The shared objects on which the collaboration is based are said to form the
artifact of work of the group.

Increasingly, the users’ work processes are becoming more flexible but also more com-
plex. As the content of their work evolves over time, the users require new and different
tools to be used in the changing work settings. Also, users are becoming increasingly mo-
bile, performing their collaborative activities in changing environments, with changing
groups and on various platforms, ranging from stationary office PCs over computer-
supported meeting rooms to hand-held and mobile devices. In order to support such
changing settings, groupware needs to be able to evolve along with the work processes
and be adaptable (or be able to adapt) to new collaborative settings.



3

In the light of this growing demand for supporting flexible and evolving work pro-
cesses, Henri ter Hofte (in [tH98]) cites two main requirements for modern groupware
environments: extensibility and composability. These, he defines as follows ([tH98], p.54):

Extensibility is the property of a system that denotes how easy new functions can
be added to the system, without interference with existing functions.

Composability is the property of a system that denotes how easy the function of a
system can be composed by selecting and combining more basic component functions.

Regardless of the co-operative application’s semantics (e.g., supporting a document-
based metaphor that gives the users the idea of co-operating on a common document
or providing a shared communication medium such as a bulletin board or discussion
database), general provisions within the collaborative tools have to be made to enable
sharing of data items and management of the concurrent access that takes place when
several users modify a certain shared object concurrently. This is especially important in
synchronous groupware tools, which enable a group of users to simultaneously work on a
common document, where each user is able to perceive the modifications performed by
the other users as they occur in what is perceived to be real-time. This is in contrast to
asynchronous groupware, where one user’s actions do not directly affect another user’s
actions taking place at the same time1.

The development of groupware is supported by groupware development tools and
frameworks, such as the COAST toolkit [SKSH96], Disciple [Mar99], GroupKit ([RG96]),
DistView ([PS94]), etc., which relieve the groupware developer of a number of such techni-
cal issues. Using such construction frameworks, groupware is built like most applications:
The framework is reused in multiple groupware applications, but these applications re-
main static and closed and thus not easily extensible or adaptable. Typically, a dedicated
(application-specific) server is installed somewhere and specific applications are installed
on the users’ machines. When the needs of the group change, because they need to work
in a different collaborative setting or the format of the artifacts of work change, new
applications need to be developed and installed on the users’ machines (sometimes even
necessitating a change of the server). Such groupware applications are not well suited to
address the challenges of flexible and evolving collaborative settings, as will be shown in
this thesis in the overview over the state of the art in groupware development support.

In current software engineering literature and practice, there is a trend towards soft-
ware (development) environments based on the notion of reusable, composable building
blocks: Components [MN98]. In [Szy97], a component is defined as follows: ”A software
component is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and
is subject to composition by third parties.” Component architectures allow the flexible
assembly (either by developers or by end-users) of components into suitable applications.
Component-based development holds the promise of easier construction of complex appli-
cations and of improving software quality by fostering wider reuse of existing components.

1A more detailed overview over the dimensions of different groupware situations can be found in
section 3.1.
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This trend has not yet fully carried over into the development of distributed groupware
applications, though. These are still mostly custom-built using CSCW toolkits or frame-
works which support such basic technologies as data sharing, object replication, etc.
Only recently have approaches been made to support groupware development by pro-
viding reusable components (see, e.g., [HKM98],[HM98], [Ise98]). As will be shown in
the chapter on the state-of-the-art, such systems allow the component-based construc-
tion of collaborative applications but only partly carry the component-based approach
through from the development time into the runtime. A small number of systems (see
e.g., [Sti00]) allow end-users to tailor and extend their collaboration environment by ac-
cessing and composing different components for their collaboration. Current approaches
do not fulfill a number of end-user requirements related to flexibility and extensibility of
collaboration environments.

Developing components for use in reusable component-based environments is often
done using component frameworks, or component development frameworks. A frame-
work can be defined (as in [Joh97]) as follows: ”A framework is a reusable design of all
or part of a system that is represented by a set of abstract classes and the way their
instances interact. Another common definition is ’a framework is the skeleton of an ap-
plication that can be customized by an application developer.’ ” Typically, a framework
provides a prototypical implementation of a solution for a set of problems, which can be
adapted to a specific problem by extending the framework at specific extension points,
also called ”hot-spots”. Using development frameworks, new problem solutions can be
quickly constructed, since a large part of the framework itself can be re-used.

1.1 Goal

The goal of the work presented in this thesis is to aid the use and development of flexible
component-based groupware systems. To this end, a framework needs to be developed,
which supports development and deployment of Groupware Components - a term that
will be defined in the thesis to describe visually interactive application elements that can
be fetched over the network on demand and allow users to collaborate on shared objects.
Groupware Components form the basis of groupware environments that fulfill the two
guiding requirements of extensibility and composability (see above).

The development of the framework relies on the tackling of a number of sub-goals. A
reusable architecture and implementation needs to be developed, on which the Groupware
Components can be developed. Additionally, a development methodology is required,
which will guide the development of new Groupware Components.

Synchronous and asynchronous collaboration relies on a means for communicating
data and changes between the users’ systems. As will be shown in chapter 3, the re-
quirements of both synchronous as well as asynchronous collaboration can be fulfilled by
providing support for object sharing. For this, a shared object model and supporting
architectural modules need to be developed and made available to the component devel-
opers. A major requirement for the object sharing support is the performance, which
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will be defined in terms of response time to user interaction.

As a means for supporting composition, extensibility and reuse of Groupware Com-
ponents, a common shared programming abstraction for component-based environments
needs to be developed, which facilitates the flexible combination and reuse of compo-
nents and thus the development of extensible collaboration environments. The thesis
will present this programming model and demonstrate how it eases the construction of
reusable Groupware Components.

In order to support end-users in interactively adapting the system to their needs
by deploying new components and by combining existing components in different ways
according to their current work situation, application support is required. The Groupware
Components and the models underlying them need to be made accessible and manageable
by end-users.

Means for integrating the resulting groupware environment into modern information
and application architectures such as Intranets but also complex architectures composed
of external tools will be presented.

1.2 Approach

A flexible collaboration environment can be modeled as a set of Groupware Components,
which can be composed, which can invoke each other and can be added to the groupware
system at runtime, in order to extend it. These components support collaborative use
in distributed collaborative settings and they can be fetched over the network when re-
quired. Constructing the collaboration environment from such components can increase
extensibility and composability of the resulting system. Also, decomposing the applica-
tion into distinct exchangeable modules aids the use of varying component configurations,
tailored for various settings: Users can access different components in the course of their
work and can use these components to co-operate within different team settings.

In a world of ”collaboration components” - groupware components giving the users
collaborative access to shared objects - dynamic distribution of tools (components) and
the shared artifacts becomes of even greater importance.

The approach taken in the development of the target system is characterized by the
combination of three basic building blocks, which will be presented in this thesis:

• an object-oriented framework for the development of Groupware Components
which can be dynamically invoked over the network,

• an underlying architecture with supporting tools and services such as a component
invocation and execution environment, a component and object repository, etc.,

• a central programming abstraction underlying the components, which aids
combination and interaction of components and supports the flexibility of the col-
laboration support environment.
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These three building blocks, in combination with current state-of-the-art technologies
in collaboration support, help to fulfill the requirements of today’s dynamic and chang-
ing collaborative work processes. A groupware development framework called DyCE
(Dynamic Collaboration Environment) has been implemented and will be presented in
the thesis. The potential of this approach will be demonstrated with a number of sample
applications for different purposes built using DyCE.

1.3 Organization of the thesis

The remainder of this thesis is structured as follows.

A usage scenario, presented in chapter 2, will lay the foundations for the requirements
that are to be fulfilled by the system to be developed. From this scenario, a list of
requirements will be derived.

An analysis of the state of the art will be presented in chapter 3, in which a num-
ber of approaches and systems for the development of collaborative systems as well as
component-based environments will be described in more detail. For each system, a
comparison to the system requirements will be performed.

The central concept of the thesis, Groupware Components, will be presented in detail
in chapter 4. In order to support the composition and reuse of these components, a
central programming model will be presented. This chapter will also introduce the system
architecture developed for supporting the use of Groupware Components.

Specific implementation details of the DyCE system will then be presented in chapter
5, together with a discussion of a number of implementation-specific features of the
system.

The chapter on usage experiences (chapter 6) will present a number of collaborative
systems realized using the DyCE system, e.g., for support of Collaborative Hypermedia
as well as for support for Computer-Supported Collaborative Learning (CSCL).

In chapter 7, a discussion of the system presented in this thesis will provide a summary
comparison of the system to the requirements presented in chapter 2 and with the state-
of-the-art presented in chapter 3. The thesis concludes with an overview of future research
work that can be based on the DyCE system.



Chapter 2

System Requirements

This chapter will present a set of requirements, which are to be met by the resulting
system. The rationale for the requirements will be presented based on a scenario that is
presented in section 2.2.

Requirements for a system - be it a development framework, class library or a graph-
ical development tool - supporting the development and use of interactive groupware
applications can be categorized according to the two distinct target audiences: The de-
velopers of a groupware application and the end-users of the application. In order to aid
comprehension, the requirements will therefore be subdivided into these two categories
(Developer Requirements and End-User Requirements) and labeled accordingly.

2.1 Layers of Requirements

In order to present the requirements that need to be addressed by the system presented
in this thesis, we will make use of a usage scenario consisting of a set of situations of
collaborative work, i.e. scenario snippets illustrating a certain requirement.

When discussing the requirements to be fulfilled by the resulting system, we are faced
with varying levels of requirements. A usage scenario can, obviously, present only the
users’ view of the system. When discussing Groupware, this is arguably the most impor-
tant driving force behind the requirements. The remainder of this thesis will mainly fo-
cus on presenting a development support environment (development framework), though.
Therefore, we are faced with the issue of deriving and later addressing requirements for
the development system from requirements stated rather more indirectly, through the use
of a system developed on top of this system. If we assume that use of a system leads to
a set of requirements for that system (as is most certainly the case), we are faced with a
more complex requirements view (see figure 2.1).

The two main constituents of the requirements definition for a development support
system are (1) the developer, who uses the system to develop an application, and (2) the
end-user, who uses this application. The developer’s requirements towards the develop-

7
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Figure 2.1: Levels of requirements

ment support system (labeled [a] in the figure) stem, quite logically, from his use of the
system to develop the application system. Several of the end-user’s requirements (labeled
[b]) towards the application system are to be addressed by the developer, so they result
in requirements to the application developer (labeled [c]). In addition, several of these
requirements result in requirements towards the development support system (labeled
[d]). These are requirements that the developer can do little or nothing to address (apart
from using a different development support system, perhaps).

The following usage scenario will present a number of usage situations of collaborative
applications. These collaborative applications are developed on top of the development
support system presented in this thesis. We are therefore mostly interested in those user
requirements that can be mapped onto requirements towards the development support
system.

Following the scenario situations that illustrate end-user requirements, situations that
focus on the developers will be presented in order to motivate the developer requirements.

2.2 Scenario: Usage of Groupware Components

A company with branches in several distributed locations uses the corporate network to
deploy a collaboration environment providing the users with the ability to form dis-
tributed teams. Using the environment, the employees can conduct their activities,
closely collaborating on common document bases 1 with their team partners (including
synchronous and asynchronous collaboration as well as multi-party multimedia confer-
encing), exchanging documents and document drafts and leaving notes and annotations
for others. The collaboration environment accesses common databases used to persis-

1While in the major part of this thesis, the term ”document” is not used to refer only to typical
linear documents such as the text of this thesis, the document bases in the repositories presented in the
scenario are indeed taken to contain such documents.
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tently store the data objects on which the users are working. We will observe a number
of different collaboration situations encountered by a distributed team of office workers,
named Andrew, Barbara, Charles and David for easier reference.

2.2.1 End-User Requirements

RU1: Access to shared artifacts and collaborative tools

After coming into the office in the morning, Andrew logs into the system at his
workstation and is presented with his desktop environment (see Figure 2.2), including:

• a set of icons depicting shared document folders (1) to which he has access and
which he uses to collaborate with his various project partners,

• a calendar tool depicting his appointments (2),

• a mail in/out-box (3) used for sending and receiving email messages,

• a set of tools (4) which he can use to perform his tasks,

• a user list: a list of collaboration partners (5) who are currently available.

Figure 2.2: Collaboration Desktop Application

Andrew now begins working on his tasks. From the set of icons depicting shared
document folders, he selects the folder for ”Report 1” opens it. He is presented with a
”Folder Browser” ((6) in figure 2.2) component showing the contents of this repository:
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A hierarchy of folders and sub-folders containing documents, annotations, etc. Using the
component palette (or menu), he accesses a group calendar component and checks which
appointments are entered for the groups of which he is a member.

RU2: Computer guidance in selecting appropriate tools

The goal of the work group of which Andrew is a part is to collaboratively write a
complex technical report. Each member of the group is responsible for one chapter of the
report and also contributes his specific expertise in certain technical areas to other group
members when required. Andrew continues working on his chapter of the document. He
has already written an initial version of the chapter that is available as an icon on his
desktop. To do so, he uses a function of the desktop to indicate his desire to open the
document. The system knows, which is the correct application for this kind of document
and opens the document with the correct tool. Andrew now proceeds to work on the
document.

RU3: Provision of Group Awareness

Barbara is not in her office, but instead uses her laptop computer and wireless network
connection (through cellular phone) to access the system. She logs into the system and
is also presented with a view of her collaboration desktop, similar to the one Andrew got
after logging in. An icon representing Barbara now automatically appears on the user list
on Andrew’s desktop, indicating to him that Barbara is now available for collaboration.
Likewise, an icon representing Andrew is displayed in the user list on Barbara’s desktop.

On her desktop, Barbara has a folder representing the group’s technical report, con-
taining icons for each chapter. Upon opening this folder, she sees a small name tag next
to the chapter currently being edited by Andrew, indicating to her that Andrew is in fact
currently working on his chapter.

RU4: Support for synchronous and asynchronous collaboration

Looking at the contents of one of the shared folders on his desktop, Andrew discovers
that a chapter of the shared report has recently been edited. This chapter has been
added to by Barbara while he was out of the office. Since it is relevant to the chapter
he is writing, Andrew accesses the new chapter version and looks up a certain technical
definition. Again, the system provides support by invoking the appropriate tool. Andrew
is not satisfied with the explanation given in the chapter and can now do a number of
things:

• He can attach a note to the chapter and leave it for Barbara to see,

• he can directly contact Barbara to discuss the chapter’s contents,

• he can directly rewrite the definition (potentially leaving a note about the changes
he made), or

• he can contact Barbara using e-mail or the telephone to discuss more directly with
her.
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Since the user list on his desktop shows the availability of Barbara, Andrew chooses to
contact her in order to make the changes together. In addition to opening the appropriate
communication channel(s), e.g., using a voice conference or simply making a telephone
call, Andrew invites Barbara into the editing session in which he is currently viewing her
chapter. Upon accepting the invitation, Barbara receives an editor tool that is shared
with Andrew, the two can now co-operatively work on the document, making changes,
discussing the contents, etc. Andrew also invites Barbara into the editing session on his
own chapter in order to explain to her where the need for referring to her chapter arises.
The group awareness information attached to the two chapters is updated to reflect that
both Andrew and Barbara are now working on this chapter.

RU5: Ubiquitous access to collaboration environment

After working with Barbara on the common problem for some time, Andrew needs
more in-depth information, which is not accessible in his office, but for which he needs
to go to the lab, which is also equipped with PCs. He therefore logs off from the office
system, goes to the lab and logs in to the lab PC. After starting the general collabora-
tion desktop application and identifying himself to the system, he is presented with his
desktop contents as he left them in his office environment and can directly resume the col-
laboration sessions with Barbara. The two can now continue discussing and collaborating
on the technical reports.

RU6: Multiple simultaneous collaboration modes and transitions between
them

While working together with Andrew, Barbara uses an editing tool in a separate ses-
sion, currently visible only to herself, to take additional notes. She intends to incorporate
these notes into her chapter at a later point in time, but does not yet wish to share the
notes taken with Andrew.

She opens an editing tool in a separate session and begins individual work in this
tool, allowing her to concentrate on the technical details of a certain paragraph. Having
completed the paragraph, she invites Andrew into her editing session in order to show
him the result. Together, they now integrate the new paragraph into their common
document.

RU7: Dynamic extensions of the collaboration environment

In the course of collaboratively working on the shared technical report, Andrew and
Barbara need to incorporate more elaborate figures into the document. There is currently
no suitable diagram editing tool available in the collaboration environment, but Andrew
has recently downloaded one onto the lab PC. In order to use this tool in the collaborative
work, Andrew loads the external tool into the collaboration environment. It automatically
appears on all users’ tool palettes and is directly available for collaborative use. It is not
necessary for Andrew or Barbara to exit or restart the system in order for the new tool
to be available to them.

Barbara now creates a diagram as provided by the new diagram editing toolkit and
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introduces it into the common document. Using the new shared diagramming tool, the
two can now jointly create the new figures in their report.

RU8: Coupling of different tools

In order to get an overview over their current document structure, Barbara opens a
hierarchical outline viewing and editing tool on their report. She activates the tool in a
separate, non-shared mode but uses it to access the report she is writing together with
Andrew. The outline viewer therefore displays to her a graphical overview of the current
structure of their report. While the two continue their work on the report, the overview
display is continuously updated and synchronized.

Using the hierarchy viewer, Barbara detects a problem with the chapter sequence of
the report. She uses the hierarchy editing capability to fix this problem by rearranging the
chapter sequence. Since she is working directly on the structure of their shared report,
these changes are also immediately reflected in the tools she is sharing with Andrew.
After discussing the changes she made, their joint work can continue.

RU9: Support for mobile work

Charles, a project manager and the third member of the distributed team, currently
spends a lot of time on one of the companies campusses, walking between meetings, labs
and different users’ offices. In order to check on the progress of the report, he uses his
hand-held wireless PDA (Personal Digital Assistant) to log into the collaborative system.

He is presented with a ”stripped-down” version of the collaboration desktop, adapted
to suit the restricted screen estate of the mobile device. Still, he has access to the
same shared objects as Andrew and Barbara and can also perceive the group-awareness
information about what is currently going on. He now uses an outline viewing tool on
the common report in order to get an overview over the structure of the report and see
what has changed since he last checked. He receives an indented table-of-contents view
showing the current structure of the report. This structure display is a ”live” display
of report’s table of contents. As the work on the report progresses (e.g., as additional
subsections are added by Andrew and Barbara), Charles’s view of the structure is always
kept up-to-date.

RU10: Combination of existing tools (End-User customizability)

At several points throughout her collaboration sessions, Barbara observes the need
for a number of users to combine textual and graphical data in their discussions. They
often use a shared drawing tool (shared whiteboard) and a multi-user chat tool together
in order to allow textual interaction (chat) to be enhanced by quick scribbles, notes and
rough illustrations. The collaboration system provides individual tools for chatting and
for drawing. The recurring act of setting up these two individual tools for a group of
users is perceived to be arduous and repetitive.

Using facilities provided to all end-users, Barbara sets up a new tool, incorporating
the Chat and Whiteboard tools and deploys this new combination of components via the
server. Now, whenever the need to do such communication arises, she only needs to open
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the one new tool and invite her co-workers into the collaboration session. All other users
will automatically receive the new component configuration, which appears to them to
be a single tool providing complex compound functionality.

RU11: High system performance

While Barbara and Andrew work together in the shared whiteboard and on their
shared document, they are discussing the changes they are making to the document
contents. Both expect the system to behave in a way reflecting the interactive and direct
nature of their collaboration. They expect changes to the document to be reflected at
their partner’s site instantaneously and they expect the ability for their own work to
proceed as naturally as possible throughout the collaboration.

Technically speaking, the users expect low latency, fast turn-around and expect the
performance loss due to synchronization of their shared work to be as low as possible. ter
Hofte (in [tH98]) defines the terms feedback (changes observable due to my own actions)
and feedthrough (observable changes due to others’ actions). Different collaboration
setting have different requirements in terms of feedback and feedthrough. The highest
demands are imposed in real time distributed collaboration settings (see [Gre98]). Here,
the direct nature of the interaction between the participants requires fast system response.
The better the feedback and feedthrough performance of the CSCW system is, the more
direct and synchronous situations the tools built on the system can support.

2.2.2 Developer Requirements

David is a member of the in-house development staff of the company and is responsible for
developing new collaboration tools as well as maintaining those tools already available.
From David’s work situations we can derive a number of general developer requirements
for a development support system.

RD1: Reuse of existing programming knowledge and experience

In order to gain acceptance and wide-spread adoption, a system for the development
of collaborative applications should introduce as many new concepts as required but
as few as possible. Put differently, the developer’s experience in developing single-user
applications must also be applicable in the development of collaborative systems.

RD2: Reusable shared data models

The shared data models created by the developer describe the structure of the shared
data items, which are viewed and edited using collaborative tools. When developing new
components (or extending existing ones), it has to be possible to reuse and extend existing
data models (and not be forced to develop them from scratch). This is also important
if new components need to interact and coexist with existing components from a similar
application domain. Support for creating and maintaining such data models needs to be
provided. The developers need a way to specify the shared data models used by their
components. This specification should be in a way as close to the target programming
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language as possible (this ties in with the previous requirement).

RD3: Transparent sharing of data objects

Unless necessary or desirable for the development task at hand, the developers should
not have to be concerned with the actual distribution of the shared data objects through-
out the system. The development system can be expected to provide support for the
sharing and distribution.

RD4: Support for shared as well as local data objects

Not all data items, even in a collaborative application, need to be shared. Some
might be local to the current machine, to the current user or just be temporary data
structures related to the local graphical user interface. Simply sharing all data elements
of the application would potentially incur high performance costs. The developer must
be provided with the ability to make the design decision whether a data item is to be
shared or purely local. This distinction needs to be supported within the shared data
model, i.e., it must be possible to implement a data object of which parts are shared
between all users while other parts are local to a machine and thus not shared.

RD5: Access to co-operation information when required

Should it be necessary for a specific component (e.g., when wanting to display a
list of current users), information about the collaboration setting and the collaborative
interaction needs to be available to the developer. If David wants to enhance the col-
laborative editing tool to provide additional mechanisms for interacting with the users
currently sharing a text, he needs to have access to all the information about the current
collaborative setting.

This cooperation information must also provide means to provide group awareness
information in the components. Group awareness relates to providing users with an
awareness of the activities and tasks of other users. Typically, group awareness includes
information about the past (who has done what with which shared artifacts?), the present
(who is currently logged in an what are they doing with which artifacts?), as well as - if
possible - future actions of the other users.

RD6: Deployment of newly developed components

Once a new component has been developed, it has to be relatively easy to distribute it
to the target users. Also, it follows that all users need to have access to newly developed
components simultaneously, so that the collaboration can make use of these components
at all connected sites at the same time and that the work environments of the users do not
diverge. The same applies obviously to new versions or releases of existing components2.

2This requirement ties in with the recent discussion about computing environments’ TCO (Total
Cost of Ownership). Making new tools easy to deploy and maintain throughout the company reduces
all systems’ TCO. Inversely, collaboration systems not fulfilling this requirement (e.g., systems requiring
new tools to be manually installed on each client system) can dramatically increase maintenance cost,
since similar work environments need to be maintained for all possible collaboration groups. One user’s
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RD7: Technical scalability of the solution

The components developed using the toolkit have to scale in terms of the number
of users, i.e., there needs to be a graceful degradation of performance as the number of
users increases. This technical requirement does not apply, though, to issues of scalability
of group awareness displays, which remain within the responsibility of the component
developer. E.g., when developing a component including a user list, the developer is
faced with the issue of how many users this list can actually display at the same time in
order to still be usable. Discussions of such problems are beyond the scope of this thesis.

RD8: Support for integration into external architectures

Modern work environments often use complex distributed architectures in order to
integrate the groupware environment with various other tools, potentially off-the-shelf
products, or developed on other platforms. Developers require a sufficiently open interface
to the collaboration, which enables them to query the current collaboration state, invoke
collaborative tools, etc.

RD9: Support for server-side components

Some operations in a collaborative system are best done in a single central location,
either because they require access to a centralized resource, because they need to run
continuously even without a user logged into the system or because they would otherwise
be very difficult to schedule and coordinate. Examples for such components would be
data imports from external sources or a workflow enactment engine that needs to keep
track of time and tasks even when no user is logged into the system.

For such components, the system needs to support server-side components, i.e., com-
ponents which, when invoked, run on the server machine, with direct access to all services
and shared data objects. Regardless of the fact that they are executed on the server, the
components need to be invoked in the same way as all other components, providing a uni-
form access model for components (and no specific treatment of server-side components
by the users, e.g., through the use of specific use-interface features).

2.3 Overview over Requirements

An overview over the requirements presented in the scenario segments above is shown in
table 2.1.

use of a new (version of a) tool or new document format can force all users to upgrade - while at the same
time still maintaining the previous versions of the tools since these could still be used in other teams or
groups. A dramatic illustration of exponentially increasing TCO is the large variety of (enormous) office
suites that are required on each PC in order to be compatible with all potential collaboration partners
inside and outside of the organization. While an interesting sidebar to bear in mind, a solution to this
problem in its entirety is obviously beyond the scope of this thesis.
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ID Name
RU1 Access to shared artifacts and collaborative tools
RU2 Computer guidance in selecting appropriate tools
RU3 Provision of Group Awareness
RU4 Support for synchronous and asynchronous collaboration
RU5 Ubiquitous access to collaboration environment
RU6 Multiple simultaneous collaboration modes and transitions between them
RU7 Dynamic extensions of the collaboration environment
RU8 Coupling of different tools
RU9 Support for mobile work

RU10 Combination of existing tools (End-User customizability)
RU11 High system performance
RD1 Reuse of existing programming knowledge and experience
RD2 Reusable shared data models
RD3 Transparent sharing of data objects
RD4 Support for shared as well as local data objects
RD5 Access to co-operation information when required
RD6 Deployment of newly developed components
RD7 Technical scalability of the solution
RD8 Support for integration into external architectures
RD9 Support for server-side components

Table 2.1: Overview over System Requirements



Chapter 3

State of the Art

After having presented the system requirements in the previous chapter, the current state
of the art is presented. The discussion of the state of the art will focus on two key areas
of relevance to this thesis:

• general issues for groupware development and groupware development environ-
ments, and

• approaches focusing on support for component-based groupware environments (com-
ponent-based development environments as well as component-based application
environments).

The identification of deficits of existing approaches will be based on the set of require-
ments presented in the previous chapter.

Some other, more specific issues regarding individual technologies will be presented
later on in the system design and implementation chapters.

3.1 Situations of Collaborative Work

The following sections will often refer to the specific collaboration situation(s) in which
certain systems can be used. Collaboration situations, and the capabilities of systems
built to support these situations, can be distinguished according to the two dimensions
of distribution in time and distribution in space, as proposed by Johansen in [Joh91] (see
table 3.1).

In this model, collaboration situations are distinguished regarding whether the partic-
ipants are co-located at the same place or are distributed over several locations, as well as
whether collaboration takes place at the same time (also referred to as synchronous col-
laboration) or at different points in time (also referred to as asynchronous collaboration).
The examples for situations in the quadrants of the matrix give an indication of the type

17
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Same Time Different Time
Same Place face-to-face inter-

action: co-located
meeting-room or
classroom situations
[meeting support,
group moderation,
shared brainstorming]

asynchronous interac-
tion: shift work, job
sharing [note-passing,
handover protocols]

Different Place synchronous dis-
tributed interaction:
distributed shared
editing [application
sharing, audio/video-
conferencing, syn-
chronous groupware
tools]

asynchronous dis-
tributed interaction:
workflow, draft
passing [shared repos-
itories, workflow
management systems]

Table 3.1: Johansen’s Same/Different Time/Place matrix

of collaboration taking place in this combination of parameters. A number of examples
for support technologies for these types of situations are given in square brackets.



3.2. DEVELOPING CO-OPERATIVE APPLICATIONS 19

3.2 Developing Co-operative Applications

A number of technologies are available for providing collaboration support through the
use of computer-based applications. These technologies can be distinguished as keeping
the applications collaboration-unaware (i.e. the applications do not explicitly support
the collaboration and internally appear to be single-user applications) or making the
applications collaboration-aware (i.e. the applications in some way explicitly model and
support the collaboration of several users).

A comprehensive overview over technologies and architectural alternatives for devel-
oping synchronous groupware is available in [Phi99]. The following sections are intended
to give a brief overview in order to support the discussions in the subsequent sections.

3.2.1 Collaboration-Unaware: Application Sharing

A technique for making applications co-operative that is commercially available in a
number of products is termed application sharing or window sharing. In this technique,
which is most often employed to make single-user applications available to a number of
users, a single instance of the application runs on one user’s machine - the application
server - under the control of the application-sharing package. This package is responsible
for broadcasting the application’s output (in modern GUI environments, its windows’
contents) to all connected users, gathering all users’ inputs, serializing these into one
single input stream which is then passed to the application that operates as if a single
user was controlling it. Examples of such a system are JVTOS [DGO+94] (available for
the X-Windows environment and a number of other platforms), or Microsoft NetMeeting
[Sum98] for the Microsoft Windows environments.

The advantage of this approach is that it allows available single-user applications to be
used by more than one user at a time, even those applications which were not designed
to be used co-operatively. In order to support this, no change to the applications is
necessary. Also, only one user needs to have access to the application software in order
to run it as the application server. Apart from some form of network connection to the
application server, the other users only require the application sharing client software.

One of the disadvantages of this approach is that it leads to a high network load, since
all application output is transmitted in bitmap form - no knowledge of the application
semantics is available that would allow the system to make optimizations. The users’
input is transferred at a semantically low level, such as low-level GUI events like mouse
movement, mouse click, etc. It is left to the application server to translate these events
into semantically meaningful events such as selecting an option from a pull-down menu
or pressing a button in a dialog window.

Also, since the application remains a single-user application, no concept of concur-
rency control is available other than floor passing: blocking the input from all but one of
the users’ systems and allowing only one user to control the application while the oth-
ers are merely watching. This model of co-operative activity can only implement strict
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WYSIWIS (What You See Is What I See) functionality: All users are viewing the exact
same window contents, all the way down to the current cursor position. No notion of
individual or decoupled work is supported (RU4, RU6).

Additionally, no concept exists of a common shared artifact: The users are viewing and
editing a document that is local to the application server machine. Since the application
runs only on the application server and has no access to resources local to the user,
there is no means to save a local copy of the edited document or to integrate other
document parts resident on a client machine, e.g., in the form of an import of a previously
prepared document section. Modern application-sharing packages try to overcome this
deficit by accessing the local system’s clipboard and utilizing it for data transfer into the
application.

Additional issues and more detailed discussions regarding collaboration-transparent
sharing of tools in collaborative settings can be found in [LL90], [LJLR90] and [BRS99].

3.2.2 Collaboration-Unaware: GUI Event Multiplexing

A system taking a similar approach to application sharing but operates on a semantically
higher level is GUI event multiplexing, as described in [AW96]. Here, all users are running
an instance of the co-operative application and a special interface layer between the
graphical user interface and the application’s event handling layer takes all GUI events
and broadcasts them to all connected sites, which interpret the events as if they had been
generated by the local user. Collaboration and co-ordination is performed by executing
the same set of operations in the same order at all sites.

The communication bandwidth required for the systems’ communication is nowhere
near as high as that required by application sharing systems: The application is avail-
able locally and no output bitmaps need to be broadcast. Also, input multiplexing is
performed on a semantic level close to the application’s GUI semantics, such as ”button
clicked”, ”command event”, etc.

Again, this method is only applicable for strict WYSIWIS situations, since all com-
municating applications need to be in the exact same GUI state in order for the incoming
events to be interpreted correctly.

Since this model also has no notion of a shared document - all applications are mod-
ifying a local instance of the document according to the input events they receive - and
there is often no means of transferring a sensible ”event history” there is no provision
for late-comers. Users who join the co-operation session after some editing tasks have
already been performed have no way of ”catching up” with the group by receiving the
current state of the collaboratively edited document. The seemingly obvious approach
of capturing the event sequence and replaying it in the late-comer’s application is in-
sufficient, since this would require the user to sequentially watch the entire groups’ past
activities (including those which might have been undone at a later point in time). Apart
from the fact that this could take an indeterminable amount of time (thus violating the
requirement for high system performance, RU11), it would also seem incredibly tedious.
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Additionally, the replication model of collaboration-unaware systems using GUI event
multiplexing requires that the identical applications are available at all connected sites.
Even having only a slightly different version of an application at one or more of the con-
nected sites could make collaboration impossible, since potentially not all applications
understand and generate the same set of GUI events (they might even have different in-
teraction elements). Therefore, the requirement of being able to couple multiple different
tools in a shared editing session (RU8) cannot be fulfilled by these approaches. From
the developers’ perspective, these approaches allow only an ”all-or-nothing” coupling of
applications. It is not possible, e.g., to have certain areas of the application local to the
user and others coupled (c.f. req. RD4).

3.2.3 Collaboration-Aware Distributed Systems

Co-operative systems typically form a distributed system, where each user has access
to a locally executed application instance. All running applications are connected to a
server process or interconnected and exchange information over designated communica-
tion channels.

Data Sharing in a centralized architecture

In a centralized architecture, there is a central server holding all application data. Client
applications generate input events, access data values or perform data modification oper-
ations and send these to the server, which executes them locally and sends the execution
results back to the clients. An example of such a system is an application based on
CORBA (Common Object Request Broker Architecture) [omg00], where the server pro-
vides a number of object services, which are publicly accessible through an invocation
interface. Instead of holding local copies of the application data, the clients generate local
proxies (so-called stubs), which are responsible for invoking the server’s operations. The
operations required for data passing - marshaling and unmarshaling of invocation pa-
rameters and results - are performed by the underlying invocation infrastructure. In the
case of CORBA, these operations are the responsibilities of the CORBA runtime system
and the ORB (Object Request Broker). Method invocations, object references, method
parameters and invocation results are all passed through a standardized data protocol,
the Internet Inter-ORB Protocol (IIOP). All processing and serialization is performed by
the server objects.

One drawback with such a strictly centralized approach is that all object accesses,
including read accesses, are marshaled, passed across the network, unmarshaled and
invoked on the target object by the server process. In large object-oriented systems, this
can lead to a high network load and slow down the co-operating applications considerably.
Especially in the case of synchronous groupware providing seemingly real-time interaction
based on direct manipulation, this overhead can greatly influence the overall system
performance (RU11).
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A clear advantage of using a standardized distributed object system such as CORBA
is that it allows the developer to specify and implement the services and data model of
his application in an object-oriented manner. Different client applications, written in
different programming languages, can access these services using the specified invocation
interfaces and can potentially implement different sets of functionality on a common
object pool.

Replicated Data Sharing Architecture

In a replicating system based on shared data, each node receives and stores the data
objects that it accesses or modifies. Unlike the centralized approach, there is no single
instance of each object. Instead, copies (replicas) of the required data items are made and
distributed in the system. The benefit of this replication is that read accesses to objects
need not be propagated through the network and invoked on only one object, thus creating
a potential bottleneck when several nodes simultaneously access the same object. Instead,
they can be performed on the local replicas, which is much faster because neither do the
requested and transmitted data elements have to be marshaled and unmarshaled nor do
the invocation parameters and results need to be passed over the network. Replication
is a well known and widely researched technique, especially in the field of distributed
databases, to improve performance as well as availability of data.

The special application domain of this thesis, interactive groupware, involves to a
large extent displaying document contents on the users’ screens and allowing the users to
manipulate these data elements. The speed of displaying the data, and thus the perceived
performance of the co-operative application, can be greatly improved if the data to be
displayed is available locally and can be accessed on the local node. This is especially
true for complex document and data structures, which typically require a large number
of data accesses in order to display them completely on the user’s screen.

An extra overhead incurred by replicating data objects throughout the distributed
system is due to the fact that concurrent accesses to data objects need to be co-ordinated
in order to keep the document in a consistent state. This is especially true for interactive
collaborative applications, in which a number of users can modify a common document co-
operatively and simultaneously. Not only do the users have to be prevented from making
conflicting modifications to the document (thereby potentially destroying each others’
work), but also changes and additions to the document need to be propagated to all sites
currently displaying the document. As a reaction to these changes, the users’ displays
need to be updated to reflect the changed document content. In the replicated case,
ideally only the document modifications need to be broadcast to all connected systems
in an appropriate manner and the local replicas need to be updated. Again, the resulting
re-display required for a truly interactive co-operative application can benefit from the
local availability of the data items. Replication of data elements is also a promising
approach to improving system scalability (RD7), since a single-site shared data model
can quickly become a performance bottleneck.

An example of a groupware development framework using this approach are the
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COAST system ([SKSH96], [SSS99]), DistView ([PS94]) or Habanero (see [CGJP98]).
COAST separates the application behaviour implementation and the shared data model.
The collaborative application needs to be present at all sites. The shared data is repli-
cated between the systems. A central server is used for persistence, object access, and
thus for support for asynchronous collaboration. DistView, on the other hand, separates
the collaborative application into application and interface objects, using a replication
approach (exporting an application window at one site and importing it at another site)
to add participants to a collaboration session. The applications built using COAST or
DistView are not component-based in the sense that this thesis uses the term. These are
development framework and as such is extended into specific applications by program-
mers using the hot-spots provided by the framework. The resulting applications are not
reusable or combinable, neither COAST nor DistView provide any support for runtime
extension of the collaboration system, end-user customizability or tailorability. The ap-
proaches to data manipulation and concurrency control in the replicated data sharing
approaches differ. While COAST uses a transaction-based model, in combination with
optimistic concurrency control allowing a user’s application to proceed even if not all
changes to data objects have yet been validated and broadcast, DistView employs locks
to prohibit concurrent and conflicting changes to shared objects. The Habanero frame-
work provides support for sharing Java objects between multiple applications. Shared
objects are kept up-to-date through events, which are distributed between the connected
systems. Habanero users interact with Habanero tools, which are made collaborative
through data and event sharing. The Habanero environment is component-based in the
sense that new Habanero tools (called ”Hablets”, for ”Habanero Applets”) can be added
to the system and can then be used collaboratively. Since Habanero is a framework con-
cerned only with data and event sharing, it makes no provisions for coupling different
tools, for combining tools in a component-oriented way or for tool discovery by end-users.

3.2.4 Summary

Approaches using collaboration-unaware applications are very helpful when wanting to
make existing applications usable in a co-operative setting. It is often useful to take
this approach, since one does not have to re-implement important functionality which is
already available in single-user applications. Also, users are often very familiar with their
everyday single-user tools and it seems desirable to carry this know-how over into the
collaborative setting. Additionally, more often than not we do not have the source code
of the applications we want to use, so we have to take an approach such as application
sharing to use these applications collaboratively.

Collaboration-unaware approaches have the drawback, though, of being not very well
applicable to asynchronous work or work consisting of shifts of asynchronous and syn-
chronous collaboration. This is due to the fact that, for example, the documents used
in the collaboration reside on the one machine from which the application was shared.
There is often no notion of a common shared workspace from which editing and collabo-
ration sessions can be launched. Access to shared artifacts and collaborative tools (RU1)
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is difficult in such settings.

Additionally, the network overhead incurred by collaboration-unaware systems is of-
ten very high, since coupling is on a very low semantic level (such as screen outputs
and mouse inputs). The lack of collaboration-awareness in the applications means that
interaction conflicts need to be resolved by the sharing system, often in the form of
turn-taking floor control, leading to various modes of collaboration, such as ”sharing”
(the user’s local application is being shared with other users who are allowed to take
control of the application ), ”not sharing” (the other users are only able to observe the
local changes in the application but are not allowed to perform changes), ”in control”
(the user currently has control over the shared application), etc. These collaboration
modes and the transitions between them need to be managed by the users taking part
in the collaborative session; floor passing, sharing and unsharing of applications needs
to be coordinated by the users. Especially in collaboration sessions including more than
two or three users, this approach can be very hard to handle. Usage experiences in the
POLIWORK project ([STBT99]) have shown that especially users who are not very ex-
perienced computer users have problems controlling the collaboration, taking the floor,
and generally figuring out in which collaboration mode they currently are. This problem
is most certainly also increased by the fact that it appears to the users that they are
working with their familiar office application, but due to the fact that it is being used
collaboratively over application sharing, some concessions and changes to the familiar
way of interacting have to be made.

While collaboration-aware approaches do not have the benefit of allowing any single-
user application to be used collaboratively, they often have the advantage of addressing
the demands of the collaborating group in a much better way. Also, since sharing and cou-
pling can be done on a different granularity (especially in the data-sharing or replicating
approaches), the network overhead is significantly lower than with the other approaches.
Collaboration-aware approaches can better allow fulfilling the user requirements RU3
(group awareness), RU4 (synchronous and asynchronous collaboration), RU6 (multiple
simultaneous collaborative modes), RU11 (high system performance) as well as the devel-
oper requirements RD4 (shared as well as local data items), RD5 (access to co-operation
information).

3.3 Component-Based Architectures

Even in today’s multi-window graphical environments, many collaborative applications
are developed and presented to the users as monolithic, all-encompassing applications
providing a large amount of functionality. Such applications can be hard to maintain and
are largely inflexible, due to the fact that they contain many hard-coded interrelations
and interdependencies. Additionally, the technologies used for developing such applica-
tions are not sufficient for fulfilling the requirements of flexibility and system extensibility.
Component architectures such as OLE2, DCOM, OpenDOC or, more recently, JavaBeans
aim at composing applications of interoperable, reusable components. Different compo-
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nent approaches differ in the level to which they expose the users to the fact that the
system they are using is built in a component-oriented fashion.

The collaboration environment developed and described in this thesis gives the users
access to various individual (but potentially interdependent) Groupware Components,
each providing a distinct functionality for a certain task in a certain way.

In order to understand the major difference between the variety of approaches to
providing functionality spanning multiple applications and the system proposed and de-
scribed in this thesis, it is important to discuss the distinction between (and specific
features of) applications, application suites, component frameworks and the system of
Groupware Components presented in this thesis. The major dimensions of distinction
are the different degrees of openness, integration and extensibility provided by the various
approaches.

Applications are perceived to be closed environments providing a certain function-
ality (or set of features)to the user. In order to extend the functionality, an application
might provide the possibility of invoking (executing) another application, such as the
editor being used to write this text, which allows direct invocation of the LATEXcompiler.
The unit of interaction, though, remains the single application. Calling another applica-
tion (and optionally passing information in the form of files) does not constitute a tight
integration. Also, this form of integration is not really extensible. Granted, instead of the
LATEXcompiler, the editor could also be configured to call, say, the Minesweeper game,
but it cannot be configured to do both (much less to exchange information between the
two applications). Additionally, this form of integration would not appear to the user
as a single application that provides a wide range of features. Instead, the result always
appears as a set of different applications (each with their own look-and-feel, etc.).

Application suites consist of a number of applications (typically from a single ven-
dor), which are designed to be integratable in a way that makes sense to the user and
provides more functionality than a single application would. One example for such an
application suite is the Netscape Communicator suite, comprising (depending on the
configuration, e.g., private use vs. Enterprise edition) the Navigator Web browser, the
Composer HTML editor, the email tool Messenger and (optionally) a Calendar tool. The
Navigator suite is developed in such a way that switching between the applications of the
suite is done in a standard manner (via the ”Communicator” menu, which is present in
all the suite’s tools, see figure 3.1).

Typically, application suites also enforce a standard look-and-feel over all the suite’s
tools and also define a standard means for exchanging information between them. To the
user, the suite appears more like a single large application. Most application suites are
not extensible, though. They might be restrictable, i.e., the user can decide which of the
suite’s tools he wishes to install, but an integration of other applications into the suite’s
tight-knit structure is not possible in most cases.

Component Frameworks provide a dynamically extensible basis for the integration
of different tools (also from different vendors), according to the user’s demands and feature
requirements. One of the most widely used component frameworks is currently without
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Figure 3.1: Access to applications of the Netscape Communicator suite

doubt OLE2 (see [Cha96]). This component framework is used to integrate documents
from one application into documents from another application (e.g. in order to present
advanced mathematical formulas within a document produced with a word processing
tool) - typically, component inclusion is in the form of an OLE2 container (e.g. the word
processor), which incorporates the component (e.g. the mathematical formula editor).
Access to the available components and integration thereof is via a standard mechanism,
controlled by the user (see figure 3.2).

Provided that it is developed according to the development guidelines of the OLE2
component framework, any application can serve as a container of as component. Com-
ponents can even be nested hierarchically. The user can extend the system, simply by
installing new applications that serve as OLE2 containers or components. These new
applications can then also be used within the other OLE2-compliant applications (which
need to have no additional knowledge about the new applications). The combination
of OLE2 applications in a document often appears to the user to be a single powerful
application. The document contents are directly bound to the application that is needed
to edit the specific document content, though. If the required application is not present
on the system, the included content can not be edited (in most cases, provisions are made
that it can at least be viewed and printed even without the application being present on
the system, e.g. by including a static preview bitmap). Also, the mapping between the
included document data and the application required to edit it cannot be changed by the
users. If, for example, user A receives a document containing a mathematical formula
created using formula layout tool XYZ, but prefers to use the more intuitive application
ABC, he is out of luck. The drawbacks of this type of component framework become
even more apparent in collaborative settings, when one user’s choice of components influ-
ences the work of other users in the same collaboration setting. Since there is no central
place from which components can be fetched and instantiated, one user could introduce
a component which the other users do not have available. This would greatly disrupt the
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Figure 3.2: Integrating an OLE2 object in a word processor

collaboration between the users.

3.3.1 COM/DCOM and CORBA

COM, the Component Object Model, is Microsoft Corporation’s platform for component
interconnection (see [Sai98]). COM defines the way in which client and server compo-
nents interact, either within a single application process or in the form of inter-process
communication. COM defines the client/service calling interface, which allows compo-
nents written in different programming languages to call each other. COM is available
as a standard part in all Microsoft Windows operating system platforms.

DCOM, the Distributed Component Object Model (see [HK97]) is the extension of the
COM model to a distributed setting. DCOM defines the methods by which architecture
components distributed over multiple machines can communicate. Interaction is done
via object-oriented RPC (Remote Procedure Call). The DCOM protocol layers hide
the actual on-the-wire implementation from the client components. Interaction between
client and server is similar to the COM model, but the DCOM implementation ensures
that the calls to the server component are adequately distributed. As [HK97] puts it,
neither ”the client nor the component is aware that the wire that connects them has
just become a little longer.” The DCOM model ensures that a component that can be
used as a COM server can be transformed into a DCOM server for use in a distributed
application setting.

With regard to their utilization within software architectures, COM/DCOM can be
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more adequately be compared to CORBA (Common Object Request Broker Architecture,
see [omg00]). CORBA defines a cross-platform standard for communication between
client objects and servers (services). CORBA uses an Interface Definition Language
(IDL) to describe the public interfaces of a CORBA service. These public interfaces
can be called through the CORBA infrastructure from a CORBA-compliant client. By
using standard CORBA services such as a naming or brokering service, client objects can
discover which servers on the network offer specific services. Interface methods of these
service objects can then be called in order to use the services offered by the server.

By defining the CORBA IIOP (Internet Inter-ORB Protocol), CORBA achieves
true language-independence - applications whose on-the-wire communication conforms
to CORBA IIOP can be developed in different languages. There are CORBA language
bindings (rules that define how elements of the CORBA IDL are mapped to language-
specific types and constructs) for many (mainly object-oriented) programming languages.

Infrastructures such a DCOM or CORBA can serve as the basis for distributed
component-based groupware systems. Both systems define object-oriented inter-process
communication in a distributed system that can be used to implement the coordination
and distribution mechanisms required in a distributed groupware system.

3.3.2 JavaBeans

The JavaBeans framework [Eng97] provides a component model for reusable software
components developed in the Java programming language. The JavaBeans specification
specifies how a JavaBeans component can give information about itself, its properties
and the events it understands (introspection). It also specifies a way in which JavaBeans
components can be used in visual builder environments for developing component-based
applications in an interactive manner. The JavaBeans framework is first and foremost a
development framework. Users of applications built using JavaBeans are not necessarily
exposed to the component-based nature of the application they are using.

The basic ability of a JavaBeans component is to expose a number of properties using
syntactically specified ”setter” and ”getter” methods. By accessing the information about
the available properties and the related methods, a visual builder environment can be
used to wire data or events to these properties, e.g., upon clicking a button a certain input
value can be transferred to a JavaBeans property (e.g. width) by way of the associated
set method (public void setWidth(); ).

JavaBeans components interact with other components through a publish-subscribe
event model. JavaBeans components send event objects to event listener objects that
have registered as event listener on the component. Inversely, JavaBeans components
can attach themselves as listeners to other Java objects (such as GUI elements, etc.). A
component needing to send a certain event, SomethingHappened, to other components,
defines an event subclass, derived from a common event base class, named Something-

HappenedEvent. Additionally, the component needs to provide two methods for other
components to attach or detach themselves (in order to signal their interest in receiv-
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ing the related events). According to the JavaBeans naming scheme, any interested
components need to implement an interface SomethingHappenedListener, which should
contain a method called when the related event occured, e.g.
public void somethingHappened (SomethingHappenedEvent ev);.
The original component needs to provide the methods
public void addSomethingHappenedListener

(SomethingHappenedListener l);

and
public void removeSomethingHappenedListener

(SomethingHappenedListener l);.

All of these interfaces can be ”discovered” by the JavaBeans framework and by graph-
ical application builders supporting JavaBeans, by a process called introspection, since
the naming conventions for JavaBeans event handling are defined in the JavaBeans spec-
ification ([jav97]).

Additionally, the JavaBeans framework defines a number of methods which can cause
a Bean to create instances of itself, to display an icon or display itself inside a display
area as well as to accept and generate events. Using specific property sheets, JavaBeans-
conformant components can by interactively manipulated.

By using these features, application developers can put together their applications
from JavaBeans components. The strict JavaBeans API specification makes sure that
JavaBeans components developed according to this API can coexist and interoperate
within an application. JavaBeans components can be composed visually in an interactive
builder tool called BeanBox (c.f. [DeS97]). In the BeanBox, JavaBeans components can
be combined into applications using ”visual programming”: events and properties can
be linked graphically in the BeanBox, events can be generated and sent to beans and a
bean’s properties can be set. Additionally, component-specific customization dialogs can
be used to change appearance and other parameters of a JavaBeans component.

3.4 Component-Based Groupware systems

Recently, there has been some work (of which this thesis is a part) towards making
component-based architectures available for supporting collaborative work.

3.4.1 DACIA

The DACIA framework for building adaptive distributed applications (see [LP00b] and
[LP00a]) uses a component-based approach to constructing flexible and changeable collab-
oration environments. By composing the distributed collaborative system of combinable
PROCs (Processing and ROuting Components), complex application environments can
be composed where data is gathered, manipulated and displayed at various sites. By
employing component mobility, based on code mobility, the configuration of PROCs can
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be modified at runtime, making the system highly adaptable to ,e.g., changing network
topologies or changing collaboration group compositions (a management interface for in-
teractively modifying the component configurations is also provided). In this way, the
resulting collaboration support system is highly configurable and adaptable, as well as
extensible, at runtime.

DACIA provides a flexible development infrastructure for component-based collabo-
rative distributed systems. In the state presented in the literature, there is no end-user
support for identifying and accessing required components (RU2) or end-user combination
of existing interactive components (RU10). The coupling of PROCs is based on sharing
and distributing events (called messages in the DACIA environment). Hence, there is no
support for reusable data models (RD2), or for synchronous and asynchronous collabo-
ration (RU4).

3.4.2 Visual Component Suite

The approach described by Banavar et al in [BDMM99]1 provides a component-based
development environment for synchronous groupware. Developers can use visually in-
teractive development tools (Visual Builder Environments, such as IBM’s VisualAge) to
construct collaborative applications from reusable components. Application logic can be
graphically specified by ”wiring” the component’s event sources and input methods. The
available components conform to the JavaBeans component standard and are based on
an event-broadcasting client/server synchronous collaboration infrastructure, Live, which
handles group communication, locking, serialization, etc.

The approach of allowing groupware developers to use a graphically interactive, com-
ponent-based development environment and create their groupware application in a ”point-
and-click” fashion seems very helpful. With the system as presented in the publication,
though, it is to be anticipated that this form of interactive development will most likely
quickly become very complex, especially for groupware applications that are not forms-
based (e.g. a graphical editor).

In this approach, the components are only available and modifiable at development
time. The components are not exposed to the users, nor can the users extend or modify
the resulting seamless groupware applications (RU7). Dynamic coupling of different tools
at runtime (RU8) and combining existing tools (RU10) are also not possible, since the
resulting application, while built in a component-based fashion, is at runtime ”closed”.
The approach is limited to synchronous (same-time) collaboration. Since the communi-
cation between the coupled components is done using event sharing, there is no common
shared document or object model. Hence, there is no support for late-comers or for
asynchronous collaboration (RU4).

1Unfortunately, the article [BDMM99] does not give a name for the presented system. The descriptive
term ”Visual Component Suite” is used in this thesis merely to have a handle to reference the cited work.
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3.4.3 Disciple and similar approaches

The Disciple (DIstributed System for Collaborative Information Processing and LEarn-
ing) groupware system ([Mar99], [LWM99], [WDM99]) provides a component-based col-
laboration system for Java, using the JavaBeans [Eng97] Framework. The goal of the
Disciple system is to enable easy sharing of single-user applications. A collaboration-
aware JavaBeans container allows management of collaborative sessions and allows users
to extend the collaboration setting by importing additional components into the shared
workspace. The Disciple shared workspace allows the invocation and collaborative use of
collaboration-unaware JavaBeans components (CUAB - Collaboration-Unaware Beans).
By implementing a specific Disciple API, developers can also make their JavaBeans
collaboration-aware (CAB - Collaboration-Aware Beans) and provide additional func-
tionality. Disciple is therefore a hybrid between collaboration-aware and collaboration-
unaware systems.

In order to make collaboration-unaware Beans usable within collaborative sessions,
Disciple employs a variant of the GUI-Event-Multiplexing approach: When fetching the
Bean implementation from the server, the implementation bytecode is modified in order
to allow intercepting of GUI events. These intercepted GUI events are later broadcast
through the Disciple communication infrastructure to all users’ systems in the current
collaboration session, where the events are delivered to the appropriate JavaBeans. Cou-
pling of components is strictly on the level of GUI events, conflicts are detected and
resolved by a Conflict Resolver component in the system. Accesses to resources such as
files are also intercepted and modified to access resource servers that are available to all
users (similar to shared network drives). These resource servers also serve the components
that are introduced into the shared workspace.

Specific collaboration components provide features such as concurrency control, group
awareness, control of the degree of coupling, as well as telepointers and radar views. These
collaboration components are always available and can be used in combination with any
other Bean components being used co-operatively.

The Disciple system restricts itself to use in the Same Time / Different Place situation.
The concept of persistent spaces allows suspending collaboration sessions and resuming
them at a later point in time. The use of resource servers local to a specific collaborating
user, as well as the lack of a common data repository inhibits the possibilities of use in
asynchronous settings (RU4).

The Disciple system demonstrates a significant improvement over pure Application
Sharing or GUI-Event-Multiplexing approaches: It allows flexible access to JavaBeans
components within the collaborative session and allows simultaneous use of collaborating
as well as single-user JavaBeans within the desktop. Still, the approach suffers from the
drawbacks similar to those of other GUI-Event-Multicasting approaches, e.g., in Jasmine
(see [SKFS99], [ESSGS00]), or JAMM (see [BSSS97]):

• There is no common document model that could be exchanged between the different
components (RD2). Hence, all components provide collaboration on their own
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proprietary data structures.

• Also, as has been previously discussed, GUI-Event-Multiplexing is an approach
that is only applicable to tightly-coupled, synchronous collaborations utilizing the
identical components at all sites (c.f. req. RU8). All users’ components necessarily
need to be in exactly the same state in order for the collaboration to work correctly.
The applications cannot provide, e.g., some windows which work on shared data
objects and others that work on private portions of a document (RU6).

While Disciple does allow users to extend the collaboration system at runtime (fulfill-
ing req. RU7) by importing JavaBeans components into the shared workspace, it makes
no provisions for supporting the users in actually finding these components (RU2). The
components to be used collaboratively can be fetched from any URL (Uniform Resource
Locator) and it remains up to the user to find and import the components that he or she
intends to use.

The work by Hummes et al ([HKM98], [HM98]) also aims at providing an extensible
groupware environment by using collaborative components based on JavaBeans and fo-
cuses on the insertion of new components into running synchronous CSCW applications.
Similar to Disciple, the approach to coupling is that of event sharing: GUI components
at the user interface share certain events, which can be wired in a graphical application
builder in order to tailor the system or develop new components. The broadcast events
are at a semantically higher level than the Disciple events, though, hence also different
components can be coupled (illustrated by a teacher’s and students’ environment). This
approach has mainly been applied to simple forms-based interaction elements. In the
system described, there is no notion of a common shared persistent object space, hence
the collaborative components only work in strictly synchronous settings and have lim-
ited provision for late-comers. Also, the work does not address how the components are
identified and accessed at run-time.

3.4.4 Sieve

The Sieve system ([Ise98], [IBHS97]) is a collaborative workspace in which users can
collaboratively create scientific visualizations, using a number of data source, processing
and visualization components.

Components used collaboratively need to be developed according to the JavaBeans
component standard. Similar to the Disciple system, Sieve offers a collaborative exten-
sion to the JavaBeans framework, making collaboration-unaware JavaBeans components
usable collaboratively. In order to be usable collaboratively within Sieve, the JavaBeans
components need to be developed using a JavaBeans feature called ”bound properties”.
Bound properties are properties of a component that notify the component whenever
they are changed. Additionally, changes to a bound property can be constrained and
validated, e.g., in order to detect conflicting changes, etc. These bound properties do not
fulfill the requirement of having reusable shared data models (RD2), since the properties
are embedded in the components used within the Sieve visualization framework.
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The Sieve component model offers a specific linking model that governs the way in
which components are wired in order to produce information ”flows”, e.g., from a data
source (signal generator), through a data processor, to a table collecting the results.
The network of wired components can be dynamically extended, also at runtime. The
visualizations are created any manipulated co-operatively. Sieve was initially aimed at the
use in education, allowing the collaborative construction of electronic diagrams, physical
simulations, etc. The Sieve workspace, which is similar to the JavaBeans BeanBox,
provides a few features such as workspace awareness information (radar views) in order
to support the users’ coordination.

The coupling model of the collaboratively used components, based on bound proper-
ties and the propagation of change events, does not allow coupling different components
(c.f. req. RU8), neither in synchronous nor in asynchronous mode. Also, there is no
notion of how users can find the components that they need for their work (RU 2). It is
assumed that the users are familiar with the available tool set, elements of which can be
used in the collaborative visualization.

3.4.5 TeamComponents

The TeamComponents approach ([RU00]) provides support for collaborative components
(the TeamComponents), which are based on the DreamTeam groupware development
toolkit (see [RU98]). The TeamComponents are specifically developed components that
can be used either as a static part of an application or dynamically inside a compound
collaboratively edited document. TeamComponents support different levels of isolation
(private, shared public and exclusive public) and integration (seamless and anchored).
These isolation levels control in which ways a component can be used collaboratively and
how it behaves while being edited. In this way, a component can be defined to be editable
by a single person at a time (private), but be edited in-place, updating the other users’
displays while being edited (seamless).

The DreamTeam system architecture is a replicated architecture without a central
architectural component. Communication between the components occurs peer-to-peer
using multicast method invocation, where method calls can be distributed to all connected
components. Concurrency control is achieved by using different kinds of locks for the
multicast method invocations.

Data is encapsulated in the components, with each component being responsible for
handling its own data. Late-comers are supported by serializing a component’s data at
one site and sending it to the new site, so that collaboration can proceed.

The goal of the TeamComponents system is not to allow the sharing of collaboration-
unaware third-party components. TeamComponents are specially developed components
that are collaboration-aware to the extent that the developer even needs to care about
broadcasting the correct method invocations in order to create collaborative behaviour.
TeamComponents can make full use of their knowledge about the collaboration situations
(RD5).
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With the TeamComponents concept, users cannot collaborate using different compo-
nents (RU8). The approach of multicasting methods and encapsulating the component’s
data in the component allows only coupling identical components. The lack of a central
server and document persistence makes the TeamComponents not usable in an asyn-
chronous setting (RU4).

3.4.6 The EVOLVE platform

Tailorability is a system property that allows end-users to adapt (tailor) their working
environment so that it better suits their individual or group needs. The EVOLVE project
(see [SC00]) aims at supporting end-user tailoring of running groupware systems. An em-
pirical experiment (described in [Sti99]) showed the users’ requirements for tailoring (or
customizing) the tools they use in their everyday work, including those used in collabo-
rative settings. Tailorability was shown to be an inherently co-operative activity. Skilled
end-users can help less skilled end-users to perform the tailoring they require, groups of
users can collaboratively tailor the system they are using together to met their group
needs (preferences or special group processes).

The EVOLVE platform provides the basis for the development of component-based
groupware systems that can be modified by users at runtime, making newly tailored com-
ponents directly available to other users and even allowing several users to tailor their
application environment collaboratively. The system maintains component compositions
in CAT files (CAT stands for Component Architecture for Tailorability). These files con-
tain textual representations of complex component hierarchies, which are interpreted at
system startup and whenever users tailor the component compositions. The CAT files are
stored on a server and are thus available to all users of the EVOLVE platform, allowing
them to share and exchange their customized components. An extension to the JavaBeans
model is proposed, termed the FlexiBeans Component Model. Components developed
according to the FlexiBeans Component Model are specialized JavaBeans components
(and can be used as such), which provide extensions for groupware-specific functionality.
In order to support their use in collaborative settings, FlexiBeans components communi-
cate through shared variables as well as event passing. Both mechanisms work within the
same machine as well as over the network, to support distributed use. [Sti00] gives a full
overview over the design of the EVOLVE platform. Components provide ”ports” that
accept or send specific events; e.g., a GUI button might send an ActionEvent whenever it
has been pressed and a component listening for such events would accept ActionEvents
on a specific port. The ports of components can be linked in order to let events ”flow”
from one component to the next. Shared objects are provided by the components based
on the Java RMI (Remote Method Invocation) distribution architecture: A component
publishes a shared object as an RMI service. A shared object is seen to ”belong” to
that component which instantiated it. The object remains on the instantiating machine
and all clients access the shared object through RMI access to the public interface of the
object. The problem of concurrency on object access is addressed through the use of the
synchronized construct in Java, which only allows one active thread at a time to pass a
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critical section.

End-users are provided with a graphically interactive tailoring tool, similar to the
BeanBox used in the JavaBeans environment. Here, the ports of components can be
connected in order to construct the application wiring logic. Changes made to the com-
ponent composition are immediately reflected at all clients where an instance of the
changed composition is currently used. In this way, tailoring of the collaborative system
components can be done ”live”, while the components are actually being used.

The EVOLVE platform’s support for online tailoring of a collaborative system com-
posed of hierarchically structured components provides a very flexible groupware en-
vironment that the users can quickly adapt to their needs (RU10). The combination
of shared objects and shared events as communication primitives for components of a
CSCW system (an approach also taken in this thesis) supports a very logical design of
a collaborative component’s implementation. The choice of implementation of shared
object access (publication of the object as an RMI service on one machine and access
from the clients through the RPC-like RMI infrastructure) can quickly become a perfor-
mance bottleneck, especially in highly interactive collaborative applications. Use of the
synchronized Java construct to synchronize concurrent object access makes the client’s
thread of activity block in the remote invocation until all other accesses to the shared
object have completed. To the users of data-intensive interactive applications such as
shared whiteboards or other collaborative graphical applications, this synchronization
will appear as very long response times, which will be perceived to be very low system
performance, leading to potentially high turnaround times and slow system response in
interactive settings (RU11).

The design choice of encapsulating the shared data objects in a certain component
restricts the possibility of coupling different components on the same artifact (RU8) and
of using shared artifacts with a variety of tools in synchronous and asynchronous settings
(RU4).

3.4.7 GROOVE

A very recent development is the Groove system ([Gro00]). Groove is a peer-to-peer col-
laboration platform, where users can create workspaces, containing collaborative tools,
into which they can invite other users with whom they wish to collaborate. Groove’s
extensibility and flexibility can be compared to the DISCIPLE system: Users can add
collaborative tools to a shared workspace. These tools can be fetched from a central
repository of tools (run, typically, by the inventors of Groove, Groove Networks, at
http://www.groove.net). Users joining a shared workspace that contains tools that their
system currently does not have, automatically receive copies of the tools in order to take
part in the collaboration in the shared workspace.

What sets Groove apart from other collaboration systems is the approach to intercon-
necting the systems. The Groove approach is that of peer-to-peer computing, which has
become very popular recently, with a number of peer-to-peer systems becoming widely
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used on the Internet. When multiple users share a workspace, the changes made to the
workspace’s contents are exchanged between their systems without the use of a central
server. Each user’s system holds a replica of the workspace contents and these workspace
contents are kept consistent through command objects which are propagated between the
connected peers. Queuing and caching strategies allow workspace synchronization to be
performed even if the users’ systems are only connected sporadically, e.g., in the case of
offline use or asynchronous collaboration.

The tools that are to be used in Groove workspaces need to be specifically built us-
ing the Groove Software Development Kit (SDK). Groove provides no common shared
data model for the various tools used in the shared workspaces. The medium for com-
munication and the means for synchronization are command objects, which encapsulate
changes to the data state of the tools. These command objects are created by the tools,
intercepted by the Groove platform and distributed to the other replicas of the tools at
the other sites where the shared workspace is being accessed. In effect, this places the
restriction on the setup of the shared workspace that all users must have (the exact same
versions of) all workspace tools at all times. The approach supports neither the coupling
of different tools on common shared data (RU8), nor does it allow ”mixed” collaborations,
where different users may or may not use some or all of the same tools (e.g. depending on
their roles or tasks, or which would be required in mobile situations (RU9). Also, the data
model as presented in the Groove user interface appears to preclude using elements from
one workspace in another workspace. Since no common shared data model is available
for the tools, there is also no support for reusable shared data models (RD2). Also, the
peer-to-peer approach automatically leads to lack of support for server-side components
(RD9).

3.5 Summary and identification of deficits

With regard to the requirements identified in the previous section, it can be seen from the
presentation that the approaches for component-based groupware systems do not fulfill
the requirements as presented.

While most of the systems presented in this section (excluding the Visual Component
Suite approach by Banavar et al.) do allow users to extend the collaboration sessions
with additional tools (RU7), the systems do not provide support for selecting which tools
actually to use in which situations or for which documents (RU2).

Most approaches do not fulfill requirement RU4, for supporting synchronous as well
as asynchronous work - most approaches do not adequately support asynchronous collab-
oration. A notable exception is GROOVE with its replication and replica synchronization
concepts. The resumable collaboration sessions in Disciple appear to be an approach to-
wards supporting this requirement. Most specifically the lack of a common server makes
asynchronous collaboration difficult to coordinate between the participants. The same
applies to the TeamComponents approach.
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Due to the lack of a common shared data model, none of the approaches presented
above support the coupling of different components (RU8). Especially in a heterogeneous
collaboration infrastructure and different group compositions, fulfilling this requirement
becomes very important if flexible collaboration is to be performed.

The combination of different tools (RU10) can be said to be supported by the Team-
Components system, in the form of the compound documents into which the user can
embed components. These compound documents cannot be deployed and reused or stan-
dardized, though, and a new one needs to be put together each time it is needed. The easy
deployment of such component configurations is perceived to be an important element of
end-user tailorability of the collaboration system, though.

The developers requirements are fulfilled to varying degrees in the systems described
above. Since collaboration-unaware systems such as Disciple, Sieve, etc. make collabo-
rative use of tools not initially developed for collaboration, no developer access to col-
laboration information (RD5) can be supported. Non-extensible groupware development
environments, such as the Visual Component Suite approach, COAST, etc. make no
provisions for deployment of newly developed collaboration tools (RD6).

None of examined systems support the use of server-side components, which can
be invoked in conjunction with client-side collaborative components in order to provide
singular functionality (RD9).



38 CHAPTER 3. STATE OF THE ART



Chapter 4

Groupware Components

The central concept introduced in this thesis is that of Groupware Components. Based on
a schematic description of the system architecture, this chapter will present the Group-
ware Components and their realization in the groupware development framework DyCE
(Dynamic Collaboration Environment). In order to develop component-based groupware
that fulfills the requirements presented earlier, the Groupware Components need to be
based on supporting technologies, including a consistent shared data model, object repli-
cation and means for providing view consistency. These technologies will be introduced
after the Groupware Components.

Interconnection and combination of Groupware Components necessitates a common
programming model, according to which the components need to be developed. This the-
sis presents a task-based programming model for the Groupware Components, providing
a loose binding between related components as well as support for system extensibility.
The presentation of this programming model will follow the presentation of the Group-
ware Components and the supporting technologies.

One of the major requirements presented in a previous chapter is that for an ex-
tensible and adaptable collaboration support system (RU7). The two phases in which
changes and extensions to the collaboration support system are made is at development
time(when qualified developers create new Groupware Components based on the devel-
opment framework) and at runtime, when the end-users adapt the system to their needs.
This chapter will therefore present the development and tailoring support provided by
DyCE.

The chapter concludes with a detailed presentation of the system architecture, which
refines the initial schematic view and lays the foundation for the presentation of aspects
related to the implementation, which will follow in the next chapter.

39
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A note about typography: In the following discus-
sions, frequent reference will be made to elements of the
DyCE framework, the development class library as well
as more general concepts. Wherever necessary, concepts
will by highlighted using emphasized font. In contrast,
programming elements, classes from the DyCE frame-
work and other programming language items that come
directly from the implementation side will be presented
in typewriter font. This typographical convention is
necessary in order to distinguish between general con-
cepts and their actual implementation.

4.1 Groupware Components - Overview

Section 3.3 has presented an overview over component-based systems that make the com-
ponents accessible to the end-users in order to allow them to use their work environments
in a more flexible way. The Groupware Component system presented in this thesis
aims at providing the extensibility of component Frameworks, but with added flexibility
and functionality: Leaving aside the major difference that Groupware Components are
per se collaborative (which OLE2 and other component frameworks aren’t), one major
goal of the design and development of the framework was to make the resulting system
extensible and to make components exchangeable (even to the point of using different
components on the same document contents). This inherent extensibility is the response
to the end-user requirements RU2 (computer guidance for selecting appropriate tools),
RU7 (dynamic extension of the collaboration environment) and RU8 (coupling of different
tools).

In such an environment, the distinctions between the components and the level to
which a user can identify an application become more and more blurred. A user is no
longer working within a single application, but rather he is applying his choice of tools
to the documents or other artifacts on which he is currently working (together with
others). To put it another way, instead of presenting the user with the ”put-nail-in-wall-
application”, he is handed a tool box containing, among other things, a hammer, pliers,
screwdrivers, etc. and from which he can pick the tool most appropriate for the task at
hand. Additionally, existing tools can be combined to form new, more complex tools for
specialized problem areas.

4.1.1 Schematic system architecture

An overview over a collaboration system based on Groupware Components is shown in
figure 4.1. This schema will serve to guide the in-depth presentation of the Groupware
Components in the following sections, which will systematically refine different areas of
the schematic overview.
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Figure 4.1: Schema of application system

In the application schema shown in Figure 4.1, each user is provided with a client
application within which Groupware Components are used to access and modify elements
of a common domain data model.

Groupware Components

A Component is a complex element of the application system, providing access to objects
through a user interface. Conceptually, a component combines a display (which presents
elements of the shared domain model in a meaningful way and allows interaction) with an
implementation of application logic, which is responsible for controlling the access to the
shared domain data model. Components can be nested: Components can be contained
in other components and can in turn contain components (this nesting relationship is not
shown in figure 4.1 for clarity reasons). Additionally, several components can be coupled
on one shared data item.

Components are implemented by developers, who create (program) component im-
plementations and deploy these by storing them in a Component Broker subsystem ac-
cessible to all users. Upon access by the end-users, the implementations of components
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are fetched from the Component Broker located on the server. They are instantiated and
set into relation to the data objects they can display and modify.

User1, on the left-hand system in the diagram, is using two components to access
elements of the shared domain model, whereas User2, on the right-hand system, is using
only a single component. In this way, several components are sharing objects, thus
providing the users with the ability to co-operatively view and edit shared documents.

Other component architecture approaches, such as DACIA ([LP00b]), treat all ele-
ments of the system architecture as components (i.e. the object management system,
the database back-end, data processing units, etc. would all be treated as components
with component-specific interfaces). While this view provides a homogeneous view of
component architectures, it is not important for the work presented in this thesis. While
elements of the architecture and framework presented in this thesis could be seen as
components, the subsequent discussions of the interfaces and programming models for
components apply only to the Groupware Components as visually interactive and dynam-
ically linkable elements of the groupware support environment.

Groupware Components are accessed through a Client Application, which provides
users with a means to access the collaborative environment and invoke the desired Group-
ware Components.

Shared Objects

The basis for collaborative use of Groupware Components is realized using the data
sharing approach (see section 3.2.3 for a discussion of the advantages of this approach).
As shown in the diagram, components access shared objects, which form the basis of the
collaboration, the shared artifacts. Components visualize the contents of these objects,
allow the users to manipulate the shared objects and keep the display consistent with the
state of the shared artifacts.

The shared objects represent the shared application state common to all users access-
ing these objects. Additional (non-shared) objects can be used by components, e.g., to
represent data elements of services only available locally or only used by a single user
(c.f. RD4).

Component Broker

Component implementations are loaded from a Component Broker, which manages a
repository of component implementations where they are persistently stored and avail-
able to all connected users. The component implementations are requested from the
Component Broker and loaded from the repository. Instances are then created at the
clients’ sites, ready for use. New components can be added to the Component Broker
and thereby become available to all users (RD6, RU7).

The Component Broker can be local to the clients (e.g., as in the case of a locally
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installed application) or - as shown in the diagram - can be remote and accessed via
the network. In the DyCE system presented in this thesis, the Component Broker is
centrally available to all users. This decision eases the deployment of new components
(RD6) as well as maintenance of the same versions of components in all client systems.
Additionally, providing a central Component Broker supports ubiquitous access to the
collaboration support environment (RU5).

Object Management

In order to support synchronous as well as asynchronous collaboration (RU4), shared
objects are persistently stored in an Object Repository, which is accessed through an
Object Management subsystem. The application environment ensures that the objects
are loaded from persistent storage and instantiated locally to be available to the related
components when required. Between uses, the object instances - and not just the classes
they are instantiated from - are stored in the Object Repository.

While objects are being used by Groupware Components, the users are potentially
changing the objects. In order to enable collaboration, it is important that all shared
objects remain in a globally consistent state, i.e., that changes made to a shared object
at one site are reflected at all other sites sharing this object. It is the responsibility
of the Object Management system to maintain this consistency. It is able to do this
because all clients propagate changes performed on the shared objects to the central
Object Management system. This can then employ concurrency control mechanisms in
order to resolve concurrent conflicting object accesses. Changes to the shared objects
that are relevant for other clients are propagated by the object management system to
the affected clients. These can then update the user interface displays accordingly. More
details about these mechanisms will be presented in section 4.3.

4.1.2 Characteristics of Groupware Components

The Groupware Components used as parts of the collaboration environment can be char-
acterised as:

• Collaborative - by accessing a shared data model, which is maintained in a consis-
tent state throughout the system, the different components provide synchronous as
well as asynchronous collaborative functionality;

• Interactive - the components give the user immediate and co-operative access to
elements of a shared object space and give instant feedback about the results of
these operations;

• Loaded on demand - instead of being directly included in the applications accessed
by the users, the components are fetched on-demand from a component repository;
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• Interdependent - different components (instances of different classes) potentially
access common data objects; there is potentially an intersection between the data
objects accessed and manipulated by the various components;

• Used dynamically - the exact point in time at which a user invokes a certain com-
ponent cannot be predetermined; the same holds for the inverse: discarding of the
component;

• Composable - it is possible for component developers and end-users to create new
Groupware Components by composing them of other (sub-) components.

Groupware Components can be used in various ways, depending on the users’ require-
ments. They could, among others, be used as

• components of a ”groupware desktop” (as in the scenario), providing access to
different features, based on the different elements of the desktop (e.g. time planner,
documents, project planner, etc.)

• collaborative elements embedded in Web pages (e.g. small awareness markers indi-
cating who is currently viewing the page, including the ability to initiate commu-
nication, interactive collaborative workspaces delivered via Web pages, etc.)

• collaborative tools on mobile and hand-held devices, providing mobile collaboration
support.

4.2 Shared Objects

As has been pointed out, a Groupware Component allows a group of users to interact with
(i.e. view and modify) a set of - potentially - shared objects. Groupware Components
need to provide shared access to the objects that form the basis of the collaboration. In
order to support collaboration, the components need to reflect the current state of the
shared object.

4.2.1 Separation of application and data model

When designing a development framework for distributed co-operative systems, we are
faced with varying levels of development that need to be distinguished and for which
development support and framework support need to be provided: General support for
shared data objects, support for putting together domain data models and support for
developing the application logic. The separation of concerns into these levels was guided
by the end-user and developer requirements presented earlier. The actual design of the
different aspects outlined in this section as well as the means by which they are supported
in the development framework will be presented in detail in the subsequent sections.
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The levels (which can also be found in the schema in figure 4.1) relate to the varying
levels of abstraction in a specific application built on a general framework; the levels also
relate to the development support for Groupware Components:

Shared data objects

Characteristics: Since the framework is to be applicable to all Groupware Components
and needs to provide basic support for collaborative components, we require a general
model for shared objects. This general model governs how all shared data objects in the
distributed system are set up and behave. Instances of the shared data object model are
used in all domain-specific data model implementations (see below).

Framework support: The development framework provides the implementations
of the elements of the shared data model. The set of shared data objects with which
the framework deals (both at development time and at runtime) is a homogeneous set
of objects conforming to this general shared object model. No application or domain-
specific logic to verify external data consistency is available at this level. This level is
concerned with internal data consistency: The framework ensures that if one replica of
an object is modified at one site, these modifications are propagated to all replicas.

Developer Access: Developers of Groupware Components do not extend shared
objects at this level. The implementations of the general shared object model are used
when putting together implementations of the next higher level.

Domain data model

Characteristics: At the domain data model level, domain-specific functionality related
to the shared data objects is provided. The objects at this level contain all domain-
specific functionality required to maintain externally (semantically) consistent data items.
An instance of the domain-specific data model can be used in a variety of different
components (e.g. instances of a domain-specific Bank-Account object could be used in
a collaborative accounting system as well as a shared personal checkbook application
and a collaborative Monopoly game). The consistency logic included in the domain data
objects is the same across all instances of such a model class (e.g. a Bank Account class
has the same consistency constraints for withdrawals and deposits across all components
using instances thereof).

Framework support: The framework provides a number of base classes for classes of
the domain data model. These classes need to be subclassed by the groupware developer.
The framework ensures that instances of the domain-specific classes are created when
shared data objects are replicated.

Developer Access: The developer subclasses the framework’s base classes for the
domain-specific model. In these domain-specific subclasses, elements of the general shared
data model are used to put together the classes of the domain-specific data model (e.g. a
domain-specific Person class could use a number of objects from the shared data model
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to model the person’s name, his address and his phone number). The developer-created
subclasses form the semantically meaningful interface to the shared data model. The
developers also need to implement the domain-specific consistency checks in order to
prevent inconsistent data states.

Application logic

Characteristics: The application logic is the actual implementation of a Groupware
Component’s functionality. Using the domain-specific interface provided by the domain
data model classes, the Groupware Components access and modify elements of the shared
data model and are notified about any changes to the shared data occurring at other sites.

Framework support: The framework provides common superclasses for the Group-
ware Components, which provide the general logic common to all Groupware Compo-
nents: tying components to objects of the domain data model (how this is done exactly
will be presented in section 4.6) and notifying the components about changes in the
underlying data objects.

Developer Access: The developer of a Groupware Component subclasses the frame-
work’s component base class and adds the specific functionality. By creating instances
of the domain-specific data model (or having such instances assigned by the runtime
system), the component becomes a collaborative Groupware Component.

4.2.2 Class and Object definitions

For the remainder of this chapter, the following definitions are relevant (the definitions
are general enough to apply in all object-oriented languages).

• Class: A Class is a static programming abstraction. A class provides behaviour
shared by all its instances.

• Subclass: A subclass extends a class by providing additional behaviour or overriding
existing behaviour.

• Object: An object is the instantiation of a class on a specific system. If an object
O1 is an instance of a single class C1, it provides the behaviour implemented in
Class C1. In [Mey89], B.Meyer puts it this way: ”A class is a type, an object is an
instance of a type” (p.94). An object and a type are elements of the programming
language.

• Shared Object: A shared object is a conceptual element of the collaboration sup-
port system. It denotes a group of objects on different systems (on different host
machines or used in different application processes), which all share the same state.
The state of a shared object on different systems is allowed to diverge due to opera-
tions performed on the shared object. It is aa task of the runtime system to ensure
that the state of the shared objects converges again (see also [Dou95b]).
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• Polymorphism: If an operation is defined to be valid on (instances of) Class C1,
then it is assumed to be valid for all (instances of) subclasses of C1.

4.2.3 Modeling shared data objects

The lowest layer in the above decomposition of shared object models is that of shared
objects. These data elements form the basic data model of any Groupware Component.
The instances of this data model - the data objects - are co-operatively created, modified
and deleted. Each participating system needs access to the data model specification,
therefore the implementation of the basic shared object model is provided in the DyCE
framework.

The aim of a generic data modeling component is to allow the developer to implement
any data model required for the solution of the problem at hand, be it a single shared
document, a set of documents or document fragments or any other compound object-
oriented data model. For this, a set of predefined data types can be used to construct
complex data structures and object relations.

In object-oriented programming languages such as Smalltalk and Java, a number
of basic (or core) data types are provided by the programming language itself or the
programming language’s supporting class hierarchy 1. These basic data types can be
refined using the mechanisms provided by the object-oriented programming paradigm
and complex data structures can be created by combining a number of class instances.

Similar support is to be provided by the development framework: predefined data
types can be combined and extended to form new elements of the data model. These new
elements can then be used to construct complex data models, which can be instantiated
and manipulated at run-time. Since the data objects form the basis of the collaboration
activity, the data modeling facilities need to be accompanied by the appropriate support
mechanisms as described in the following sections: collaboration needs to be supported by
providing object replication through the distributed collaborative system; simultaneous
and conflicting changes to data objects need to be detected and corrected by appropriate
concurrency control mechanisms.

4.2.4 Object Representation

Developer requirement RD2, presented in chapter 2 discussed developer support for
reusable data models. An important part in defining and setting up such common data
models are played by the syntax and semantics expressed by an object representation.

1Strictly speaking, Java is not an object-oriented programming language but rather an object-based
hybrid programming language, since the language defines a number of primitive data types such as int,
char, boolean, which are not provided as classes that can be instantiated, subclassed and extended.
In contrast, Smalltalk is a pure object-oriented language since all data types are provided by classes in
the language’s standardized class hierarchy. These classes can be subclassed and extended to provide
additional, application-specific characteristics.
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Generally speaking, the object representation mechanism describes a means to use the
expressive powers offered by the system to create and manipulate new data types and to
combine instances of these data types into more complex data structures. When referring
to programming languages, there are two levels of object representation to consider: lan-
guage representation, governed by the syntax and semantics of the programming language
used, and runtime representation, created by the compiler or interpreter and maintained
by the language’s runtime system.

The language representation governs the way in which the programming language
elements are used to create new classes, instantiate classes as new objects and so forth.
For the Java programming language, a valid language representation of a class containing
a number of attributes as well as methods accessing and manipulating these attributes
would be:

public class BankAccount extends Object {

protected float balance;

public float giveBalance()

{

return balance;

}

public void deposit (float amount)

{

balance = balance + amount;

}

}

The runtime representation is specified by the way in which the Java language compiler
transforms this class definition into bytecode and allocates heap space for newly created
instances of bank accounts.

In order to allow the application developers to benefit from the system presented in
this thesis, it is important to provide an object representation facility that

• matches the general paradigm of the target programming language (in the case of
this thesis this is the object-oriented paradigm),

• is sufficiently flexible and powerful to express and utilize the required concepts,

• and that maps into a runtime representation which the system can use to provide
adequate replication and concurrency control mechanisms.

It is the third requirement that introduces the need to extend existing object repre-
sentation schemes, since the general object representation schemes have no provision for
expressing and maintaining the information required for the flexible object replication
mechanisms introduced in this thesis.
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Several systems created in order to aid development of distributed applications have
taken the approach of extending an existing language (e.g. C++) by a number of ad-
ditional syntactical elements which enable the programmer to express concepts not pre-
viously present in the programming language; others even define an entirely new pro-
gramming language, e.g., in the GUIDE system [BBD+91]. Clearly, this approach has
its drawbacks: The application developers need to become familiar with the new pro-
gramming language concepts and applications that would previously have been portable
between a number of standardized development environments suddenly, through the use
of non-standard language enhancements, lose this important characteristic.

Alternately, the runtime system (and possibly the compiler) could be modified to
interpret the runtime representation differently and to gather the necessary information
from the representation. Again, this would break portability and generality.

Instead, a representation scheme is presented that makes use of the concepts present
in the object-oriented programming language - inheritance, polymorphism, etc. - to intro-
duce a layer of system components, which can be used within the application development
to express and control the additionally required functionality.

4.2.5 Specification of Object Representation

Def.: Slot
A slot is a data container consisting of its name, its type and its value 2. A slot’s data
type can be a programming language type (e.g. a String) - referred to as a base type
in the following sections - or a reference to an RObject type (see below), thus creating
complex structures consisting of RObject instances. Slots are added at runtime, through
the use of slot creation operations in the class constructors. A Slot provides a simple
accessing interface for retrieving and changing the Slot’s value. The framework’s Slot

implementation is never subclassed by a component developer.

The Slot class provides the following interface methods:

void setValue (Object value)

Sets the slot value to the object passed as parameter.

Object getValue()

Retrieve the object currently stored in the Slot as its value.

boolean isEmpty()

Returns TRUE if the Slot currently does not hold a value.

String getContentClass()

Return the class name of the object currently stored as Slot value. Returns
null if the Slot is empty.

2The term ”Slot” is borrowed, by way of COAST and its underlying frame kit, from Marvin Minsky’s
framework for representing knowledge (see [Min75]). The term is maintained to aid the distinction
between the regular attributes of an object and the replicated data elements contained in a replicated
object, which can have their own behaviour and consistency maintenance provisions.
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boolean holdsRObject()

Returns TRUE if the Slot currently holds an instance of RObject class.

ObjectID getContentID()

If holdsRObject() is TRUE, returns the ID of the RObject instance held in
the Slot. Returns null otherwise.

addSlotChangeListener (SlotChangListener listener)

Adds the given SlotChangeListener to the set of change listeners bound to
this Slot (listeners).

removeSlotChangeListener (SlotChangListener listener)

Removes the given SlotChangeListener from the set of change listeners bound
to this Slot (listeners).

void changed()

Constructs a new SlotChangeEvent and passes it to the slotChanged method
of all SlotChangeListeners currently registered to this Slot.

Def.: RObject
A replicatable object (RObject) consists of a base object, which is the actual instance of
RObject, and a number of slots, which contain the replicatable data part of the RObject.
Each RObject is uniquely identifiable within the distributed system by its ObjectID,
which is defined to be unique across all nodes of the distributed system. The RObject
class provides accessing interfaces for adding Slots as well as querying the list of Slots and
retrieving and changing a Slot’s content. For accessing slots within the RObject, slots
are identified with names. The framework’s RObject implementation is never subclassed
by a component developer.

The basic representation of replicated objects can be seen in Figure 4.2. The notation
used in this and the subsequent object diagrams is UML (Unified Modeling Language,
see [Fow00] for information about the notation; a brief overview can be found in appendix
B).

The replicatable object class RObject provides the following interface methods:

addSlot (Object value, String name)

Adds a new Slot with the given name and the given initial value to this
replicatable object. Creates a new Slot instance and adds it to the RObject’s
internal data structure holding the associated slots.

addSlot (String name, Slot s)

add a previously created slot to the replicated object’s set of slots using the
given name for reference. Adds the RObject instance to the new slot as
SlotChangeListener.

ModelObject getModelObject()

Returns the domain model object to which this replicatable object is bound
as a shared data object.
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Figure 4.2: Object model class diagram

void setModelObjectClassName(String name)

Sets the class name of the domain data model instance to which this RObject
instance is bound. Called when the RObject instance is bound to a newly cre-
ate ModelObject subclass instance. This information is needed to reconstruct
the correct ModelObject instance when replicating the RObject.

String getModelObjectClassName()

Returns the class name of the domain data model instance bound to this
replicatable object. This information is needed to reconstruct the correct
ModelObject instance when replicating the RObject.

ObjectID getID()

Retrieves the globally unique identifier of this replicatable object. All replicas
of a replicatable object have the same ID.

void setIsDeleted()

Marks the replicatable object instance as deleted. The object is not directly
removed, but the deletion is taken into account in subsequent replication
operations and the object can be removed by the server’s ObjectManager
when it decides to do so.

boolean getIsDeleted()
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Returns TRUE if the object has been previously marked as deleted.

void addObjectChangeListener (ObjectChangeListener listener)

Adds the given ObjectChangeListener to the set of change listeners bound to
this RObject (listeners).

void removeObjectChangeListener (ObjectChangeListener listener)

Removes the given ObjectChangeListener from the set of change listeners
bound to this RObject (listeners).

Slot getSlot (String name) throws NoSuchFieldError

Returns the Slot bound to this shared data object under the given name
(previously added using addSlot). If no Slot of the given name is present,
throws NoSuchFieldError exception.

Object setSlotValue (String name, Object o)

throws NoSuchFieldError

Sets the value of the Slot of the given name to the given object. If no Slot of
the given name is present, throws NoSuchFieldError exception

Enumeration getSlots()

Returns an enumeration containing all Slots bound to this shared data object.

Enumeration listSlotNames()

Returns an enumeration containing the names of all Slots currently bound to
this shared data object.

void slotChanged (SlotChangeEvent event)

Change notification method implemented from the SlotChangeListener in-
terface. Called by Slots to which this shared data object is bound as a lis-
tener, whenever the slot’s value has changed. Stores the information about
Slot changes locally for later use in notifyListeners().

void notifyListeners()

Constructs a new ObjectChangeEvent, containing information about all slot
change notifications received via the slotChanged method and sends this
event to all registered ObjectChangeListeners. Clears information about
Slot changes. Used by transaction management framework (see section 4.3.5)
to notify dependent objects about changes when committing a transaction.
Ensures that each listener is only called once per changed RObject, even if
multiple Slots are changed within a transaction.

boolean equals(Object o)

Method to determine if two objects are the same. Returns TRUE if o is an
instance of RObject and for the current object getID().equals(o.getID()).

Since slot creation and maintenance is performed at runtime, the type checking in-
volved in maintaining the slot consistency is also performed at runtime as a task of the
Object Manager. Since these type constraints cannot be checked at compile time, vi-
olation of type constraints has to be indicated to the application through the use of
appropriate programming language mechanisms such as exceptions.
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X.Read X.Write
X.Read No Conflict Conflict
X.Write Conflict Conflict

Table 4.1: Table of Conflict Rules (adapted from [ÖV91], p. 285)

4.2.6 Problems with base types

Using the programming language’s base data types as slot types can cause a considerable
problem for the concurrency control component. If the base data type is used ”as is”,
and instances of this type are stored and returned by reference by the slots, then an
application can access the slot’s value and subsequently manipulate this value using the
regular programming language constructs. These modifications are then not subject to
concurrency control and cannot be correctly propagated and co-ordinated.

A simple approach to overcome this problem is to restrict slot operations to simple set
and get methods, where the get method returns, for base types, a copy of the slot’s value.
After having thus retrieved the slot value, the application can manipulate the data and at
a later stage reinsert the changed value into the slot using the set method. These set and
get accesses would then be subject to the concurrency control of the runtime replication
system. A problem with this approach is that no optimizations could be performed by
the system, e.g., by using commutativity information about the manipulating operations
in order to detect non-conflicting slot accesses and, thus, non-conflicting transactions on
the same set of slots. A worst-case approach would have to be taken to detect conflicts
between transactions, using the simple set of conflict rules that two Reads on the same slot
are not in conflict, while a Write on a slot conflicts with any other concurrent operation
on the same slot (see table 4.1).

A solution to this problem is to provide ”type wrappers” for the base data types,
implementing a specialized invocation interface which has knowledge about the need for
concurrency control and supervised access to the slot’s data value. Ideally, this type
wrapper interface provides the same interface as the programming language types do,
thereby completely encapsulating the data object in a transparent way. One important
task of these type wrappers is supervising slot accesses and propagating information
about the slot value changes, along with semantic information about the slot access
operation. This information can later be used by the system, together with the type
wrappers, to determine whether two operations are actually in conflict and whether the
entire operation (transaction) needs to be aborted due to conflicting operations.

In this approach, the type wrappers have to be specifically developed for each base
data type that is to be made available as a potential slot value type. These type wrappers
can be provided as part of the supporting toolkit, ready to be used by the application
programmers.

As a result of a data value access, the type wrapper forwards the access to the actual
data value and also provides a description of the slot access to the runtime transaction
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management system, which is closely related to the concurrency control mechanism.
This information about data accesses is gathered and forms the informational part of
a transaction (see section 4.3.5 for more details about transactions). All type wrappers
provide one common interface method, which is used to determine whether two operations
are commutative or not. Later, when the runtime system needs to determine whether
to allow a transaction to commit, the interface methods of the type wrappers are used,
by passing the previously generated information, in order to determine an order between
the transactions and in order to detect conflicting operations.

4.2.7 Slot and RObject observers

Each slot and RObject can be bound with any number of observers, which are notified
when a slot’s value is changed. These observer relationships can be used to implement
any reaction to slot value changes, such as the recalculation and refreshing of the displays,
recalculation of non-shared instance variables or more elaborate actions. In order to be
able to react to slot changes by means of an observer, an object needs to implement
the SlotChangeListener or the ObjectChangeListener interface and implement the
notification method defined in this interface. This method is automatically called by the
runtime system on all currently registered observers when the slot’s value is changed.
Slot triggers can be used when a component wants to register interest in certain slots
and react differently to changes of different slot values. Consider an RObject modeling
a paragraph of text with slots representing the start and the end of a text selection as
well as the current cursor position within the text. Whenever the cursor position value
changes, it may be sufficient to reposition the cursor on the screen without redisplaying
the entire section of text.

Additionally, observers can be attached to instances of RObject. By attaching an
observer to an RObject instance, an application can register interest in the fact that the
object’s data set is changed, regardless of the actual slot that has changed. This can be
useful for objects where any change in a slot value has to always lead to the redisplay of
the entire object, when partial redisplays of an object are not feasible. Consider an object
representing a complex geometrical shape consisting of a sequence of connected dots, a
colour value and a position on the screen. No matter which of these aspects changes, the
entire shape needs to be redisplayed on the screen in order to present the correct shape
to the user.

4.2.8 The Domain Data Model

Using RObject and Slot instances, domain-specific data structures can be created. These
data structures do not yet carry any domain-specific logic, though. The development
framework superclass for all domain-specific data models, which needs to be subclassed
by component developers is the abstract base class ModelObject (see figure 4.3). Each
ModelObject subclass instance is directly related to an RObject instance at runtime.
When creating a domain-specific subclass of ModelObject, a developer needs to write
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the method that initializes the associated RObject’s Slots, initializeSlots(), creating
those slots that he needs for the domain data model and providing initial values for each.
In this method, the actual domain model structure is defined. The runtime system ensures
that this method is called when a ModelObject subclass instance is created. ModelObject
subclasses can be arranged in inheritance structures, just like in any object-oriented data
model (making the use of data modeling via ModelObject very similar to the normal
object-oriented data modeling).

Figure 4.3: Framework base support for the Domain Data Model

In addition to creation of the required Slots in the associated RObject, the Mode-
lObject implementation must provide access interfaces for querying and modifying the
data items stored in these Slots. These access methods can then be used to implement
domain-specific consistency checks, which cannot be performed by the RObjects or Slots.

The following code fragments are taken from a simple diagram data model used in
a shared diagram editing tool. A general base class for all shapes used in a diagram
is derived as a ModelObject subclass, and from there a specific shape, in this case a
rectangle, is derived.

public class DiagramShape
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extends GroupComponents.ObjectModel.ModelObject

{

public void initializeSlots()

{

super.initializeSlots();

newSlot ("xpos", new Integer (15));

newSlot ("ypos", new Integer (20));

newSlot ("color", Color.black);

}

}

public class DiagramRectangle extends DiagramShape

{

public Integer getWidth()

{

return (Integer)(get("width"));

}

public void setWidth (Integer w) throws IllegalArgumentException

{

if (w < 0)

throw new IllegalArgumentException ("width too small");

set ("width", w);

}

// ...

public void initializeSlots()

{

super.initializeSlots();

newSlot ("width", new Integer (0));

newSlot ("height", new Integer (0));

}

}

Upon runtime creation of all instances of DiagramRectangle, the framework will call
the method initializeSlots(), which sets up the object’s data slots xpos, ypos, color,
width and height accordingly.

Also shown in the code fragments are two accessing methods for manipulating Slot
contents, getWidth and setWidth. As can be seen the setWidth() method adds consis-
tency checking to ensure validity of the parameters, in this case that a rectangle’s width
can never be negative. Violation of this constraint is signaled in the way in which this is
usually done in Java, by throwing a runtime exception, which includes additional helpful
information.

The ModelObject framework class provides the following interface methods:
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abstract void initializeSlots()

Framework ”hot-spot” method for developer extensions of ModelObject. This
method needs to be overridden in all ModelObject subclasses in order to ini-
tialize the concrete domain data model’s Slots (in the associated shared data
object. Can use the ModelObject internal method void newSlot (String

slotName, Object slotValue) to add a Slot of the given name holding the
given initial value.

void setDataObject (RObject object)

Set the ModelObject’s related shared data object (RObject instance).

RObject getDataObject()

Retrieve the ModelObject’s shared data object (RObject instance). If the
replicatable object is not yet present on the local machine it is retrieved from
the server, added to the ModelObject and returned as method result.

void delete()

Delete the model object and the associated RObject.
Calls getDataObject().setIsDeleted(). This does not directly delete the
objects, but merely marks them as deleted. This mark will be taken into
account in subsequent replication operations. Objects marked as deleted can
be removed by the server’s ObjectManager at a later point in time.

boolean getIsDeleted()

Query whether the object has been marked as deleted with the delete()

method.

void addObjectChangeListener (ObjectChangeListener listener)

Adds the given ObjectChangeListener to the set of change listeners bound to
this ModelObject (listeners).

void removeObjectChangeListener (ObjectChangeListener listener)

Removes the given ObjectChangeListener from the set of change listeners
bound to this ModelObject (listeners).

void objectChanged (ObjectChangeEvent event)

Method defined in the ObjectChangeListener interface, which is imple-
mented by the ModelObject class. Called by the associated RObject instance
when a Slot’s value changes (see RObject specification). Propagates changes
from associated RObject to all listeners bound to the ModelObject instance
(listeners).

void set (String name, Object value) throws NoSuchFieldError

Sets the value of the Slot of the given name to the given value (using the
Slot’s setValue method).
Throws a java.lang.NoSuchFieldError exception if no slot of the given
name exists.

Object get(String name) throws NoSuchFieldError

Retrieves the value stored in the Slot of the given name.
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Throws a java.lang.NoSuchFieldError exception if no slot of the given
name exists.

boolean equals (Object o)

Method to determine if the ModelObject instance passed as a parameter is
equal to the current one. Returns true if o is an instance of MOdelObject,
or a subclass thereof, and either the ModelObject instances themselves are
equal (are actually the same objects) or both model object instances refer to
the same shared data object (determined using a call to
getDataObject().getID().equals(o.getDataObject().getID())).

Discussion of alternatives

The reason for this seemingly complicated way of defining a shared data model, decoupling
the data-holding elements (RObject and Slot) from the actual domain logic (ModelObject
and subclasses thereof) lies in the benefit of server back-end simplicity and stability
gained. The design alternative would have been to allow the developers direct subclassing
of RObject and extension of this class hierarchy with domain-specific functionality.

The server of the distributed system needs to deal with the data objects: It needs to
store them persistently and needs to subject the modifications of the data objects to con-
currency control. For this, the server needs to operate with the data object instances (in
the case of the design presented above, instances of RObject and Slot). It is not, however,
concerned with application-level semantics, since the replication and concurrency control
can be done at the homogeneous shared data model layer (using information about Slot
modifications for validation and distribution - the mechanisms for this will be presented
in more detail in section 4.3). Therefore, the server does not require the actual domain
model implementations.

Would the component developer directly subclass, e.g., Person from RObject, the
server would have to deal with Person instances (and many more distinctly domain-
specific implementations). Any such developer-written subclass can potentially introduce
instability, which would affect the entire server. Additionally, dealing with all these
ModelObject subclasses (holding the implementations in memory, comparing types and
instances, etc.) would be a performance problem.

For these reasons, the design decision was made to keep the server object space - and
in this way also the interface between client and server - homogeneous.

4.2.9 UML Extension to model shared objects

In the course of designing and developing software systems, it is often the case that designs
and specifications need to be written down, as part of the specification documentation or
even just to communicate about them with other members of the development team. For
this, a common notation is required that is known to all members of the team and that
reduces the chance of misunderstandings (which could lead to expensive changes in the
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design and implementation at later points in time). One such design notation, which has
become an accepted standard and is being widely used throughout the industry, is the
Unified Modeling Language, UML. The UML is an extensible notation model including
definitions of diagrams for most ”phases” of the project development life-cycle, from early
use-case sketches through to very detailed collaboration and class diagrams.

Since component-based groupware systems, like most software systems, are often de-
veloped in a team, it is useful to be able to to model the groupware-specific aspects
along with the rest of the design. Especially in development projects where the work is
split split up among multiple developers (or teams) working more or less independently,
consistent and comprehensive documentation of the design decisions becomes important.

This thesis proposes a number of UML extensions for incorporating the concepts
presented in this thesis into the standard UML diagrams. For extension purposes, UML
provides the use of ”stereotypes”, extension points of the diagram notation that can be
used to model domain-specific aspects of the software system (in this case, the domain is
the development of component-based groupware). Stereotypes can be easily noted in any
UML diagram element, by placing the stereotype name into two angular brackets and
adding this to the symbol, e.g., by adding � Customer � to a class symbol denoting
a customer in the system. These stereotypes are used to extend the notation to include
support for the concepts described so far, shared objects consisting of Slots. In later
sections of the thesis, the notation will be extended more, introducing stereotypes for the
additional concepts not presented yet.

The shared object model is a static design model describing the structure of the shared
data items used in the groupware system. As discussed, the shared object model consists
of replicatable objects (subclasses of the RObject framework class), which hold the
shared data elements as Slots. Conceptually, a Slot of a shared object is similar to an
object’s attribute. These attributes are modeled in the UML’s class diagrams (for an
overview over all diagrams available in the UML, see [Fow00]). Therefore, Slots of shared
objects are modeled as stereotypes of attributes. In the class diagram, two extensions
are made to provide support for modeling shared data objects.

Figure 4.4: UML diagram stereotypes for shared objects
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Figure 4.4 shows, on the left, the regular class symbol used in a class diagram. The
rectangle representing the class contains three partitions, the top one showing the class
name, the middle one showing the attributes of the class and the lowest one showing the
operations. In the diagram symbols shown in the figure, there is additional information,
about return types and item visibility. These information items can be omitted, e.g., in
the early phases of the design when such detail would not be useful. In the class model
item extension, shown on the left, stereotypes are added to certain elements. These
stereotypes are:

• �Shared� added as class stereotype to denote the fact that the class is part of
the shared data model. Extending a class symbol with the stereotype �Shared�
automatically denotes that the class is derived from the DyCE framework base
class ModelObject. This information can therefore be omitted from the diagrams
for clarity reasons.

• �Slot� added as stereotype to those attributes that need to be realized as Slots
of the shared object model. These Slots need to be initialized in the shared object
classes initializeSlots() methods. Therefore, this methods is also shown in the
diagram element. Extending an attribute with the �Slot� stereotype implies the
appropriate get...() and set...() methods used for accessing and changing the
Slot’s contents. These methods can be included in the diagram but can also be
omitted for reasons of clarity. For an attribute denoted as a Slot, these methods
must be present in the implementation, though.

The shared object diagram element can also hold attribute definitions that are not
prefixed with the �Slot� stereotype. This attributes can be realized as regular attributes
of the implementation class. They are, by definition, not shared between replicated
instances of the model object class.

A number of currently available CASE (Computer-Aided Software Engineering) tools
provide the functionality of generating source code from design documents. Using the
information about stereotypes added to the diagram, the code generation feature of ex-
tensible CASE tools can be enhanced to generate the appropriate source code for the
shared model class, i.e., deriving the class from ModelObject and automatically generat-
ing the entire body of the initializeSlots() method, defining all Slots from the model
with the appropriate types. For all attributes with the �Slot� stereotype, the appro-
priate get...() and set...() methods, including the method body, can be automati-
cally generated following the pattern that an attribute with the specification �Slot�
myAttribute:aType results in the generation of two methods (shown for Java as imple-
mentation language):

public void setMyAttribute (aType aValue)

{

// ... method body;

}
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public aType getMyAttribute ()

{

// ... method body;

}

for setting and retrieving the Slot’s contents.

4.2.10 Object Structure - Summary

The OO model used in the data representation component is shown in Figure 4.5.

Figure 4.5: Object Representation Model

Slots are accessed through slot access methods in RObject, similar to the Access
Objects in [BCM95]. The framework class RObject provides the basic mechanisms for
creating new slots, accessing and modifying slot contents. The slot accesses are forwarded
to the appropriate slot instance, which performs the actual access and returns the required
return values.

RObject and Slot instances form the passive data model of the application, i.e.,
they contain no processing logic other than what is required to perform the specified
operations and maintain consistency of the replicated object set. The actual application
functionality is built as an object-oriented class hierarchy based on the ModelObject class
and the framework’s support for data storage and object replication purposes. In this
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way, a single complex data model can be consistently shared between several different
applications, each implementing specific functionality on top of the data model. The next
section will present how the data models created in this fashion are replicated between
the server and the clients.

4.3 Object replication

In order to provide multiple people with access to shared objects, the components need
support by the runtime system. The objects need to be kept in a consistent state - changes
to a shared object at one site need to be notified and propagated to all components
currently accessing this object. Additionally, the components need to perform updates
of the display whenever component state changes in order to present all users with a
common view of the shared objects. The process of distributing copies of data objects over
multiple sites and keeping these in a consistent state is known, e.g. in database work, as
object replication. This section will first give an overview over different approaches to data
replication as well as issues related to replication and will then present the data replication
realized in the DyCE framework. More information about replication strategies, along
with definitions of the terms used in this section, can be found in [WPS+00]

Replication of data objects or services at all connected sites and allowing concurrent
access to the data elements can be used as a means of increasing data availability 3.
In a replicated object setting, there is ideally no single central instance of each object
upon which all operations (modifications as well as queries of current object state) are
performed. Instead, each object is replicated among a number of connected nodes of
the distributed system. This replication can greatly reduce the network traffic and thus
increase performance, since - given that all objects are somehow kept in a consistent state
- query operations (operations accessing the object’s state but not modifying it) can be
performed by a node on the local object replica and need not be transmitted over the
network.

In order to provide optimal support for highly interactive and responsive co-operative
applications, the development framework needs to provide mechanisms for object repli-
cation between all nodes of the distributed system. These objects must be submitted
to a mechanism maintaining global consistency of the co-operatively manipulated shared
object space.

3In [HHB96], availability is defined as ”the accessibility of system services to the users” and it is
further stated that ”a system is highly available if denial of service request is rare”. Replication as
a means of improving availability in a co-operative system therefore refers to the goal of reducing the
amount of time each user’s system is unresponsive to user actions because it is interacting with the other
users’ systems, e.g., to transfer operation requests or fetch update messages for changed data values. In a
centralized system utilizing only single object instances, in which all requests - including read requests -
have to be transmitted to a central server or manager process, which schedules and processes the requests
and then replies accordingly, a large amount of time is potentially spent on these communications tasks,
making the system appear unresponsive or - according to the above definition - unavailable.
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4.3.1 Partial Replication

In a highly interactive setting such as a CSCW application allowing users to tailor their
collaboration environment by selectively accessing components and data objects (shared
artifacts), not all nodes require replicas of all objects at all times. Instead, the nodes
only require those objects that make up that part of the object space that the user is
currently viewing or editing in the currently used components. Other objects, which are
in no way affected by the user’s current actions and are not currently being displayed to
the user, are of no relevance in the current interaction situation. They can be ignored by
the system without any adverse effect on the user interface or the user’s actions.

This restriction of replicated data is referred to as partial replication, since at a given
point in time only a subset of all objects making up the entire shared object space may be
replicated to each site. A related concept found in literature is that of adaptive replication
(see [Wol98] for a more complete definition of the term), where the replication scheme
of an object (the set of all nodes holding replicas of the object) is constantly adapted to
the current requirements of the system. This is contrasted to static replication, where
the replication scheme is fixed and precomputed, based on an assumption or prediction
of the system’s behaviour.

Providing support for partial or dynamic replication in a distributed application can
improve the overall system’s performance, since:

• only those objects need to be replicated to a node (i.e. transmitted over the net-
work) that are actually currently required; this leads to a reduction in the time
required to replicate the objects to a newly connecting or reconnecting node

• a certain administrative and communications overhead is incurred by replicating
objects over multiple nodes: the objects need to be kept in a consistent state in
order to allow correct operation of the distributed application; by replicating only
those objects that are actually required, this overhead can be reduced, resulting in
lower usage of bandwidth and physical memory

In the past years, the computing devices on our desktops have continually become
more ”network-centric devices”, which are more than just the ”dumb” terminals known
from the mainframe era of computer applications, since they have local processing power
equivalent to top-range personal computers while at the same time drawing their data
and programs from the network. With the availability of such systems, it seems reason-
able to enhance communication and productivity by providing additional co-operative
applications to the users. The same holds for the trend to install Intranets, internal net-
work and computing infrastructure based on widely available and accepted technologies
such as Web servers and Web browsers. The applications benefiting from this infrastruc-
ture can be designed in the form of an object-oriented distributed system using object
replication to provide high responsiveness to the user while at the same time maintaining
consistency of the common shared artifact, the base of the collaboration. Even within a
corporate Intranet the scarcest resource is bandwidth, thus business applications should
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be designed and developed to, on the one hand, support co-operative problem solving
activities between co-workers by profiting from the locally available computing power,
while at the same time not waste available bandwidth. Especially when large infor-
mation structures are maintained and modified co-operatively, it seems undesirable to
replicate all available data to all connected systems, leading to the need for partial repli-
cation mechanisms which detect which data elements are currently required by which
nodes and transparently replicate them to the consumer nodes.

Dynamic Replication

An algorithm for dynamic data replication in a distributed system is presented in [WJH97].
In this article, Wolfson et al describe the Adaptive Data Replication algorithm (ADR).
This algorithm maintains a connected replication scheme within a distributed system ex-
hibiting a tree-based topology (in the course of the work by Wolfson et al, this topology
is later extended to a graph-based network topology). The replication scheme (the set of
all processors in the system currently holding a replica of a data item) is maintained and
adapted by periodically performing a set of three tests: the expansion test, the contrac-
tion test and the switch test. In each test, information about the past number of read
and write requests as well as the total number of requests processed by each node is used
to determine whether to

• expand the replication scheme by replicating a data object to a node of the system
not previously part of the replication scheme but at the border of the replication
scheme (i.e. a node not currently holding a replica of the data item but directly
connected to a node that is part of the data item’s replication scheme),

• reduce the replication scheme by releasing a data item’s replica at one of the nodes
at the fringe of the replication scheme (i.e. a node currently holding a data item’s
replica that is connected to a node not currently part of the replication scheme),

• switch a data item’s replica from a node currently holding a replica (where it is
subsequently removed) to a node not currently holding a data item replica.

Using these three tests, an ”amoeba”-like replication scheme migrates through the net-
work, expanding towards those nodes that require local replicas of the data item, since
they frequently access the item and can thus greatly benefit from the local copies, while
at the same time, the contraction test and the resulting reduction of the replica set leads
to ”moving away” from processors not currently accessing the data item and thus a re-
duction of control and update messages that have to be propagated to all replica items,
even those that would currently be dispensable.

Performance evaluations of this algorithm show the benefits of the dynamic replication
in terms of the cost incurred by propagating read and write accesses through the network.
It is shown that over a period of time intervals the replication scheme converges towards
the optimal replication scheme for the current read/write activity in the system. When
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the read/write characteristics of the system (expressed as schedules consisting of read
and write requests over time) change, the replication scheme is adapted accordingly, to
once more converge to the optimal.

A comparison of the adaptive replication scheme with a static precomputed replication
scheme and with a theoretical lowest bound on the cost of the replication shows that the
ADR algorithm is superior to static replication schemes since it constantly changes the
replication scheme to match the current read/write situation of the system.

Lazy Replication

The lazy replication (also called ”lazy loading”) (see [LLSG92]) approach to partial data
replication is much simpler that the ADR approach. Lazy loading typically does not rely
on an active distributed algorithm. Instead, it relies on a system’s ability to detect if it
needs to fetch an object before it can proceed.

Assuming a system of interconnected objects that can potentially be replicated, a lazy
replication approach will only fetch a replica of an object when that object is actually
accessed by the system. As long as an object reference is not resolved (and the referenced
object accessed), the object is not available on the system. The opposite approach, in
which all references between objects are followed upon replication of an object and the
entire network of objects is sent immediately, is called ”eager replication”.

The lazy replication approach is simpler to realize than ADR and other dynamic repli-
cation approaches, since it does not require the ability to access non-replicated objects
over the network (e.g. using remote proxies). The object access mechanism can rely on
the fact that an object replica will be locally available as soon as it is accessed (but not
before it is accessed the first time). Assuming that not all object references are resolved
automatically when accessing an object, then lazy replication replicates less objects than
eager replication. The lazy replication approach needs support from the runtime system
or development framework in order to detect when an object reference is followed and
an object is accessed. Accessing the object needs to be deferred until the required object
has been replicated.

4.3.2 Discarding of replicas

A requirement that stems from the previous discussion is the need to be able to discard
replicas when they are no longer needed at the current system. Such a situation can arise,
for instance, when a user stops working on one section of a common document (composed
of object from the common shared object space) and focuses his attention on another
section of that document. Once all operations performed on the previous section have
committed and the section is no longer displayed on the user’s screen, the replicas can
be discarded. If this discarding of replicas is not provided, the set of replicated objects
at each node continually grows and while the user navigates through the document data,
large portions of the shared object space are gradually loaded into the local system,
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subjecting them to all the control mechanisms responsible for replica management and
overall consistency of the shared objects. This behaviour is especially undesirable when
one takes into account that a large-scale co-operative system could potentially include
more data objects than can possibly be stored in the local system’s physical memory -
consider a co-operative Web browser which gradually builds a local copy of the entire Web
content. Instead, mechanisms are required that allow the system to detect which replicas
are no longer needed in the current interaction situation so that these replicas can be
safely discarded without adverse effect on the user interface and overall data consistency.

These detection mechanisms need to be sufficiently intelligent to allow interactive
navigation of the shared object space, especially backtracking (going back to previously
viewed sections of the object space). Taking the Web browser example, it seems reason-
able that a page’s contents are not discarded as soon as a hyperlink to another page is
followed. Were this the case, the previous page would have to be reloaded (replicated
again) when the user, upon discovering that his navigation did not bring him where he
actually wanted to go, immediately upon seeing the new page pressed the ”back” button
of his browser. Instead, the system needs to maintain an intelligent caching strategy
(as many browsers do) that retains replicas for a certain period of time before discard-
ing them. Current Web browsers feature a page cache, which is not strictly speaking a
means of replication as addressed by this thesis, but rather a ”dead” copy. The elements
in the browser cache are not subjected to consistency control and update mechanisms.
Changes in the original Web page are not detected until the page is revisited and, even
then, insufficient change detection mechanisms sometimes result in an outdated cached
version of the page being displayed even though the actual Web page has since been
modified. No corrective action is taken to remedy this situation and it remains left to
the user’s discretion whether he wants to initiate a reload of the page in order to be sure
the browser is displaying current data.

An additional performance improvement can be achieved by not only caching a num-
ber of replicas to allow the user to backtrack through his actions, but also prefetching a
certain area ε around the user’s current ”position”. Since not all distributed applications
have a straightforward document structure such as the hypermedia structure in the Web,
the partial replication mechanism needs to be tailorable to suit the application devel-
oper’s needs. For instance, the algorithms for detecting the optimal caching duration
and ε-prefetch boundaries need to be provided in a way which is configurable or which
can be exchanged by new mechanisms.

The problem that arises when discussing partial replication strategies is how to detect
when objects are required at the current node. Taking into account a large set of objects
interconnected by object references, it is not sufficient to follow the references from any
replicated object and to also replicate those objects referenced by them, since this would
automatically lead to a complete replication of the entire object space. Instead, partition
boundaries within the document model have to be identifiable and objects need only be
replicated up to these partition boundaries. An easier approach is to replicate on access:
when an object is first accessed by a client, it is replicated to that client and the client
is added to the replication management system since changes to the object need to be
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forwarded to that client as well.

4.3.3 Distributed Garbage Collection

An interactive object-oriented system allowing users to create, manipulate and delete
objects and object relations produces what is referred to as garbage: objects that are no
longer referenced by any other objects and are thus unreachable and no longer needed
by the system. Several object-oriented programming languages feature what is called
a garbage collector: a system component, often part of the runtime system’s memory
management system, which is able to detect unreferenced objects and remove them from
the application’s heap, freeing space for newly created objects. Many garbage collection
algorithms operate on a mark-and-sweep algorithm or a variation thereof (see [JL96] for
details about garbage collection algorithms), resolving object references in the object
graph and marking those objects that are traversed. Once a mark-and-sweep pass has
completed, any objects not marked can be considered unreachable (i.e. garbage) and can
be removed from the application’s memory space without adverse effects on the other
objects.

In a distributed application, garbage collection becomes a more difficult task since
objects that are no longer referenced within one node’s object space may well still be ref-
erenced by objects contained in another node (see [PS95] for more details on Distributed
Garbage Collection). Additionally, in a replicated setting an object replica is a member
of a replica group - a set of objects on various hosts that are all replicas of a common
data object. Objects in a replica group need to be available and accessible in order to
allow correct operation of concurrency control algorithms. Two invariants hold, which
make distributed garbage collection in a replicated setting a complex activity:

• if an object is garbage collected on one node it needs to be removed from the replica
group on each system in order to remove it from the concurrency control and replica
management;

• since the objects in the replicated system are managed by some form of replica
management component that keeps track of all replicated objects, a mere mark-
and-sweep style of garbage collection would never detect any garbage-collectable
objects, since all objects are at least accessible via the replica management system.

As previously discussed, in order to really benefit from the partial replication, it seems
desirable to be able to not only discard any unneeded replica objects but to also remove
them from the replica management and concurrency control mechanisms.

For these reasons, the garbage collection mechanism needs to be tightly integrated
with the replication mechanism, turning it into a distributed garbage collection mecha-
nism. The system needs a means to detect those replicas that are no longer needed and
to subject them to the garbage collection mechanism.
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4.3.4 Object Replication in DyCE

The object replication mechanism in the DyCE framework uses a variant of the Lazy
Replication mechanism. In the approach as realized in DyCE, all objects initially reside
on the server and they are replicated to the clients as soon as they are accessed by them.
Supporting object replication is part of the functionality of the Object Manager. Object
Management is a service provided by the DyCE server’s ObjectManager and accessed by
ObjectManager instances on the clients. The server’s Object Manager holds all available
RObjects and manages their persistence using an object-oriented database.

As has been discussed in the section regarding Lazy Replication, this approach requires
identifying the moment at which an object is accessed. Therefore, all object accesses need
to be performed using the client’s ObjectManager instance. The client’s ObjectManager
holds the object replicas available on the client. The set of objects stored in the client’s
Object Manager is a pure subset of the objects held in the server’s Object Manager.

As has been discussed in sections 4.2.5 and following, data objects in DyCE are
divided into the domain model part, derived as a class hierarchy from ModelObject, and
the pure data part, consisting of RObject and Slot instances. Since the ModelObject

instances may not hold shared data elements, only the RObject instances are relevant for
replication and persistency purposes. Using the ModelObjectClassName property of the
RObject, the necessary ModelObject instance can be recreated at any time by creating
a local instance of the correct class.

For retrieving the desired Objects, the Object Manager provides a number of interface
methods. Recall from the section about the data object representation that each object
in the system is identified by a unique identifier of type ObjectID. The class diagram
of the client and server Object Managers as well as the common object management
interface is shown in figure 4.6.

When a Groupware Component needs to retrieve a data object, it uses the client’s
ObjectManager interface method public RObject getObject (ObjectID objID,

ObjectID clientid), giving the ID of the desired object. If the object is available in the
client Object Manager’s objectList, it is returned directly, otherwise it is first fetched
from the server’s Object Manager and added to the local object space. In this way, there
is a central point at which object access can be intercepted and suspended until the object
has been successfully replicated.

When an object is replicated from the server to the client, it is serialized and sent over
the network in binary form. In this process, the contents of any Slot holding a reference
to an RObject or a ModelObject are replaced with SlotContentPlaceholder instances.
Slots holding primitive or other data values are serialized into the object and included in
the transmitted data stream. On the client, the SlotContentPlaceholders are resolved as
soon as the Slot’s contents are first accessed. The ObjectID wrapped in the placeholder
is used to fetch the required object (which is done just like described above). In this way,
the system avoids replicating entire sub-nets of linked data objects in cases where only a
few slots of a few of these objects would have actually been relevant.
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Figure 4.6: ObjectManager class diagram

For each replicated object, the server’s Object Manager maintains information about
the object’s replication scheme (the list of clients currently holding replicas of the object)
in its objectClientMapping data structure. Here the server has access to the replica
group of each object. When a client ObjectManager requests an object from the server,
it passes its unique client ID that the server enters into the objectClientMapping struc-
ture. This information is needed for change propagation, performed by the system’s
Transaction Manager, which will be described in the following section.

The ObjectManager service provides the following interface functions:

RObject getObject(ObjectID object, ObjectID clientid)

Retrieve the object of the given ID from the Object Manager. If getObject
is called on the client Object Manager and the object is not available in the
client’s object space, retrieve the object from the server’s Object Manager,
adding the client to that object’s replication scheme. If the method is called
on the server and the object is not available in the server’s object space,
attempt a fetch from persistent storage. Return null if object is not available.

RObject getObjectIfLocal(ObjectID object, ObjectID clientid)

Retrieve the object with the given ID from the Object Manager if it is available
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locally. Do not attempt to fetch the object over the network if it is not locally
available.

boolean addObject (RObject object)

Add the given object to the Object Manager. If called on a client, add the
object to the server’s Object Manager as well. When adding the object to
the server’s Object Manager, the object is automatically made persistent in
persistent storage.

boolean addObjectLocally (RObject object)

Add the object to the Object Manager. If called on client, do not attempt to
send to server. If called on server, add object to persistent storage.

boolean addTransientObjectLocally (RObject object)

Add the object to the Object Manager. If called on client, do not attempt to
send to server. If called on server, do not add object to persistent storage.

boolean removeObjectLocally(ObjectID id)

Remove the object with the given ID from the Object Manager’s object set.
Even if called on server, do not remove object from persistent storage.

Vector getObjectClientMappingFor(ObjectID id)

Return the replication scheme for the object of the given ID - returns a list
of IDs of all clients to which the object is currently replicated.

int getLClock(ObjectID id)

return the logical clock value for the object of the given ID. See section 4.3.5
for use of logical clock values in transaction validation.

Vector listIDsForClass (String classname)

Return a set of all object IDs of RObject instances with a ModelObejct-
ClassName equal to the given class name. Used to retrieve all instances of a
certain class. When called on server, also returns IDs of all matching objects
in persistent storage.

Vector listClassNames()

Returns a set of all ModelObjectClassNames of all RObject instances stored
in the Object Manager’s object space. If called in the server, also returns all
ModelObjectClassNames for all objects in persistent storage.

4.3.5 Object Consistency: Transaction Management

When replicating objects through the distributed system, there must be a mechanism
that supports keeping all these objects in a consistent state, i.e., propagating changes
performed at one system to all other systems holding replicas of the object. Since we are
concerned with a distributed co-operative system supporting synchronous collaboration
between multiple users, we are faced with the issue of multiple users making simultaneous
but conflicting changes to the same object(s), which could potentially lead to inconsis-
tent displays and a disruption of the collaboration. Approaches for maintaining such
consistency can be roughly categorized into one of the following two classes:
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• Conflict Prevention: Using mechanisms such as distributed locks or semaphores,
the systems are prevented from making conflicting changes. Before a system can
perform changes to an object, it needs to acquire the related lock(s). If a desired
lock is not free, then another system is currently holding the lock and therefore
the changes cannot be performed. After all required changes have been performed
and the related locks have been released, the changes are propagated to all systems
holding replicas of the affected objects, thus making all systems consistent again.
Another example of such an approach is floor control, where the application prevents
users from performing operations when they do not ”have the floor”. Such floor
control is often also linked to the user interface, in order to indicate to the users
that they cannot currently take an action.

• Conflict Resolution: In this class of approaches, a system is initially allowed
to perform changes to objects. If these changes are in conflict with changes done
on other machines (which can be detected using appropriate Concurrency Control
mechanisms), then specific conflict resolution mechanisms are needed to resolve
these conflicts and create a consistent state again. Conflicting operations can be
undone (thereby undoing the work of at least one of the users) or they can be
reordered, transformed and performed in different order.

A more detailed treatment of the technical aspects of concurrency control mecha-
nisms in groupware systems can be found in [EG89]. Greenberg and Marwood ([GM94])
discuss in which ways concurrency control and choice of concurrency control policies in-
fluences the user interface. After all, when designing groupware systems we are faced
with supporting groups of users in a distributed setting and not just a set of connected
systems.

Transaction Validation

DyCE uses Transactions to group object manipulations and accesses and uses a cen-
tralized transaction-based concurrency control for maintaining data consistency. Each
DyCE client wraps operations which access the shared data model into transactions. For
validation and distribution reasons, a transaction consists of three parts:

• Read-Set T.read : Ordered list of read operations performed on Objects’ Slots
(ordered in the order in which the read operations were performed during the trans-
action).

• Write-Set T.write : Ordered list of write operations performed on Objects’ Slots
(also ordered chronologically).

• Logical Timestamp T.lclock: Vector of RObject lclock (logical clock) values
(tuples of ObjectIDs and numeric lclock values) at the point at which the objects
were modified.
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For all data access operations performed on the shared data model, there has to be a
running transaction. Each access to a Slot, either through setValue or through getValue

methods (for respectively writing and reading the slot) adds an operation object to the
running transaction. For Slot s1 of RObject r1, reading the Slot’s contents through
getValue in Transaction t1 appends a readOperation object to t1.read. Writing (mod-
ifying) the slot’s contents through setValue in Transaction t1 adds a writeOperation

object to t1.write and a tuple containing r1.id and the current RObject timestamp
value lclock of r1 to t1.lclock. When the transaction is committed, the timestamp
values of all affected RObjects (an RObject is affected if a writeOperation has been
performed on it) are advanced. The transaction is sent to the server for validation.

Transaction Types

Transactions can be distinguished according to which forms of operations (read, write,
create) on the shared data model they allow. For performance and efficiency reasons,
the framework distinguishes between three different types of transactions with different
characteristics (see table 4.2).

Transaction Type Permitted Oper-
ations

Description

Modify Transaction read, write, cre-
ate, change

Basic trans-
action for all
accesses to
shared data
- subject to
concurrency
control

Display Transaction read Groups local
display oper-
ations, allows
no modifica-
tion of data,
not subject to
concurrency
control

Validate Transaction read, write, cre-
ate, change

used only on the
server, in the
phase of validat-
ing and replay-
ing a transaction

Table 4.2: DyCE transaction types

The basic transaction, which allows all forms of data access and manipulation is



4.3. OBJECT REPLICATION 73

the modify transaction. This transaction is performed by a client and gathers up all
operations on data objects. When a modify transaction is committed, it is sent to the
server for validation. For reasons of efficiency and application response time, the clients
perform transactions optimistically, that is transactions are performed, the user’s display
is updated and work is allowed to proceed, even though the transaction has not yet been
validated. If, during validation, the transaction is found to be in conflict with other
previously committed transactions, the local changes as well as any subsequent changes
are undone and the shared data model is returned to a consistent state. For this, each
client maintains a local undo buffer of unconfirmed transactions.

Since during the refreshing of a component’s display elements of the shared data model
need to be accessed, and all accesses to data objects need to be wrapped in a transaction,
DyCE knows a second transaction type, the Display

Transaction. Display Transactions only allow read access to shared data objects. Any
modification of data objects will result in a runtime exception being raised by the frame-
work and operations being aborted.

Display Transactions can be used to detect additional object dependencies, since, if
an object is in the readSet of a component’s Display Transaction, then that object (or
rather a Slot thereof) appears to be relevant for the correct display of a component.
This indicates that the component needs to be notified when such an object or Slot is
changed at a later point in time. This information can be automatically gathered at
runtime by the framework, without the component developer having to explicitly add
ObjectChangeListeners or SlotChangeListeners to shared model objects.

ValidateTransactions are used only on the server in the phase of validating and
replaying a transaction received from a client. Since the server’s object space also deals
with RObject and Slot instances, any modifying accesses to these need to be wrapped
in transactions as well. For this, the server creates ValidateTransactions, which allow
all kinds of accesses (even though object reads are not replayed and not distributed).
ValidateTransactions are created only in the process of validating transactions and are
therefore not themselves distributed when committed.

The class hierarchy of transaction objects is shown in figure 4.7 along with the hier-
archy of operations that can be performed within transactions. The set of transaction
can easily be extended in this part of the framework in a fashion similar to the way in
which the DisplayTransaction has been derived. In order to create additional special
transaction types (e.g. ones that only permit changes to specific parts of an object model,
or that restrict permitted transaction size), the addOperation, addWriteOp, addReadOp
or addChangeOp methods need to be overriden, checking the transaction operations to be
added before adding them.

Transaction Properties

The Modify Transactions in the system are required to fulfill the ACID properties known
from database management systems: Atomicity, Consistency, Isolation and Durability.
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Figure 4.7: Transaction object model

In [Wei93] these terms are defined as follows (p.330 f):

• Atomicity [...] means that each transaction appears indivisible with respect to
crashes. In other words, each transaction appears to occur either completely or not
at all; partial effects cannot be seen.

• Consistency means that each transaction, when executed alone and to completion,
preserves whatever invariants have been defined on the system state.

• Isolation [...] means that transaction appear indivisible to each other: if a group of
transactions is executed concurrently, the effect is the same as if they were executed
sequentially in some order.

• Durability [...] means that the effects of committed transactions are very likely to
survive subsequent failures.

These transaction properties are ensured by the server’s Transaction Manager in the
following ways. Atomicity is ensured by storing the previous values of the affected Slots
in ”shadow” slots while performing the transaction. When the transaction is committed,
the affected object is written to persistent storage. In the case of a crash, the origi-
nal, unchanged object can be retrieved from persistent storage in the state in which it
was previous to the transaction. In the case of a transaction abort (or rollback) on the
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client, the shadow values are written back to the Slots, restoring the state before the
transaction. Perservation of consistency is the responsibility of the domain-specific ac-
cess methods in the ModelObject subclasses. The various methods for setting Slot values
need to check the domain-specific consistency constraints. The isolation property (which
is also often called serializability, in effect states that transactions cannot influence each
other) is ensured by the fact that a client’s Transaction Manager does not process any
transaction received over the network while a local transaction is being performed. And,
vice-versa, no local transaction is allowed to begin while the Transaction Manager is pro-
cessing transactions received from the server. In this way, the only way that object state
can change during a transaction is by operations performed in that transaction. These
operations are gathered in the transaction object, sent over the network to the server for
validation and distribution. The transaction cannot depend on any observable changes
that occurred ”outside” of the transaction. The transaction serialization mechanisms
that take place in the server’s Transaction Manager ensure that no two concurrent trans-
actions are allowed to commit that affect (modify) the same slots. One of these will be
undone. Therefore, the result of the serialization of committed transactions will be the
same regardless of the order in which the transactions are actually performed. The dura-
bility property is ensured by storing the RObject instances in persistent storage. When a
transaction commits, the RObject instances stored in persistent are updated accordingly.
This way, crash recovery for many forms of system crashes can be performed simply by
reloading the RObject instances from persistent storage. Since only consistent RObject
states (the states of RObject instances at the end of a transaction’s committing, which
are by definition consistent) are placed into persistent storage, a consistent point from
which to resume can be loaded from the storage.

4.4 Components in the DyCE Framework

The object diagram in figure 4.8 presents the core of the DyCE framework, the classes
that form the framework’s ”hotspots” for extension and the classes for managing the
framework extensions:

• MobileComponent - the base class for all Groupware Components,

• ModelObject - the base class for all domain model classes,

• RObject and Slot - the constituents of the generic data object model, created and
referenced through domain-specific ModelObject subclasses,

The relationships between RObject, Slot and ModelObject have already been ex-
plained, therefore the details of the RObject and Slot classes have been hidden from
the diagram - please refer to figure 4.5 for details. MobileComponent is the class to be
subclassed when developing a new Groupware Component. In order to make the new
component usable in the framework, the following methods need to be implemented with
component-specific behaviour:
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void prepareGUI()

This method must contain all GUI initialization code required for the com-
ponent (creation and initialization of GUI elements such as text elements,
labels, etc.) The method is called by the framework before opening a Group-
ware Component on a machine.

void giveTaskBindings (Vector tasks)

Add the set of tasks (instances of class ObjectComponentTask) published by
this component, as to the list passed as collecting parameter to the method.
See section 4.6 for detailed information about the task model.

When a Groupware Component is instantiated on a client, the framework calls the
ModelObject subclass constructor to create the object, then calls the method setModel

(ModelObject model) to set the Groupware Component’s model object. Then a call to
prepareGUI() is used to set up the Component’s user interface.

When a component is actually opened on a client (after its GUI has been prepared), it
is notified of this fact through the componentOpened() method. Inversely, when a com-
ponent is closed, it is notified of this through the interface method componentClosed().

The remaining methods of the MobileComponent class seen in figure 4.8, which have
not yet been explained are either implementation-specific or are related to the task model,
which will be explained in detail in section 4.6. The full Java source codes of an example
component and the associated domain data model are shown in the appendix. These
illustrate, among other things, how the framework hotspot extensions are used.
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Figure 4.8: Components in the DyCE Framework
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4.5 Coupling distributed components using events

In addition to shared data objects, as provided by the RObject framework class, a second
coupling primitive for the combination of components is that of event coupling. An event
in this case can be defined as a special occurrence taking place at a certain point in time
but not directly reflected in a change of shared state. These events do not only relate to
user interface events, such as the interaction with a specific widget, e.g., the pressing of
a button, but also to events within a component.

For some component connections, event-based coupling can be more straightforward
than coupling through shared state and can provide a meaningful alternative commu-
nication primitive. Event-based communication can augment coupling through shared
data objects for those cases where a change in complex data structures would be more
difficult to detect and react to than the occurrence of a specific event. Take for instance
a component where for each user who enters all users in the session should play a certain
sound, to alert others of the fact that a new user has joined. When a user leaves, a
different sound file is to be played. With only shared data as a communication primitive,
all components would need to monitor a shared user list for changes and, when a change
occurs, compare the current state of the user list to the previous state, in order to find
out whether the change was caused by a user just leaving or by a user joining.

The simpler alternative is to broadcast an event to all connected components, Those
components who can correctly interpret the event can then, in the above example, play
the appropriate sound file, depending on whether they received a ”user joined” event or
a ”user left” event.

It is important to note that the event-based communication in DyCE is seen merely
as a supplement to the communication using shared data objects. While there are some
collaboration support frameworks that rely only on event broadcasting (see the overview
in the state-of-the-art), such architectures need to make special provisions to support
late-comers, asynchronous collaboration, etc.

4.5.1 Extensible event class hierarchy

The event communication between Groupware Components is based on an extensible
hierarchy of event classes. The root of this hierarchy, as can be seen in figure 4.8,
is the class DyCEEvent. This base class can be extended by component developers to
model specific events that occur in their components. Any specific events that are to
be broadcast can be derived as subclasses, e.g., the event class DyCEEventUserJoined,
which can be used to notify other components about the fact that a user has joined a
session.

The MobileComponent base class for Groupware Components implements the method
DyCEEventOccurred(DyCEEvent event). This method can be overridden in subclasses
of MobileComponent when a component is required to react to DyCEEvents in a specific
way.
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Each event has a source, indicating on which client the event originated. Additional
attributes can be specified for event object subclasses, depending on the requirements of
the event.

4.5.2 Object-related event channels

Event distribution in the DyCE framework is tied to the shared objects that are manip-
ulated by the Groupware Components. Event distribution is based on the shared data
replication in the distributed system. One could say that each replicated object defines a
specific virtual event channel over which event are distrbitued and delivered to all com-
ponents currently subscribing to this event channel (because they hold replicas of the
shared data object and have indicated interest in the events broadcast over this channel.

Events are created by creating instances of a specific subclass of DyCEEvent. The
events are then broadcast by the component using a method inherited from the class
MobileComponent, namely
public void broadcastDyCEEvent (ObjectID oid, DyCEEvent event);.
The event object is serialized and sent to the server, which distributes it to all connected
clients who currently hold a replica of the RObject with the given object ID.

A MobileComponent subclass can register its interest in a specific object-based event
channel by adding it to a shared data object as a DyCEEventListener, similar to the
regular event listener architecture in Java. This means that the component will receive
any events that are distributed ”on behalf of” this shared object (over the object-based
event channel).

Each event holds the lclock value (logical clock) of the object over which it has been
distributed. The value stored in the event’s lclock is the logical clock value of the object
at the point in time when the event has been created. The object’s logical clock value is
not advanced when an event is broadcast over it.

4.5.3 Synchronizing events and object modifications

As has been pointed out, the main coupling medium for the Groupware Components
remains the shared data object (replicated between sites). This is supplemented with
the event-based communication. The event-based coupling of components needs to be
synchronized with the modifications of the shared object state which also couples the
components. This synchronization is especially important, since the reaction to an event
could depend on the current state of a shared data object (e.g. the event to play a sound
file as a reaction to a certain event could rely on the fact that a shared data object
contains the name of the sound file to be played).

The distribution of object changes in DyCE is based on transactions. Transaction
objects are created at the source of an object modification. These transactions are sent
to the server, are validated and - if they are allowed to commit - are distributed to all
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affected clients. Therefore, the event broadcast mechanism needs to be synchronized with
the transaction delivery mechanism.

It is the responsibility of the transaction management system to ensure that the
following properties hold:

• If an event E has originated at client C1 on object E.obj, then it will be distributed
to all clients who currently hold a replica of object E.obj (this set of clients is called
”event destination clients”). This includes the client on which the event originated.

• A transaction T is said to have happened before an event E if: Transaction T
originated on the same client as the event, T has the object E.obj over which the
event has been broadcast in its read-set T.read or in its write-set T.write and the
lclock value stored in the transaction for that object is smaller than or equal to the
lclock value stored in E.

• An event E is said to have happened before a Transaction T if: Transaction T
originated on the same client as the event, T has the object E.obj over which the
event has been broadcast in its read-set T.read or in its write-set T.write and the
lclock value stored in the transaction for that object is greater than the lclock value
stored in E.

• Any event will be distributed to all event destination clients after all transactions
that happened before the event have been distributed to the affected clients.

• On each client, any pending transactions that happened before a received event
E will be processed (replayed locally) before the DyCEEventListeners registered
on the object E.obj are notified by the framework through their event notification
method, called DyCEEventOccurred.

• On each client, any pending DyCEEvent E will be delivered to the registered lis-
teners before a transaction T is processed for which E happened before T.

Using these assertions, the runtime system needs to ensure that the shared object
state when a component reacts to an event is at least the shared object state as it was
on the client which originated the event when the event was originated. Note that due
to the distributed and non-realtime nature of the Groupware Component framework, the
happened before relation cannot safely be defined for transactions and event originating
on different systems. The above assertions are sufficient, though, that any data states
on which an event relies have been created on each client before the event is actually
delivered (the event listeners are triggered using their DyCEEventOccurred method.

4.5.4 Using Event Communication in Groupware Components

Using the object-based event mechanisms as described above, Groupware Components
can communicate by attaching themselves to specific objects as event listeners and by
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broadcasting events over the virtual event channels supplied by the objects. The moti-
vating example, of playing a certain sound file when a user enters a session and another
sound file when a user exists a session, can be achieved by deriving the event implementa-
tion subclasses DyCEEventUserEnters and DyCEEventUserLeaves from the DyCEEvent

base class and broadcasting these events over the shared object modeling the session’s
user list (this object is accessible to all MobileComponent subclass instances in a session
- see section 4.7 for more information about sessions). Now, whenever a user enters a
session, a component can broadcast an instance of DyCEEventUserEnters over the user
list’s virtual event channel and all components that are already open in the session and
that subscribe to events broadcast over the user list will receive the event and react
accordingly.

Using this event framework, different components can also react to similar events in
different ways. While one component could react to the event DyCEEventUserEnters by
playing the sound file, another could send an email or perform some change in a data
model (e.g. checking workflow data for data relating to this user).

4.6 Task-based programming model

When using a number of components to interact with data objects (or documents), a
common mechanism is required to perform the matching between an editable object and
the component or application used to edit it. The users have access to a potentially large
number of document objects and the system needs to provide the correct component(s)
when the user indicates his wish to edit a certain object.

In modern GUI environments, a number of different schemes are employed to perform
this matching between a document (often stored in a file in the file system) and an
application. For instance,

• in Windows environments, applications are used to create, present and modify
documents residing in the file system. The selection of the correct application for a
document is done based on the document file name extension, e.g., a file with the
extension ”.ppt” is opened using Microsoft PowerPoint, when the user indicates his
wish to open the document (e.g., by double-clicking on the document icon on the
desktop).

• in the object-oriented desktop environment of OS/2, the Workplace Shell, which
is built on top of OS/2’s Presentation Manager, the mapping between a document
and the application used to edit it is a property of the document object. Regardless
of the document’s file name, the application noted in the document object is used to
open the document. New documents of a certain class are created using templates,
which include, among other things, information about the related application.

A direct mapping (or binding) between a shared object and a component can prove
to be insufficient for a number of reasons.
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In typical collaboration scenarios to be supported by Groupware Components, differ-
ent users perform different roles within the collaboration process. In order to perform
their role, the users could potentially need to use different interaction mechanisms(i.e.
different components). For instance, in a collaborative learning scenario, the user per-
forming the role of the teacher might need a more sophisticated tool for presenting and
modifying slides than the students, who merely use a slide viewer.

The use of Groupware Components in complex collaboration scenarios needs to be
controllable by a central control mechanism, similar to a workflow system. Here, merely
controlling the invocation of certain objects at certain times may not be sufficient. In-
stead, the system needs a more differentiated notion of what is going on at the moment.
The mechanism developed in this thesis is a Task-based mechanism.

4.6.1 Definition of Tasks

As a central abstraction for the development and usage of Groupware Components, this
thesis suggests the use of Tasks.

The relationship between Component, Object and Task is constrained using the fol-
lowing definitions:

• A Groupware Component is used to perform a Task on an Object.

• A Groupware Component can publish several different tasks on different Object
classes.

• Each Task has an identifiable name.

• For a given Object and Task, the required Groupware Component is uniquely iden-
tifiable.

Tasks - a formal definition

Formally, a Task is defined as a triple T = {TaskID,Class, ComponentClass} where

• TaskID is an identifiable ID,

• Class identifies an Object class in the system,

• ComponentClass identifies the class which implements the component publishing
this Task.

A Task signature is formed by the Task’s name and its argument class, in the same
way that a method signature is formed by the method identifier and its parameter types.
In order to denote that a Task is ”applied to” or performed on an object of a given class,
the Task signature is noted using arrow notation. The signature of a Task ”edit” that
can be performed upon an object of type Document is noted as edit → Document.



4.6. TASK-BASED PROGRAMMING MODEL 83

Task polymorphism, inheritance and overriding

Tasks conform to the following polymorphism relation:

Task bindings are polymorph with regard to the inheritance relations in the object-
oriented system used to develop the components: If component C1 publishes a Task T1
on an Object Class A and B is a subclass, then Task T1 also applies to all instances of
class B.

Tasks are inherited by components derived from other components. If component C2
extends component C1 by inheritance, it inherits all Tasks published by component C1.
It can itself of course define additional Tasks.

Tasks can be overridden in subclasses. Tasks in derived components override Tasks
from their super-components if the Tasks have the same TasksIDs and apply to the same
(or polymorphic) classes.

Figure 4.9: Sample Task and Component Inheritance

The inheritance and overriding rules can best be explained using the inheritance graph
shown in figure 4.9, which shows one inheritance graph for components (derived from the
component base class) and one for the corresponding Model classes to which the Tasks
published by the components can be applied. Here, component B, which inherits from
component A overrides the Task edit → Doc1 inherited from component B with the Task
edit → Doc2. Since Doc2 is polymorph to Doc1, this overriding does not actually change
the applicability of Tasks. Performing Task edit on an instance of Doc2 will be handled
by component B. component C extends the set of published Tasks with the Task send →
Doc2. This means that the Task send cannot be performed on instances of any other class
than Doc2. The Task definition edit → Doc3 by component D is entirely independent
of the other Task definitions, since neither component D is related to component A by
inheritance, nor is Doc3 related by inheritance to Doc1.
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Uniqueness constraint

Tasks in the system are required to be unique in the same way that methods defined
in an object-oriented class implementation are required to be unique. A component
may publish multiple Tasks with the same TaskID, but it may not publish multiple
Tasks with the same Task signature. Tasks with the same signature inherited from
other components are considered to be overriden, according to the previous explanations,
thereby maintaining the uniqueness constraint.

4.6.2 Task Terminology

For the following discussions of Tasks and their use within the DyCE system, it is neces-
sary to establish some terminology.

Publishing Tasks: A task is said to be published by a component. Publishing a task
means that a component provides the information that it can be used to perform a specific
task on a certain Object class. In a discovery process (either at server startup or when a
component is checked in), the Component Broker queries each component about the tasks
it publishes. For this, the component must provide a method giveTaskBindings(Vector

tasks), using the parameter tasks as a collecting parameter for gathering up all tasks
published by the component.

Component Lookup: The process of Component Lookup retrieves the component
defined for a given Task on a given Object class; i.e., lookup(Task, ObjectClass) returns
the ComponentClass identifiers from those Task tuples Ti where Ti.Class = ObjectClass
and Ti.TaskID = Task.

Performing Tasks: Performing a task is similar to issuing a method call to a runtime
Object, using another Object as parameter. Performing a Task on an Object yields the
component which has published the Task, using Component Lookup as defined above.

4.6.3 Tasks as bindings between Components

Tasks are the central (and only) binding mechanism between the Groupware Components
in the system. This means that one component instance does not directly invoke another;
instead, the component performs a Task on an Object using the runtime system. This
Task then yields a component that can be instantiated on the Object.

In the course of this thesis and the related implementation work, it was found that this
abstraction of components interacting by performing Tasks on Objects is a very powerful
one. It allows complex applications to be assembled using loosely coupled components.
Section 5.5 will describe how the task-based programming model is used as a basis for
end-user support for combining existing components into new ”configurations”, which
can be deployed through the Component Broker and can be used collaboratively.
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4.6.4 Tasks and Reflexive Programming

According to the previous set of definitions, the Tasks provided by a Groupware Compo-
nent can be likened to methods provided by an Object in an object-oriented system (or
the interface methods specified in a CORBA Interface Definition). A task is an operation
that can be performed by a class instance and that takes a typed parameter (the shared
data object on which the operation can be performed).

The set of Tasks published by a component is determined at runtime, when a new
component is entered into the component Repository, or at start-up time, when the server
starts.

The publishing of tasks and the querying of task information by the runtime support
system can be seen as an example of Reflexive Programming: Reflexive Programming
mechanisms are mechanisms, which allow an element of the information system to provide
information about itself (e.g., an instance could provide the information about which
methods can be invoked on it) and to discover information about other elements of the
program system (e.g., query an object passed as a method input parameter as to which
operations are provided by it) (see [Dou95a]).

Several object-oriented development systems provide some means of reflexive pro-
gramming. Java provides the Java Core Reflection API as part of the core language
definition (since Java 2, or JDK 1.2).

The goal of specifying the Task model as an additional reflexive development mech-
anism is to provide a common programming abstraction for Groupware Components,
which can be realized in a general support framework, without resorting to the reflection
mechanisms of a specific programing language.

In this way, Tasks become first class objects and can be used to control the collabora-
tive system. As will be seen later in the thesis, Tasks can be used to define collaboration
sessions or to define workflow-like processes.

4.6.5 Mapping tasks, appliances and users

As has been discussed, task information is provided by component implementations by
publishing a set of tasks through the method giveTaskBindings(Vector tasklist).
The tasks that are published are instances of the framework class ObjectComponentTask,
which provides a mapping between a task identifier, a component class name and a domain
data model class name.

An important aspect of the DyCE component framework is the support for flexibly
selecting components based not only on data models and tasks but also on user and infras-
tructure information. This selection mechanism is used, e.g., when deploying components
for devices with specific characteristics, such as mobile hand-held devices or pen-based
devices. This flexible selection mechanism has been introduced into the DyCE framework
in order to address requiremenets RU5 and RU9.
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Each client logged into the server is uniquely identified server by a userClientTuple

instance stored on the server (see figure 4.12) and an associated ClientObject instance.
The ClientObject instance is created by the client application and is transferred to the
server in the log-in process. The ClientObject instance can be queried about client type
identifier (an identifying value relating to the type of device4).

In order to distinguish between different tasks for different users, different devices,
etc., the task object can make use of this information. When publishing a specific task
that only applies to a certain device or a certain user, the component developer can im-
plement a subclass of ObjectComponentTask, overriding the framework method boolean

appliesTo(userClientTuple user) to provide distinguishing functionality (the frame-
work base implementation simply always returns TRUE, i.e., by default tasks always
apply) and return an instance of that class when returning the task bindings. For exam-
ple, in order to publish a task that only applies to hand-held devices of the ”PDA” type,
the ObjectComponentTask subclass can access the ClientObject instance and check
whether the endpoint type of that client is ”PDA”. If so, the appliesTo method would
return TRUE, otherwise it would return FALSE.

When the server’s Component Broker accesses the set of published tasks in order to
find a component to open for a specific task on behalf of a certain user on a certain
client, it checks the task rules as presented before, i.e., it compares the domain data
model class information (also taking into account object-oriented inheritance rules), and
compares the task identifier. Once a potentially applicable task has been discovered,
the task’s appliesTo method is called to check whether the task is applicable in the
current situation. If this call returns FALSE, the task does not apply, otherwise it is
added to the set of matching tasks. If at the end of this process several matching tasks
have been found, preference is given to those tasks that are published not as instances of
ObjectComponentTask but rather as instances of a subclass thereof. The rationale behind
this is that a component that publishes a task specifically applying to a certain end-point
or user, is better suited for the current situation than a component that publishes a task
which simply applies by default.

4.6.6 UML diagram extensions for modeling tasks

Section 4.2.9 presented extensions to UML class diagrams for noting shared object dia-
gram elements. It did so by using the stereotype mechanism available in UML to specify
stereotypes for a couple of design elements. In order to be able to model component-based
groupware built with the DyCE framework, it is also necessary to provide the means for
representing the elements of the task model in the appropriate diagrams. In the case of
the task model, we are faced with two views of the system: The static view represents

4Currently defined are the identifiers STANDARD (a regular PC or other computer), PDA (a hand-
held device with limited display size and possibly fewer displayable colours) and APPLET (denoting that
the end-point is running the client application as a Web Applet, regardless of specific machine type).
Additional identifiers can be added as more devices with specific distinguishing characteristics need to
be supported
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instances of the model as presented above, with component implementations publishing
tasks on shared model classes. Additionally, there is a dynamic view that needs to be
modeled. This view corresponds to the use of components in a system which is actu-
ally being used, where specific component instances are bound to specific instances of
the shared object model. This view is later relevant when representing sessions in the
running system.

The static view of the task model is presented as an extension of UML’s class diagrams,
just like the extension for the shared data model. Here, the diagram is extended to model
the tasks published on shared object classes.

Figure 4.10: UML diagram stereotypes for elements of the static task model

Figure 4.10 shows a static model for components interacting on a shared structured
document. Two Groupware Components, a document editor and a document struc-
ture viewer publish tasks on shared object class representing a (very simple) structured
document. As previously defined, the shared model object is extended with the stereo-
types �Shared� and �Slot� and the component class is extended with the stereotype
�Component�. The tasks published by a component class are represented as exten-
sions of the class diagram element ”dependency” (the dashed arrow), extended with the
stereotype �Task�. The task link can only be drawn from classes of the �Component�
to classes with the �Shared� stereotype. Since each component class implementation
needs to provide a method giveTaskBindings(Vector tasks) for querying the set of
tasks published by this component, these methods are modeled in the diagram as well.
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4.6.7 Task Model - Summary

The Task model used as the basis of the component-based groupware development system
described in this thesis is summarized in figure 4.11. This figure shows the conceptual
elements involved in the Task model, their relations and the respective cardinalities.

Figure 4.11: Task Model

4.7 Session Management

A session is the concept used to model a group of users working together. Since session
information needs to be replicated throughout the system, a session object in the system
is modeled as a DyCE replicated object. A session maps a set of users onto a set of
TaskObjectTuples, which in turn relate a task to an element of the shared object space.
The basic session model is shown in the diagram in figure 4.12.

4.7.1 Session Support

As can be seen from the diagram, a session groups together tasks which are performed
on RObject instances (modeled as TaskObjectTuple instances) by all users currently in
the session. Since the same user can be logged in at multiple clients (running multiple
instances of the client on one or more machines), users are represented as tuples containing
not only the information about the user, but also about the specific client to which this
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Figure 4.12: DyCE Session information model

session item refers. This way, a user can be in different sessions on different clients at the
same time, e.g., when using a mobile device in addition to his desktop machine.

The session management system (which is provided as part of the DyCE framework
and which is available on the server as well as on each client), provides a number of
operations to control session membership:

Joining a session (joinSession(userClientTuple user)): The user is
added to the session. The session’s user list is updated and the session in-
formation is replicated to all currently active clients. If the added user is
currently logged in to the system, the session is opened on his client machine.

Opening a session: When opening a session on a user’s client, the initial
set of RObjects, linked to the session through the TaskObjectTuples is repli-
cated to the client machine. The tasks stored in the session information are
then performed on the shared objects, resulting in loading and opening of the
component that published the given task. On the user’s client machine, a
session window is opened, which contains the resulting components. When a
user logs into the client, any sessions he or she belongs to are retrieved and
automatically opened. This is a way to support resuming running collabora-
tions.

Leaving a session (leaveSession(userClientTuple user)): The user at
the given client machine is removed from the session’s user list. The session
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window on the client’s machine is closed. Should the session contain no more
users, it is removed altogether.

Performing a task (performTask (Task t, RObject o)): Performing a
task within a session adds the corresponding TaskObjectTuple to the ses-
sion. The task is automatically performed on all active users’ clients by the
client’s SessionManager. The related RObject is replicated and the Com-
ponent Broker is used to determine the appropriate Groupware Component.
This component is then opened in the session window. The users can now
perform the task at hand.

Removing a task (removeTask (TaskObjectTuple t)): Removing a task
removes the given TaskObjectTuple from the session’s list of tasks. The
client’s SessionManager closes the component that has been opened for this
task in the session window. The remaining components are not affected by this
operation. Should the session contain no more tasks, it is removed altogether.

Note that the session contains no direct component information but only elements
from the task model. Using this information, the necessary component information can
be fetched at runtime. This way, a session can be suspended on one system (with a certain
set of components) and can be resumed on another system (which could potentially yield
a different set of components). Also, different users can open the same session and receive
a different set of components. These design choices have been made to support a flexible
collaboration environment within which users can collaborate with a variety of different
components.

It is also important to note that any RObject can be referenced through the tasks
performed in several sessions. Components in different sessions that are invoked on the
same RObject are, in effect, coupled: They reflect the current state of the shared object,
regardless of the session from which it was changed. Additional tasks invoked on the
object within a session, though, are shared only within that session, even though they
may reference objects shared in multiple sessions.

Early usage experiences have shown that, depending on the realization of the compo-
nents, such parallel modifications of shared objects by users who are not ”in my session”
seemed strange to some users. In the current model, sessions do not contain any notion
of access control or locking. As the user experiences show, such a concept may need to
be introduced in the future, along with restrictions on the parallel use of shared objects
in multiple sessions by different groups of users.

4.7.2 Sessions and Group Awareness

The previous discussion can be taken as an illustration of the need for providing group
awareness information. The session information can be used to provide a number of group
awareness elements:
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• Which users are in the same session? This information shows which users will re-
ceive instances of components that are newly opened within the session. A simple
user list within an open session window could be sufficient to display this informa-
tion.

• Which users are currently accessing the same model object? This information can
be used to find out which users would be affected by changes made to a shared
data item. A reasonable presentation of this information can be used to alleviate
the previous experience that users of the running system were confused as to which
other users were currently accessing (and potentially modifying) a shared object.

• Which tasks are currently being performed on a shared data item that is being
seen in this session? This can be taken to show the complexity and diversity of the
collaborative setting.

Figure 4.13: Suggestion for a session-based group awareness view

Additional group awareness (e.g. the plans of other users) cannot easily be deduced
from the session model information. The above information could be displayed to the
users in a ”session map” (see figure 4.13, similar to a fish-eye view, which would always
show the model object of the currently focused component (i.e. the one having input focus
in the window management system) in the center and the related information about users,
sessions and tasks surrounding it.

4.7.3 UML diagrams for dynamic session models

In order to describe collaboration situations, which always take place in sessions, dynamic
session model diagrams are used to model concrete running sessions, with potentially
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multiple components actually being used on shared objects. These diagrams need to
illustrate the following concepts: A number of component instances (at least one) access
a shared object instance (i.e. the component has the shared object instance as its model).
The components were invoked through specific tasks. These concepts are shown in the
diagram elements in figure 4.14.

Figure 4.14: UML diagram stereotypes for running sessions

The session model diagrams are extensions of the UML diagram type ”deployment
diagram”. Deployment diagrams model how the elements of the running system are
distributed and how the collaborate. In this extended diagram type, the previously
defined UML stereotype extensions are reused. Additionally, sessions are modeled as
extensions of the diagram element ”Component”, using the Stereotype �Session�, as a
diagram element that can include parts of the running system. In the case of a session
model diagram, the session items hold component instances that have been invoked on
an element of the shared object model through a specific task. The task is shown on the
”dependency” link, extended with the �Task� stereotype.

The �Component� elements, instances of Groupware Component classes, are each
bound to a specific instance from the replicated shared data model. This relationship is
implied in the task relationship between the component instance and the shared model
instance, since the instance on which a component is invoked through a task automatically
becomes that component’s data model.

Note that the session element in the diagram does not give any indication about the
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fact on how many systems the session is currently open. If this information needs to
be modeled, it can be shown (see figure 4.15) using the deployment diagram’s ”node”
element (the boxes in the figure) to represent a specific node of the system on which a
session is being used.

Figure 4.15: UML diagram stereotypes for running components on specific nodes

Even when modeling the specific nodes on which the sessions are running, the shared
object model instances remain outside of the node element (and each is only shown once),
since the shared object instances are automatically replicated to those nodes that require
the object instances and the components in the various sessions are, conceptually, only
interacting with a single model instance.

4.8 Server-Based Components

In complex collaborative processes, there are a number of operations that need to be
performed only once and which should be performed centrally (c.f. requirement RD9).

As one example for such a centralized ”one-off” operation, consider the enactment
engine in a distributed cooperative workflow setting. A number of clients share a common
workflow model within which they are collaborating. The enactment of such a workflow,
i.e., the switching between process steps, the propagation of information elements, is an
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activity that is needed to coordinate all clients and their activities. Hence, it is not
directly attributable to one specific client. Also, the enactment engine of a distributed
workflow process should obviously also run when no clients are currently connected (e.g.
in order to trigger time-dependent actions).

It follows that such an engine should not be realized as a client-side functionality.
Rather, it should be server-based and execute independently of (but interacting with)
the current state of the clients.

Other examples for such server-side functionality include monitoring centralized re-
sources, performing scheduling or processing tasks, etc.

In order to support server-side components a specific subclass of MobileComponent
is used as superclass for all server-side components. Server-side components publish
tasks just like all components and they also provide a user interface in the same way as
all other components. When a task invoked on a replicated object yields a subclass of
ServerComponent, this component is instantiated on the server. The component has full
access to the shared data objects and can modify them as needed. A Workflow Engine
could, e.g., monitor the system time and the current workflow model, advance tasks or
add time-dependent to-do items to a user’s to-do list. Figure 4.16 shows such a configu-
ration, using the UML extensions described in this thesis. A Workflow Engine server-side
component is running on the server, invoked on the shared workflow data through its task
”enact”. The users’ sessions include WorkflowEditor components, used to view and inter-
act with the shared workflow data (and in this way with the WorkflowEngine component).
Note that no specific UML extensions are proposed for server-side components, since this
fact can be indicated by placing the session containing the server-side component into a
”Node” diagram element depicting the server.

Since sometimes even server-based features need user intervention, server-side com-
ponents can also provide a user interface. This can be as simple as displaying current
status information, but it could also provide users with access to the server with more
elaborate interaction means. An instantiated server-based component’s user interface is
dynamically added to the server’s UI through the use of tiled tabs.

In order to support server-side components, session management (see section 4.7)
needed to be extended slightly, so that a server-based component is only instantiated
once, even though the session is entered many times by many different users.
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Figure 4.16: Server-Side component example

4.9 Help to the end-user when tailoring

The DyCE framework, with its component-based approach to constructing groupware
environments, provides users with the means to extend and tailor their work environ-
ment. According to [Mor97] (as cited in [KT99]), three levels of system tailoring can be
distinguished:

• customization - selecting among a set of predefined configuration options,

• integration - linking together predefined components within or between (an) ap-
plication(s), and

• extension - improving the implementation by adding new program code.

The components in the DyCE framework are used to allow users to perform tailoring
of the second type: Users can introduce additional tools into the system, invoke various
tasks on shared data objects and combine components into configurations (see section
5.5). Such an environment needs support for allowing users to become familiar with the
system, to learn about the available components and to receive guidance from the system.

In the DyCE framework, this help comes in several ways. For each shared object used
within the system, the users can use simple GUI operations to receive a list of tasks that
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can be performed on this shared object. Since each task contains a readable name, this
list is assumed to be a readable list of options available to the user.

Additionally, each component is expected to provide a help page (or pages) in HTML
format. This help, which can contain figures, external references, etc., needs to be ac-
cessible through a standard mechanism (i.e. each component’s help file is expected to
be called help.html and reside in the component directory). It is packaged with the
component when deploying the component. The user can access this help file within the
client desktop with a ”help” menu option in the component window and in the compo-
nent browser (a desktop palette showing a list of all available components). In this way,
components are expected to be sufficiently documented in order to support the users’
learning process.

An additional approach, which is also applied in [WHRT00b] and [WHRT00a] is to
learn the use of the different components from peers working within the same system. By
working together with other users on shared objects using components, which are linked
to other components, users are expected to develop an understanding of the possibilities
offered by the groupware system, to learn from and with the other users of the system.

4.10 System Architecture

Following the general concepts of Groupware Components and the programming support
provided for them, the system architecture and system design will now be presented in
incremental steps, each highlighting an important aspect of the overall system.

The conceptual system architecture is shown in Figure 4.17, which depicts a client
machine connected to a server over the network. In the following subsections, a brief
overview over the functional modules of this architecture will be presented, before the
individual functional modules are specified in more detail in subsequent sections.

4.10.1 Server Architecture

The server provides the services, which the clients use in order to provide the collab-
oration support. In keeping with the CORBA way of describing a distributed system,
the services are provided by service objects that implement a predefined interface. The
service interfaces of the server modules are included in the relevant subsections of the
system design.

The server includes the following modules:

Component Broker: Maintains the server side of the component-based architec-
ture. Manages the available components, stores and retrieves them using the Component
Broker and distributes them over the network. Since there is a close relation between the
interactive components and the objects created and manipulated by them, the Compo-
nent Broker is closely tied in with the Object Management Service. The details of the



4.10. SYSTEM ARCHITECTURE 97

Figure 4.17: Conceptual System Architecture

Component Broker and the components managed by it will be presented in subsequent
sections.

Component Storage: Used for persistent storage of the components. Components
are fetched from the component storage when requested by a client. The component
storage stores the components in executable ”parcels” that can be transmitted across the
network and executed at the client node.

Object Manager: Manages the shared data objects at runtime. The object man-
agement service is accessed by the clients when fetching objects, creating new objects,
etc. This service also uses the Object Storage to handle the persistent storage of objects.

Object Storage: Stores the data objects persistently. Typically this task is per-
formed by a database system, providing an appropriate retrieval and query interface.

Replication Management Service: This service is used to control replica distri-
bution, replica groups and data consistency. The Replication Management Service keeps
track of which objects are replicated at which client nodes.
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Transaction Manager: The server side of the transaction management. In order to
provide object consistency, the system uses a transaction-based approach: Clients perform
transactions on the shared objects. These transactions are validated and distributed by
the server’s Transaction Manager. The Transaction Manager needs to interact with the
Object Manager and the Session Manager in order to modify the server’s object replicas
and distribute the transaction information to the correct sites.

Session Manager: Manages the running sessions. Offers service interface to add
users to a session and to remove them from sessions, to create new sessions and to
perform tasks within sessions.

User Manager: Manages the user entries in the system. Interacts with the Session
Manager to manage the user lists of sessions; holds and makes available information about
the running system: Which users are currently logged in at which clients?

4.10.2 Client Architecture

Each client system has a user interface, consisting of the component instances that provide
the application functionality. In addition to this, the user has access to a ”Component
Desktop User Interface” that provides access to the available components.

The components at the user interface access the replicated data elements through the
use of an Object Manager, which encapsulates the object pool and controls the compo-
nents’ accesses to the objects. Closely related to the Object Manager is the Replication
Management Service, which keeps track of the replicated objects and the current replica-
tion situation (e.g., which objects are also replicated at which other nodes of the system,
etc.).

The Replication Manager is tied in with the Replication Management Service as well
as the Object Management Service on the server, since any object that resides on a client
node also resides on the server and is therefore automatically a replicated object (while
the inverse does not hold true - an object on the server need not always be currently used
at a client node, hence it need not always be replicated).

The Component Management sub-system provides support for component access and
component execution. On the client, the Component Desktop User Interface interacts
with the Component Management sub-system to access component information and re-
trieve component implementations from the server’s Component Broker.

The Component Manager is the client of the server’s Component Management Ser-
vice, it is able to query the available components, and retrieve components. It is also
responsible for propagating notifications to the user interface when the set of available
components changes. Also, the Component Manager keeps track of which components
are currently loaded on the client system. The Component Manager is related to the
Replication Manager, since the information from both is required when a new object is
replicated which needs a specific component to be displayed or manipulated.

The Component Execution module, as the name would imply, is the basis for executing
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the components once they have been fetched through the Component Manager. It keeps
track of which components are currently executing on which shared objects in which
sessions.

The Component Desktop UI is the user interface built on top of the Component
Management and Component Execution as a starter application. This is the application
part with which users interact before tackling their actual tasks using the Groupware
Components -in this way the Component Desktop UI is comparable to an operating
system’s GUI desktop application.

4.11 Groupware Components - Summary

Groupware Components form the basis of the component-based groupware framework
DyCE. Using the framework, developers can implement new Groupware Components,
which can be deployed to users through a Component Broker. Groupware Components
are collaboration-aware; coupling of components is realized using the replicated data-
sharing approach: The shared data models are developed based on the support provided
by the framework. Shared data objects and component implementations persistently
stored in a server and are available through a client application (req. RU1). New data
objects can automatically be dynamically replicated. Concurrent access to and mod-
ification of shared data objects is handled by a transaction-based concurrency control
mechanism, which provides support for highly interactive groupware applications by al-
lowing the users to continue with their work while their operations (the transactions)
are still being validated. Avoiding the use of object locking increases the potential for
conflicting operations (leading to undoing users’ actions at a later point in time) but
permits maximum parallel activity.

The shared data model implementations are developed separately from the compo-
nents, are external to the components and are attached to the components at runtime.
This allows coupling different components on the same data model (fulfilling requirement
RU8). The mapping between shared data model implementations and the component(s)
used to interact with these data elements is provided by the central programming model,
introduced in this chapter: task-based programming. This reflective approach allows the
Component Broker to query a component’s tasks and allows runtime identification of the
components required for a specific task to be performed on a shared data object (fulfilling
requirement RU2).

Tasks being performed on shared objects form the basis of the framework’s session
management. New objects and new tasks can be introduced into running sessions and
additional users can be invited into sessions. The entire session model is also based
on DyCE’s object replication mechanisms and is therefore automatically shared in the
distributed system. Using the information about tasks and objects from the sessions,
coarse-grained group awareness (i.e. who is working on which objects in which ses-
sion(s)?) can be provided (req. RU3). More fine-grained group awareness is highly
dependent on component user interfaces and interaction semantics. Ubiquitous access
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to the collaboration infrastructure (RU5) and mobile work (RU9) are supported by the
device-specific extension features of the Task model (see section 4.6.5). Support for mul-
tiple simultaneous collaboration modes (RU6) is provided by the session model, which
is based on the task information provided by the components. Components can be used
in individual or group sessions, an individual session can be transformed into a group
session (making the transition from individual to collaborative work) by inviting other
users into the session.

Using Groupware Components, flexible groupware environments can be constructed.
Components are deployed to all other users through the Component Broker, making
the component-based collaborative system easily extensible (RU7). Components can be
dynamically invoked either by other components or by user interaction. In this way,
the users’ collaboration environment can evolve over time as the content of their work
evolves. End-User tailoring of the environment is supported by providing users with the
ability to combine components into configurations, which can be deployed through the
central server and can be shared with other users.

The object-oriented framework provided for implementing the domain data model
and the Groupware Components, along with the UML extensions proposed in this chap-
ter support the developers’ reuse of existing programming knowledge (RD1). Reusable
shared data models (RD2) can be developed on the basis of the ModelObject section
of the DyCE framework and can be used in several components due to the dynamic
task binding between the components and the domain data models. The use of specific
framework classes for creating the domain data model allows transparent replication of
the data elements that are to be replicated (RD3); non-shared data items (RD4) can be
implemented using the standard programming language mechanisms (i.e. without using
the framework support provided by the ModelObject and RObject classes). Access to
collaboration information (RD5) can be performed through the interface methods of the
Session class instance, which each opened Groupware Component can reference. The
deployment of newly developed components (RD6) is the functionality provided by the
Component Broker. Server-side components (RD9) are provided as a specific feature
of the component framework (see section 4.8). The remaining developer requirements
are implementation-specific and are addressed in the concrete implementation, which is
described in the next chapter.



Chapter 5

System Implementation

The concept of Groupware Components has been implemented in Java in the DyCE
(Dynamic Collaboration Environment) development framework ([TS00]). This chapter
will present the central implementation details of the different services and architectural
components included in the DyCE system design presented in the previous chapter. Ex-
periences from the implementation of the DyCE framework and sample components will
be discussed.

5.1 DyCE System Architecture

The system architecture of DyCE can be seen in figure 5.1. Implementation details of
most of the architectural modules will be presented in the following sections.

The DyCE framework realizes collaboration in the form of a distributed system, with
multiple clients connecting to a single server. The server consists of the following modules
with the following responsibilities:

• Session Manager: Implementation of the Session Management Service (see sec-
tion 4.7).

• Component Broker: Maintains the Component Repository, manages and pro-
vides access to the registered Groupware Components.

• HTTP Server: Used for downloading Groupware Component implementations to
the client. Also used for integration of DyCE collaboration tools into Web-based
environments. Maintains HTML document base for use in Groupware Components
(e.g., as help files).

• Object Manager: Maintains the persistent Object Storage. Manages shared
objects (elements of the Shared Data Model level, instances of RObject and Slot).

• Transaction Manager: Performs transaction validation and concurrency control,
as well as distribution of validated transactions to the other connected clients.

101



102 CHAPTER 5. SYSTEM IMPLEMENTATION

Figure 5.1: System Architecture

• ComponentBrokerServer: Mediates between the clients and the various server
modules accessible through RMI (Remote Method Invocation, see section 5.2.1).
Creates and publishes the RMI server modules and performs lookup operations on
behalf of the clients.

The clients each contain the following architectural modules:

• Component Desktop: Client application GUI for accessing Groupware Compo-
nents.

• Session Manager: Client-side module of the distributed session management ser-
vice. Maintains the list of sessions active on the client. Creates new sessions, joins
and leaves sessions by interacting with the server-side session management.

• Object Manager: Client-side module of the distributed Object Management sys-
tem. Maintains the set of replicatable objects currently replicated to the client



5.2. COMMUNICATION IN DYCE 103

(Shared Objects in the architecture diagram). Retrieves object from the server
when needed.

• Transaction Manager: Client-side module of the Transaction Management sys-
tem. Creates transactions, maintains transaction queues and sends transactions to
the server for validation. Received transaction validation responses and interacts
with the Object Manager to maintain consistent object state.

5.2 Communication in DyCE

Since the resulting system described in this thesis is a distributed co-operative system,
attention has to be paid to the underlying communication mechanism used to link the
system. There are a number of different options available as a basis for communication in
distributed systems, each with its distinct advantages and disadvantages. Client/Server
or Server/Client Communication in DyCE can be categorized according to the different
requirements of timeliness of the communication. Synchronous communication is used
for those communications between systems requiring a direct response without which
processing cannot proceed (i.e. the initiator of the communication is suspended until the
response is available), such as a part of a calculation that needs to be performed on a
different host and is required before the entire calculation can be continued. An example
for a communication channel fulfilling the requirements of synchronous communication
is RPC (Remote Procedure Call). This form of communication is often also called ”in-
process” communication, since the process context or flow of control seems to pass through
the synchronous call from the sender to the recipient and back again. Asynchronous
communication between client and server (in either direction) is used for communication
items, which can be likened to message delivery: The sender creates a message and sends it
on its way to the recipient. It is the responsibility of the underlying support framework to
ensure that the message reaches the recipient. The sender can proceed, without waiting
until the message actually reaches the receiver. In this form of communication, it is
not of interest to the sender that the message reaches the client immediately, or that
an immediate response is available. Asynchronous communication can be compared to
sending a message (and receiving a response) through email. This form of communication
is also referred to as ”out-of-process”.

It is important to note the dual use of the terms synchronous and asynchronous in
the course of this thesis. On the one hand, we can distinguish between synchronous and
asynchronous collaboration (relating to the perceived immediacy of response from the
other user and to the time bounds within which changes made to a shared artifact at
one site are observed at other sites); On the other hand we distinguish between syn-
chronous and asynchronous communication in a distributed system, as described above.
These two issues are not entirely independent, but there is no direct relation in the form
that synchronous collaboration necessitates synchronous communication. The one use of
synchronous/asynchronous relates to a quality of the overall system, as perceived by its
users. The other use relates to implementation-specific details which influence the system
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design but not the user functionality.

5.2.1 Java RMI

Java RMI (Remote Method Invocation) is the Java standard for communication in object-
oriented distributed systems. Similar to the CORBA (Common Object Request Broker
Architecture) distributed object architecture, RMI publishes objects’ interface methods
and allows locating objects and invoking their methods over the network. RMI can be
likened to a object-oriented RPC, which, unlike CORBA, is not language-independent.
DyCE uses Java RMI for synchronous communication between the client and the server
(in both directions).

Overview over Java RMI

In an RMI-based distributed system, a machine (typically a server) publishes a service
object through a naming service. This service object conforms to a programming interface
(i.e., provides a number of public methods that can be called), which is known to the
client and which the client implementation uses to generate stub objects. These stub
objects act as local proxies to the RMI service object, receive method calls from the
client object and forward them over the network to the appropriate service object.

The following is an example for a simple RMI service object, providing a single
service method for adding two numbers. The interface describing the service offered
by the server object, CalculationServiceInterface, specifies the operations available
to clients of the server object. The actual implementation of this interface, the class
CalculationServiceImpl, is a class that implements the actual functionality required
for servicing the incoming request (i.e. adding the two numbers passed as parameters
and returning the result).

public interface CalculationServiceInterface

extends java.rmi.Remote

{

public int addTwoNumbers (int num1, int num2) throws

RemoteException;

}

public class CalculationServiceImpl

extends UnicastRemoteObject

implements CalculationServiceInterface

{

public int addTwoNumbers (int num1, int num2) throws

RemoteException

{

return num1+num2;
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}

public void publish()

{

Naming.rebind(localHostname+"/Calculate", this);

}

}

public class CalculationClient

{

public void doCalculation()

{

try

{

CalculationServiceInterface calculator;

calculator = Naming.lookup (remoteHost+"/Calculate");

if (calculator == null)

return;

int result = calculator.addTwoNumbers(5,4);

}

catch (Exception ex) { ex.printStackTrace(); }

}

}

While this example appears trivial (and has been stripped of much of the required
programming logic for illustrative purposes), it shows the main consistuents of the RMI
object-oriented inter-process communication:

• A public interface (CalculationServiceInterface), which is available and known
to all potential clients of a service.

• A service class (CalculationServiceImpl), implementing this interface (and po-
tentially adding functionality that it needs to perform its operations but that is not
part of the public service interface). An instance of this class (the service object)
can be published through a naming interface, so that clients can look it up and
invoke its operations.

• A client object (CalculationClient), which uses the RMI naming service to ”dis-
cover” the location of the service object. For this, the client object requires a name
(which can be fixed and well-known, like ”Calculate” in the above example, or can
be looked up from some other source). Using this name, it retrieves a reference to
the service object and invokes the operations that are part of the service’s public
interface.

The RMI support layer has the responsibility of receiving the method calls, marshaling
parameters and return values and invoking the correct object’s method over the network.
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Java RMI in DyCE

In DyCE, Java RMI is used for all synchronous communication between the client and
the server (in both directions). The services published by the server are available through
RMI invocations. Figure 5.2 shows the hierarchy of RMI interfaces and classes used in
DyCE.

Figure 5.2: RMI Service object hierarchy

These services have the following responsibilities:

• ComponentBrokerServer: The central service object of the server’s RMI struc-
ture. The ComponentBrokerServer manages the instances of all other public ser-
vices (as described below) and is used to retrieve these service objects. The imple-
mentation decision has been made not to publish all RMI server objects through
the naming interface (thus necessitating a large number of public and well-known
names that need to be resolved using the RMI naming service), but rather to publish
only one instance of the ComponentBrokerServer on the server using a well-known
RMI name and using this to retrieve references to all other RMI server objects.
In this way, the set of available server objects can easily be extended (simply by
adding them to the ComponentBrokerServer), without requiring more published
RMI names (which would, in most cases, need to be hard-coded into the applica-
tion). An additional large benefit of this RMI indirection is that we gain location
transparency for the various server objects. The different RMI server objects, whose
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references are retrieved using methods of the ComponentBrokerServer, could be lo-
cated on multiple machines on the network (e.g., the ObjectManager could reside
on a machine with a large and fast database back-end, while the ComponentBro-
ker could reside on a machine more suitable for component management). This
distribution could be made transparent to the clients, since the methods of the
ComponentBrokerServer could, before they return the RMI server references, do
an additional step of lookup, locating the server objects on another machine, In
this way, a client would retrieve from machine A a reference to a service on ma-
chine B and invoke that without actually having to deal with the fact that it is
operating in such a complex network infrastructure. This support for location-
independent service objects can be exploited in settings where performance is of
great importance and where locating all service objects on one machine would be
a performance impairment1.

• ServerSessionManager: The server’s session management service. Invocations
from the client to this service are used to query session state, add sessions, etc.

• ObjectManager: The server’s object management service. This service provides
access to all shared data objects (instances of RObject) and makes these available
to the clients. Synchronous invocations to the object manager are used to query
object manager state, add new objects, retrieve objects when required, etc.

• UserBroker: Server-side service that manages all users known in the DyCE sys-
tem. This service is used to retrieve user information, validate logins, etc.

• ComponentBroker: The service managing all Groupware Components registered
in the DyCE server. The ComponentBroker manages the component implementa-
tions as well as the task binding information. Calls to the ComponentBroker are
used to map tasks to component implementations, to register new components, etc.

• ClientObject: Callback RMI service object published by the clients to allow call-
backs from the server to the clients. Usually, RMI communication is uni-directional,
i.e., a client invokes a method on the server and receives a return value, but the
server has no way of contacting the clients. By creating a ClientObject on the client
and passing its reference to the server upon connecting, the server has a remote
reference that it can use to invoke callbacks on the client.

• ClientSessionManager: The client side of the distributed session management.
The server uses callbacks to this object to add new sessions on the client, query
client session state, etc.

1Note that this service distribution, while realizable with very little changes to the current implemen-
tation has not been fully implemented in the DyCE framework; the discussions of system architecture,
etc., in this thesis therefore apply to the case where all services are located on the one central server.
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5.2.2 Asynchronous network communication layer

As has been described above, communication channels in a distributed system can be
divided into synchronous and asynchronous communication. Synchronous communication
in DyCE is performed over RMI. It is used for invocation of service objects to perform
a variety of services needed in the system. The much larger part of communication (in
terms of volume and frequency) in DyCE is the asynchronous communication part.

Asynchronous communication in DyCE is used as the basis for the object replication
mechanisms, to maintain object consistency across sites. When accessing or modifying
shared objects, the client creates transaction objects (see section 4.3.5). These transaction
object include all read and write accesses to slots of shared objects. Once a transaction
is committed, it is serialized and sent over an asynchronous communication channel
to the server. The server receives the transaction, performs validation operations and
sends the transaction and additional control objects to the connected clients, again using
asynchronous communication.

An asynchronous communication channel has been chosen for this communication,
since the transaction updates do not require synchronous delivery (i.e. the client does
not need to be suspended until the server has received the update transaction, the server
does not need to be suspended until all clients have received the transactions, etc.).
Quite the inverse holds, in fact. Transaction-based communication, accesses and changes
to shared object occur very frequently in the distributed cooperative system. If the clients
were to deliver this information synchronously, this would have very serious impact on
the system performance. This has been validated in an early implementation version of
the DyCE framework, where synchronous RMI calls were used to forward transaction
objects from the client to the server for processing 2. As the number of clients connected
to the server grew, the system was perceived to slow down more and more and perfor-
mance degraded to a point where the system was no longer usable interactively. More
detailed performance measurements of RMI-based communication in distributed systems
have been done elsewhere (e.g. in [NPH99], [KFCO99]). These evaluations indicate the
performance overhead incurred by using RMI to pass messages (objects) from the client
to the server, as opposed to more low-level communication mechanisms.

The alternative to this approach is to use asynchronous message passing, directly
using TCP/IP sockets. Asynchronous communication is especially applicable in the given
communication setting, since the client does not expect a direct return value from the
server, in response to the transaction that was passed from client to server. For socket-
based communication, the Java network library provides easy to use socket and stream
implementations, allowing server socket creation, connecting to a server socket, setting
up streams (communication structures ensuring sequential FIFO delivery of messages)
and transmitting Java objects over these streams. A second generation of the network

2No actual performance measurements have been performed at this stage of the implementation,
therefore no numerical data is available. The value of comparing such data to current implementation
benchmarks would be highly limited, though, since the implementation of DyCE has progressed so much
in the meantime that no objective comparison would be possible anyway.
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transport module in the architecture has been implemented using message streaming over
TCP/IP sockets. This has been found to be a significant improvement over the RMI-
based implementation, since the client was no longer suspended until the server had fully
received the data packet containing the transaction.

Tests of this new implementation in have shown another performance bottleneck,
which starts to affect system performance as soon as more than five clients are connected
to the server and are active simultaneously. This bottleneck is due to the connection-
oriented nature of TCP/IP socket communication. For each client connecting to a server
socket (via a ”bind” call, see [Tan96] for details about network programming abstractions
and operations), a separate socket is created to which the client is permanently connected
- TCP (Transmission Control Protocol) is a connection-oriented flow control protocol
built on top of the IP (Internet Protocol) low-level packet-based data transmission layer.
The socket to which the client is connected is dedicated to this one client and is not
available for input from other clients. Typically, a multi-threaded server implementation
is used for servers (e.g., in most HTTP Web servers): After receiving the bind request
from the client and setting up a socket connection, a separate process thread is forked for
handling each connection, since data could arrive over any of the connected sockets at
any point in time. This reading thread then performs a ”read” operation on the socket,
suspending until a data packet has arrived. The reading thread reads the entire data
packet from the network and forwards it to other modules for further processing, before
it loops and waits for the next packet. From this, a number of performance bottlenecks
arise when larger numbers of clients are connected to the server:

• Connection management: Since a dedicated connection is established from each
client to the server, the number of simultaneous socket connections grows as each
new client connects. With a high number of connected clients, this can create
resource bottlenecks on some operating systems (while the limits on concurrently
active sockets are more theoretical in nature, using multiple threads on multiple
sockets does incur a high cost in thread context memory, allocated buffer spaces,
etc.).

• Thread contention: As described above, a separate service thread is used for each
incoming socket connection. As long as concurrent operation of the clients is low,
this approach works very well: Suspended (non-active) threads require little perfor-
mance overhead. As a data packet arrives on a socket, the corresponding suspended
thread is resumed, the data can be read and processed. This can be done with little
interference with the rest of the system. As the number of clients grows, though, the
probability of simultaneous activity (and simultaneously arriving data packets on
multiple sockets) rises. The probability of such simultaneous operation is extremely
high in the application domain of the DyCE framework - interactive synchronous
groupware - where many users are by definition cooperating and concurrently view-
ing and manipulating data. As more and more clients are active and sending data
to the server, we are faced with the issue of thread contention: Multiple threads
needing to become active at the same time in order to process the incoming data
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packets. This leads to increased demand for thread scheduling, thread context
switching (suspending one thread, restoring the context of another thread and re-
suming that thread) and - ultimately - for synchronization: the incoming data needs
to be put into data queues and structures ready for processing, these accesses to
the shared data structures need to be synchronized across multiple threads in order
to prevent chaos. Thread management and maintenance as well as synchronization
use a large part of the system performance.

For these reasons, which directly influence performance scalability with respect to
number of connected clients, it was decided to re-implement the network communication
layer yet again, this time going from TCP to UDP (User Datagram Protocol). UDP
communication is not connection oriented. Data items to be transmitted are wrapped in
so-called datagrams, which make up the basic unit if transmission in UDP communication.
The server merely needs one UDP socket for incoming packets, all UDP packets arrive
at this socket and can be read by a single thread. Regardless of the number of connected
clients, a single UDP input socket is sufficient, since all clients can send their data packets
to the one UDP server socket.

Since, unlike TCP, UDP performs no transmission or error control, UDP provides less
guarantees for message delivery:

• Guaranteed delivery: UDP packets are not guaranteed to arrive at the target socket.
Packets can be lost somewhere along the way (especially, IP routers can discard
UDP packets if buffer space is insufficient).

• Packet order: UDP packets are not guaranteed to arrive in the same order in which
they were sent. Even if multiple packets are sent from the same sender to the same
recipient, they can arrive in any order at the recipient (provided that they arrive
at all, see previous item). This is due to the fact the UDP is a connectionless
transmission mode, where subsequent packets sent from one sender to one recipient
can take entirely different routes through the network.

• Packet duplication: UDP packets sent from the sender only once can nonetheless
arrive at the recipient multiple times.

• Restricted size: UDP packets are constrained in terms of the size of the data they
can carry. The high bound of this restriction is usually 64kB, but the size can be
further restricted by intermediate routers, buffers in the machine’s IP stack, etc.

Since UDP provide so few transmission guarantees, it became necessary to imple-
ment the required flow and transmission control in the DyCE network communication
layer. A network layer has been developed, which provided the functionality of sending
any serializable Java object from the sender to the recipient. Using a combination of
sequence numbers and buffers, packet loss, packet sequence errors and packet duplication
are compensated. The network transport layer performs the following operations:
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• Object serialization: The Java objects to be transmitted from the sender to
the recipient are serialized, i.e., they are transformed into a low-level byte array
representation that can be converted back to the original Java object at the receiving
site. In doing so, knowledge about DyCE RObject structure is used to provide
optimized serialization: If a reference value in the object to be sent refers to a DyCE
RObject, this value is replaced with a placeholder value wrapping the RObject’s
ID. The object actually referenced is not serialized along with the original object.
In this way, the object serialization avoids sending DyCE data objects from client
to server redundantly.

• Data packeting: The data block resulting from serializing the Java object to
be sent can be much larger than can be transmitted in a single UDP datagram.
Therefore, data blocks which are too large need to be split into multiple smaller
blocks before they are transmitted.

• Packet flow control: In order to compensate packet loss, packet duplication and
packet order errors, the sending and receiving side of the network communication
layer employ caches and buffers for storing transmitted packets and for storing
packets that cannot yet be processed, since previous packets have been lost. Using
a simple communication protocol between sender and receiver, based on sequence
numbers of packets, the receiver can request missing packets to be retransmitted.
Upon receipt of a retransmission request, the sender fetches the reference packet
from its send cache and retransmits it. In order to compensate for delivery prob-
lems along the way (e.g., overflowing network buffers in intermediate routers), the
algorithm for retransmission is self-pacing: Each packet contains a delay counter
that is used to calculate a transmission delay between the sending of this packet and
the subsequent packet. Multiple requests for retransmission of a packet increase the
packet delay value, in effect reducing the potential for network congestions, since
the network is given time to deliver the one packet before the next is transmitted.
Successful reception of a packet is confirmed using a confirmation packet, the sender
can then remove the packet from its packet cache.

• Packet reassembly and deserialization: After the receiver has received all
packets belonging to a serialized object, it can reassemble the packets in the correct
order (using the packet sequence numbers) and deserialize the Java object contained
therein. This Java object is placed into an incoming queue ready for processing by
the other system components.

The error control algorithm implemented for the UDP-based delivery uses an outgoing
queue for unconfirmed packets in the sender, along with a sequence number counter. The
receiving side uses two packet queues, one for caching packets received out-of-sequence
(sequenceCache) and one for caching packets received in the correct order but that
are parts of a multi-packet message of which the final packet has not yet been received
(packetQueue). Additionally, the receiver maintains a counter for the last correct se-
quence number received from each potential sender (last correct seq(sender)). Each
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packet carries a unique sequence number, p.seq, for which there is an ordering relation
”<”, to discover whether the packet sequence number is before a given other sequence
number (i.e. if a packet’s sequence number is lower than another sequence number).
The algorithm for packet processing at the receiving side is shown below (in a Java-like
pseudo-language, for illustrative purposes).

/* Method called to process an incoming packet */

receiver.handle_packet (packet p)

{

if (p.seq <= last_correct_seq(p.sender)

{

/* The packet is a duplicate of one that has

already been processed successfully */

discard_packet (p);

}

if (p.seq > last_correct_seq(p.sender) + 1)

{

/* At least one packet lost between the last one successfully

* processed and the one received.

* Store current packet for later use.

*/

sequence_queue.add (p);

sequence_queue.sort;

// Request a resend of the missing packets

for i=last_correct_seq(p.sender) to p.seq-1

p.sender.request_resend(i);

}

if (p.seq = last_correct_seq(p.sender)+1)

{

/* The packet is correct in the sequence */

last_correct_seq(p.sender) = p.seq;

if (p.status = MORE_TO_COME)

{

/* The packet is part of a multi-packet message

of which more packets will follow */

packet_queue.add (p);

}

if (p.status = LAST_OF_SEQUENCE)

{

/* The packet is the last (or only) packet

of the message */

packet q;

/* Concatenate all pending packets of this message */

while (packet_queue.size > 0)

{
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q = q + packet_queue.first_element;

packet_queue.remove_first_element;

}

q = q+p;

/* q now contains the entire message and can

be deserialized and processed */

object o = q.deserialize;

o.process;

}

}

if !(sequence_queue.is_empty))

{

/* Does the sequence queue contain elements that can

now be processed? */

while (sequence_queue.first_element.seq =

last_correct_seq (sequence_queue.first_element.sender)+1)

{

packet p = sequence_queue.first_element;

sequence_queue.remove_first_element;

this.handle_packet (p);

}

}

}

Even though the network transport layer as described above seems to duplicate a large
part of the transmission control properties already present in TCP, it is an important
prerequisite for high scalability. With this network transport layer, larger numbers of
clients can be handled without serious performance degradation on the server side.

Using the re-implemented UDP-based network communication layer, a test of con-
necting more than five clients to the DyCE server at the same and performing interactive
operations on all five clients simultaneously was repeated. The resulting performance
was perceived to be higher than in the RMI-only case and also higher than in the TCP
implementation. No systematic performance evaluations have been done, though. sys-
tematic tests of system performance under heavy load need to be done in the future.
Also, additional steps need to be taken to improve system performance even more, to
allow DyCE to scale to collaboration sessions including twenty or more active users.

Multicast delivery as a potential extension

In DyCE communication occurs between a single server and multiple clients. The previous
section described how UDP packet delivery is used to implement asynchronous message-
based communication. In the communication layer as currently implemented in DyCE,
it is the server’s responsibility to find the right clients to which to send an object update
packet. In many collaborative situations, the set of connected clients does not change
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often. Also, in many cases all clients taking part in a collaboration session will receive
much the same data packets, since the client object managers will to a large extent hold
replicas of the same objects.

This fact can be taken advantage of to optimize the network interaction done by the
server. Currently, if a transaction is to be sent to ten clients, the network transport
layer is invoked ten times in order to deliver the transaction for each client. The network
transport layer serializes the data packet ten times and sends ten (or n*10, in the case
of the transaction needing to be split up into n packets) UDP packets over the network.
Using UDP multicast, this network traffic can be reduced and the performance (and
therefore the throughput) of the server can be improved.

Multicast packet delivery is a means for sending a single data packet to multiple
recipients. IP multicast transfer is similar to UDP in that it is packet-based and not
connection based. Instead of sending a packet to a single recipient, it is sent to a multicast
group, which other systems need to join in order to receive the packets (see [HSH99] pp.
476ff for more details).

The network transport layer based on UDP provides much of the functionality that
would also be needed when using IP multicast: packeting of data, sequence management,
handling of packet loss, reassembly of packets at the receiving end. A logical extension to
this would be to send the objects not to a single recipient but to a group of recipients that
could be matched to a multicast group. Extensions to the network layer would need to be
done to take into account that different clients could receive different packet sequences,
with some packets reaching some clients, others reaching other clients (and in any order).
This could mean more flexible decisions to resend a lost packet to an individual client
(thus in the worst case sending a single packet more often than in the non-multicast case)
or resending it to the entire group (e.g., if more than 50 percent of the connected clients
requested a packet resend within a certain time frame. Additionally, the server would
need to perform management of multicast groups and multicast addresses.

More complex connection management, using a combination of IP multicast and direct
delivery, would need to be performed in situations where not all clients are on a single
sub-net. Multicast packets cannot be expected to go across sub-net boundaries. In
fact, in most cases they don’t (the exception being the use of the MBone, the Multicast
backbone, a globally available IP multicast communication structure based on explicit
bridges between sub-nets participating in the MBone). In configurations where clients
are on different sub-nets, mechanisms would need to be employed in order to find an
optimal grouping of the clients into a combination of multicast groups and direct UDP
packet delivery.

All in all, using IP multicast packet delivery could prove to be a worthwhile exten-
sion to the network transport layer, proving especially beneficial in those cases where
a large number of clients are active in the same collaboration session(s) and need to
have replicated many of the same objects. A more detailed examination of the multicast
communication issues and an implementation of the extended network transport layer is
beyond the scope of this thesis.



5.3. INTEGRATION WITH THE JAVA STANDARD API 115

5.2.3 Hypertext Transfer Protocol - HTTP

The Hypertext Transfer Protocol, HTTP, is the standardized protocol used - initially -
for communication between Web browsers and Web servers. HTTP is a stateless request-
response type protocol used for requesting items of information (the contents of a Web
page, an image or other data forms) from a server. HTTP transport uses a single server
socket (port 80 is the port usually used for HTTP communication) to which clients
connect. A request packet, including among other items information about the requested
resource and the expected return formats, is sent from the client to the server. This
analyzes the request, locates the requested file (or, as is increasingly the case, generates
result content on-the-fly) and returns the data to the client. The client/server connection
is then closed (please note that this description is a simplification; all details of the HTTP
protocol specification can be found in [FGM+99]).

The DyCE server includes a complete HTTP server, capable of both HTTP download
as well as HTTP uploads. DyCE uses the HTTP protocol to download the component
implementations from the Component Broker and also uses HTTP download images
and other resources from the Web server integrated in DyCE. Additionally, components
deployed via the server from a client are uploaded to the Component Broker using HTTP
put.

A clear advantage of using HTTP transfer for these forms of transmission is the
ability to use standard HTTP transfer support already available in the Java runtime
library. HTTP download is one of the ways in which the Java class loader downloads
class implementations, e.g., when running an Applet in a Web page. This mechanism
needed to be extended to make it suitable for locating and downloading Groupware
Components from the server (e.g., more sophisticated methods to locate the component
implementations on the server than a single HTTP URL needed to be added), but the
Java programming library provides a solid basis on which to base these extensions.

5.3 Integration with the Java standard API

Since DyCE is a development framework for the Java programming language, it is impor-
tant to examine how the idioms and design patterns chosen for the framework integrate
with the remainder of the rather large standard Java programming library, e.g., the parts
used for user interface development. An important requirement (RD1) stresses the need
for developers to be able to make use of as much of their previous programming experience
as possible.

5.3.1 The Swing GUI library and reusable cooperative widgets

Groupware Components are visually interactive, i.e., they have strong ties to the user
interface. The user interface development library introduced in recent versions of the Java
SDK is the Swing GUI development framework. The Swing library, which was introduced
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as a successor and an extension of the Java Abstract Windowing Toolkit (AWT), provides
a class hierarchy consisting of nestable Containers and components, which can be used
to build complex graphical user interfaces.

The components of the Swing library follow a modified Model/View/Controller ap-
proach: A graphical component, e.g., a table (JTable), acts as both the view and the
controller and has a data model (a subclass of AbstractTableModel). Modifications to
the component’s model are notified to the component through listener interfaces (e.g.,
the table class JTable implements the listener interface TableModelListener, which
provides a way in which the table’s data model can signal changes to all components
currently registered as its listeners.

The DyCE framework extends the Swing GUI library with the Groupware Compo-
nents. The groupware Component base class, MobileComponent, is a subclass of the
Swing library’s class javax.swing.JPanel, i.e., it represents a rectangular area in the
user interface and can contain any other Swing components. In this way, DyCE Group-
ware Components can be used in many places in user interfaces created using the Swing
library, e.g., in dialog windows, in complex layouts, etc.

Maintaining view consistency

Additionally, the mechanism for notifying DyCE Groupware Components about changes
to the shared data model mirrors related mechanisms in the Swing library: A group of
Java listener interfaces, ObjectChangeListener and SlotChangeListener are used to
bind Groupware Components to objects of the replicated object set and to be notified
about changes occurring on these objects. The components can then update their local
displays accordingly, reflecting the new data state at the user interface.

As has been discussed, DyCE separates the data (or domain) model objects from
implementation of the components working on these objects. When a component is
invoked on a shared object, by performing a task, the shared object is bound to the
component as its model. According to the Model/View/Controller pattern of application
development, the DyCE component acts as both the view and the controller.

Similar to the approach used in Java’s GUI framework, Swing, the component is
bound to the shared object as an observer (in the DyCE framework, the component
becomes an ObjectChangeListener on the shared object). Changes to shared objects
are always done within transactions (see section 4.3.5). In the validation phase of a
transaction (either when a transaction received from the server is being replayed on the
client or when a transaction originating on the client is confirmed by the server), the
framework gathers all ObjectChangeListeners registered on the affected objects and
notifies these (similar to the listeners in the Swing framework, a listener interface method,
objectChanged(ObjectChangeEvent o), is called, passing additional information about
the changes that occurred in the event object. It is the components’ responsibility to
react to these notifications and update their display accordingly.

This form of notification by model changes through the observer or listener mechanism
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is close to the way in which GUI programming is done in the Swing framework. The
chosen paradigm should therefore be familiar to Java programmers.

DyCE extensions of Java widgets

In order to relieve developers of the burden of implementing similar GUI items over
and over again, DyCE provides a number of ”DyCE-enabled” Swing components. These
are specialized extensions of Swing widgets (such as a specialized text input field or a
specialized checkbox), which can be bound to specific Slots of the shared object model
(for instance, the DyCE-enabled text field can be bound to any Slot containing String
data). The Swing widgets have been extended to automatically reflect user input (e.g.,
editing of the text) in the bound Slot contents and to react to changes of the shared
data model by automatically updating their display. By using such DyCE-enabled Swing
widgets and binding them to elements of the DyCE shared object model, developers can
more quickly assemble collaborative user interfaces. The extended widgets conform to
the same programming interface as the ones with which developers are already familiar,
with the added requirement to bind a DyCE-enabled widget to a certain Slot. Thus, such
extended widgets can be used almost interchangeably with regular Swing widgets.

It is important to note, though, that such DyCE-enabled Swing widgets are used as
part of Groupware Components and are not themselves Groupware Components. Ex-
tended Swing widgets do not apply to a certain model object implementation (they are
merely bound to Slots contained in the shared object implementation), nor do they pub-
lish tasks that can be invoked.

5.3.2 Implementing Transactions in Java

As has been discussed in section 4.3.5, accesses to the shared data objects need to be
encapsulated in transactions. These transactions need to be written by the developer
implementing the shared domain data model or the components. For performance rea-
sons, the DyCE framework does not use locking mechanisms to synchronize access to
shared resources. Rather, transactions are allowed to proceed (optimistically) on the
client originating the transaction. When a conflict is detected post-hoc, the effects of
those transactions that were in conflict with other transactions need to be selectively
undone (see [Wei93]).

A transaction performed on one of the nodes of the distributed system can be under-
stood to consist of three phases: the preparation phase, the transaction operation phase
and the transaction commit (validation) phase. In the transaction preparation phase,
all necessary initializations are performed which are required to allow the transaction to
be performed. A transaction object needs to be initialized, ready to add the operations
performed in the transaction. In the transaction operation phase, read and write accesses
to the shared data objects are performed and the appropriate information is added to
the transaction object. In the transaction validation phase, the transaction is wrapped
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up, sent to the server for validation and added to a local ”pending” queue. After the
server has reached the decision whether to allow the transaction to commit, it sends a
confirmation or cancel message to the originating machine and distributes the accepted
transactions to all other connected systems. If the transaction is not allowed to commit,
the system on which the transaction has originated needs to perform an undo of the
transaction and any transactions performed in the meantime.

When providing framework support for programming transactions, the characteristics
of the components need to be taken into account, especially the multi-threaded nature
of the Java programming language. Transactions need to be performed in a thread-safe
manner; this means that even in a multi-threaded application, the ACID properties of
transactions need to be maintained: a transaction being performed on one execution
thread must not be able to affect the operation of transactions on another thread.

An initial approach to programming support for transactions in the DyCE system
consisted of a TransactionManager class with the appropriate support methods for the
transaction processing, implementing the following interface:

public class TransactionManagerInterface

{

// Get the TransactionManager for the local system

public static TransactionManagerInterface getTM();

// Start a new transaction

public boolean beginTransaction();

// Retrieve the current transaction

public Transaction getCurrentTransaction();

// Commit the current transaction

public boolean commit();

// Abort (undo) the current transaction

public boolean abort();

}

Using this interface, transactions could be programmed in user code, which accessed
values store in the instances of the shared data model. A transaction could be begun using
the beginTransaction method. This would do the necessary initialization operations for
the transaction preparation: Create an instance of the Transaction class, initializing the
transaction’s write set and read set. Operations performed on the Slots of the shared
data objects result in the appropriate txOperation instances being added to the running
transaction. When committing a transaction with the commit method, the transaction,
including its read set and write set was serialized and sent to the server for validation.
The transaction was added to a pending transaction queue, waiting for confirmation or
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cancellation from the server. A typical piece of user code, in a shared data model of a
geometrical shape, would look like this:

// Move the shape by an x and y offset

public void moveShapeBy (int dx, int dy)

{

TransactionManager.getTM().beginTransaction();

int x = get("XPos");

int y = get("YPos");

x = x+dx;

y = y+dy;

set ("XPos",x);

set ("YPos",y);

TransactionManager.getTM().commit();

}

The problem with these segments of user code, which caused unpredictable effects in
the course of highly active collaboration sessions with components built on the DyCE
framework was its lack of thread-safety. It is easy to construct cases of transactions
constructed as above running in different threads that influence each other. Using this
form of in-line transaction programming, such effects are hard to avoid. Java offers the
synchronized keyword to synchronize multiple threads on a certain object (i.e. only
one thread may be active in a synchronized method at a time). This keyword is offered
to allow Java programmers to prevent multi-threading problems. Unfortunately, simply
making the transaction method moveShapeBy in the above example synchronized would
not have solved the concurrency problems, since other methods in other objects (which
would not be affected by the synchronized keyword) could be performing operations that
affect the operation of the transaction. Taking into account the fact that also creating
new transaction objects and committing transactions can affect each other, the problem
lies not only in the accesses to the Slot values. Merely making the beginTransaction and
commit methods synchronized would also not have been sufficient, since conflicts can
also occur at any point in the user program between these two instructions. It would
be impossible (and error-prone) to explicitly synchronize all segments of user code where
transactions are being created, Slots are being accessed, etc.

The solution to this problem is to use the Java programming language feature referred
to as anonymous inner classes (unnamed classes encapsulated within the implementation
of another class, visible only within the context of the surrounding class) and providing
a base framework class Transaction from which user transactions can be derived as
anonymous inner classes, can be instantiated as transaction objects and can be performed.
In this way, the transactions become indivisible and synchronizable transaction blocks,
which can be evaluated under control of the DyCE framework. The Transaction base
class provides the single entry point for performing the transaction - the doIt() method,
which cannot be overridden in subclasses. User code is implemented in a transaction
body method, txBody():
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public class Transaction

{

protected Object txResult;

// . . .

// Abstract method for implementing user code

public abstract void txBody();

public synchronized final Transaction doIt()

{

// Make a transaction

beginTransaction();

// Perform the user code for the transaction

txBody();

doCommit();

return(this);

}

public Object result()

{

return txResult;

}

}

By making the doIt method synchronized and final, it is ensured that only one thread
may be active in the doIt method at a time. The synchronized construct is re-entrant,
though, meaning that the same thread may run through the doIt method several times.
This new and thread-safe Transaction class can now be used in user code as follows:

// Move the shape by an x and y offset

public void moveShapeBy (final int dx, final int dy)

{

new Transaction()

{

public void txBody()

{

int x = get("XPos");

int y = get("YPos");

x = x+dx;

y = y+dy;
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set ("XPos",x);

set ("YPos",y);

}

}.doIt();

}

This implementation of transaction blocks exhibits several features, which are desir-
able for the transaction model in the DyCE framework. Transactions can be nested : A
single thread can perform as many nested calls to the doIt method as it likes. The im-
plementation of beginTransaction only needs to verify whether there is already a running
transaction before initializing the read set and write set (so that no pervious operations
are accidentally removed). In everyday development of DyCE components, the code writ-
ten in the txBody method very often calls other methods of other objects that also contain
transactions. These transactions are now nested into the surrounding transaction. When
the outer-most transaction exits its user code routine, the doCommit method commits it
along with all nested transactions. The solution is thread-safe: Due to the assertions of
the synchronized construct, no two different threads can be active in the doIt method at
the same time. After the first transaction has entered the doIt method, subsequent calls
to doIt on other threads are suspended until the initial transaction commits. Also, there
can be no dangling locks : When the transaction code leaves the doIt method - whether
by an error condition or after successful completion - no locks or semaphores remain to
be removed in order to permit other transactions to proceed.

5.3.3 Type wrappers for Java types

As has been discussed in section 4.2.6, knowledge about the functionality of complex
data structures can be used to increase possible concurrency of operations. As specified
in the previous chapter, Slots provide two basic methods for accessing them: getValue()
and setValue(). These accesses are monitored, wrapped in transactions and transmitted
via the server to other clients. Using such elementary Slot operations, a Slot can contain
any data type and Slot accesses always conform to the following simple pattern:

1. Read the Slot’s contents into a temporary variable

2. Modify the object or data value

3. Write the changed value back to the Slot.

In the case of complex or large data structures (e.g., a Slot containing a list of elements
in a Vector or other list structure), writing the changed Slot contents in step 3 results
in a transmission of the entire data structure contents to all connected clients (since the
framework can have no knowledge of what exactly changed in the data object and has
to assume that an entirely new object has been written into the Slot). This approach,
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while homogeneous and functional, can lead to a large volume of unnecessary data being
transmitted, if many small changes are made to large data structures.

In order to improve on this situation, the DyCE framework provides DyCE wrappers
for common complex data types. So far, wrappers have been developed for the linked
list class Vector and the Hashtable data structure. Additional data type wrappers will
be developed as when required. The DyCE type wrappers inherit from the Java base
classes and are therefore polymorph with these classes. Along with these new subclasses,
extensions to the Transaction class hierarchy presented in section 4.3.5 have been imple-
mented. All modification methods in these classes (methods modifying the data object’s
contents) have been overridden according to the following pattern:

1. Check for running transaction. Throw exception if no transaction active;

2. Create instance of appropriate subclass of changeOperation, storing information
about current state for later undo operations;

3. Perform requested change on local data structure;

4. Store information about the change to be done in the changeOperation subclass
instance;

5. Add changeOperation subclass instance to running transaction.

For each overridden modification method, an appropriate subclass of the transaction
framework class changeOperation needs to be implemented, which is able to perform
and undo the changes requested by the method invocation.

When a transaction received over the network is being replayed locally by the Transac-
tion Manager, the changeOperation subclass instance method perform() will be called,
to replay the change locally by applying the change on the local replica of the data
structure.

As an example, consider the following code snippets from the DyCE-enhanced Vector

(linked list) data structure, specifically the method and change operation class for adding
a new element to the list:

/** Helper class for Vectors in the data model */

public class Vector

extends java.util.Vector

{

// .....

/** Wrap addElement for ModelObjects, thereby hiding

the Vector’s access to RObjects from the client.
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DyCE-Aware! Adds the appropriate changeOperation */

public synchronized void addElement (Object o)

{

if (o instanceof GroupComponents.ObjectModel.ModelObject)

super.addElement (

((GroupComponents.ObjectModel.ModelObject)o).

getDataObject());

else

super.addElement (o);

try

{

if (oid == null)

{

return;

}

// Create the changeOperation instance and add to

// running Transaction

Transaction.getCurrent().addOperation (

new VectorAddElement (

slotname,

oid,

ObjectManager.getObjectManager().getObject (

oid, ClientObject.getMyClientID()).

getLClock(), o)

);

// Here we need to notify the Slot of changes

GroupComponents.ObjectModel.Slot.

changed (oid, slotname);

}

catch (Exception ex)

{

ex.printStackTrace();

}

}

}

/**

* changeOperation for adding an Element to an

* instance of GroupComponents.Utilities.Vector.

*/

public class VectorAddElement

extends VectorChangeOperation

implements Serializable

{
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Object addedObject;

public VectorAddElement

(String sn, ObjectID o, int lc, Object added)

{

super (sn, o, lc);

addedObject = added;

}

/** Perform this operation simply by actually

* adding the object to the Vector.

*/

public void perform()

{

Vector v = (GroupComponents.Utilities.Vector)

(getAffectedObject());

v.addElement (addedObject);

}

/** Undo the effects of this operation */

public void undo()

{

Vector v = (GroupComponents.Utilities.Vector)

(getAffectedObject());

v.removeElement (addedObject);

}

}

Since the DyCE transaction framework ensures that operations are performed and
undone in order, the changeOperation implementation can perform the requested func-
tionality by adding the given object when performing the operation and removing it when
undoing the operation.

For Slots containing such DyCE-enabled data types, the component developer is no
longer restricted to using only the read/modify/write interaction paradigm. Rather, he
can use the more natural way of interacting directly with the complex data structure im-
plementation and rely on the fact that the framework will handle these changes correctly
and maintain all object replicas’ consistent state.

5.4 The Groupware Desktop

The Groupware Desktop is the standard client application available as part of the DyCE
framework. The desktop (see figure 5.3) provides end-users with support for accessing
the Groupware Components and shared objects. Additionally, it provides some awareness
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information. It has been developed to fulfill the requirement RU1, providing access to
shared artifacts and collaborative tools.

Figure 5.3: Groupware Desktop client application

The Groupware Desktop shown in figure 5.3 provides the following features:

• Component Browser: The Component Browser (in the window on the left part
of the screenshot) provides direct access to all Groupware Component currently
registered in the system. By interacting with the Component Browser, users can
create new shared objects and invoke tasks upon these. Invoking the tasks leads to
creating a new session, and loading and opening the necessary Groupware Compo-
nent in this new session, as has been previously described. The screenshot shows
the popup menu used by the user to create a new model object instance for a
shared drawing and invoke one of the tasks ”open” and ”edit” on the newly created
instance. This is the way in which end-users create new sessions and set up new
documents they wish to use and edit collaboratively.

• Registering a component: Transferring components uses the Java Archive file
(JAR) mechanism supported by the Java Development Kit. A JAR file is a com-
pressed archive of all class implementations and resources belonging to a Groupware
Component. This includes any icons or other external support files required by the
component implementation. Using the ”New Component” button on the user inter-
face, end-users can register new Groupware Components to the Component Broker.
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After selecting the component implementation JAR archive, setting a name and an
icon to use for that component, the component implementation is uploaded to the
Component Broker. The newly registered component shows up in all connected
users’ Component Browser and can be used right away, without the need to shut
down and restart the clients. This is the means by which users can dynamically
extend the working environment (see req. RU7).

• Desktop: The desktop part of the Groupware Desktop provides functionality sim-
ilar to the desktop environments from familiar operating systems. Users can place
shortcuts to shared objects on their desktop for easy access to these objects (see
icons e.g., ”My Diagram” in screenshot). Again, a popup menu provides direct
access to the task information stored for each of the model object classes and al-
lows invoking a task on a shared object, creating a new session and opening the
necessary Groupware Component on the shared object.

• User list: The user list, on the right-hand side of the window, provides a list of
all users currently logged in to the system. This list can be used to contact other
users and to invite them into running collaboration sessions.

When the user invokes a task on a shared object, either from one of the icons on
the desktop or from the Component Browser, a new session is created, containing the
component discovered for that task. For each session, an independent window is cre-
ated that contains all Components used in that session (see figure 5.4). In each session
window, there is information about which users are currently in the session (see top bar
in right-hand window). Users can be invited into running sessions e.g., by dragging the
representative of the user from the Groupware Desktop user list to the user list in the
session window.

The menu (see indicator in figure 5.4) in the component-related frame in the session
window allows invoking additional tasks on that component’s data model. These tasks
can be invoked within the same session (thereby adding a component to the running
session, performing the task for all users currently in the session) or in a new session,
thereby spawning an independent session on the same data model. By using multiple
windows to each represent a running session and providing access to elements of the
shared object space and components, along with the possibility for opening new sessions
and adding components to running sessions, users are provided with a large degree of
flexibility in creating their collaborative settings. Individual sessions can be spawned
e.g., to work independently on other sections of a shared document, other users can
be invited into such spawned sessions. Also, totally independent shared objects can be
created and component invoked on them, in order to perform individual tasks or private,
non-coupled, work in parallel. Thus, multiple simultaneous collaboration modes as well
as transitions between them (RU6) are supported in the Groupware Desktop.
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Figure 5.4: Groupware Desktop and a running session

5.5 End-User tailoring

An important requirement for the Groupware Components was to provide end-users with
support for combining existing components as the need to do so arises in the course
of the collaborative process (req. RU10). The DyCE framework includes as a Group-
ware Component the tool used for coupling Groupware Components and deploying the
newly combined components to other users. Using this tool, Groupware Components
can be coupled into so-called Configurations. A Configuration is defined as follows: A
Configuration consists of a human-readable name and a set of Configuration Items. A
Configuration Item is a tuple CI = {name, class, task, rect} where

• CI.name is a human-readable name for the Configuration Item,

• CI.class is the name of a shared object class,
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• CI.task is the identifier of a task published on CI.class,

• CI.rect is a rectangle denoting relative layout information

5.5.1 Use of the end-user tailoring tool

The configurations can be collaboratively created in a visual Configuration Editor (see
figure 5.5), which allows naming the configuration and adding new Configuration Items to
the configuration. The layout editor (see lower part of Configuration Editor in screenshot)
allows relative positioning of the rect information for each Configuration Item, using a
rubber-banding feature.

Figure 5.5: Using the Configuration Editor to compose Groupware Components

The shared model of the Configuration Editor is a Configuration object. This Con-
figuration object can be treated like all other DyCE shared objects: A shortcut can be
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placed on the desktop, its ID can be used to refer to it from other components, etc. Ad-
ditionally, a configuration can be ”started”. Starting a configuration results in creating
instances of all shared object classes included in the Configuration Items, performing the
specified tasks on these and laying out the resulting components according to the layout
information contained in the Configuration Items. The resulting combination of compo-
nents is displayed as a single tool in a new session window, other users can be invited
into the session and use the combined components collaboratively. The Configuration
Editor shown in figure 5.5 is being used to combine a shared chat component, accessed
by introducing a shared chat model and the appropriate task, with a group drawing tool,
accessed by introducing a shared drawing model and the appropriate task. The collabo-
rative use of this configuration is shown in figure 5.6. Here, two users are collaborating
using the resulting combined component, which provides a combination of chatting and
drawing, to support a graphically enhanced chat session (or to use the chat tool to discuss
the contents of a shared drawing).

5.5.2 Configuration based on tasks

As can be seen, the combination of Groupware Components does now directly access
the components to be combined. Rather, the end-user specifies shared objects and tasks
to invoke on them and performs a rough relative layout. This approach carries the
flexibility gained from the task model through into combining the components. Instead
of specifying fixed configurations of specific tools, the decision of which tools to use is left
to the system, based on the information in the task model. Whenever a configuration
is started, the tasks contained therein are resolved using the Component Broker and the
correct components are identified. Should the set of available components change, or
should different components be used for different users, the configuration still remains
valid. Even if components are replaced with ones with enhanced functionality, the system
ensures that these components work in all configurations based on the shared object space.
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Figure 5.6: Collaborative use of combined Groupware Components
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5.6 Shared Workspaces on the Web

One requirement stated in chapter 2 is that of ubiquitous access to the collaboration sup-
port system (RU5). One computing infrastructure that is becoming increasingly available
to a wide variety of systems is the World-Wide Web (or Web for short). By making DyCE
components accessible over the Web, DyCE-based shared workspaces can be accessed
from virtually any Web-enabled system.

5.6.1 Downloading DyCE itself

As has been shown in section 5.1, the DyCE server (the server’s user interface is shown
in figure 5.7) includes an HTTP server, which allows DyCE to serve itself to Web-based
clients. DyCE components can be embedded in Web pages and can be used for collabo-
ration over the Web and for ubiquitous access. Downloading DyCE from its own HTTP
server also avoids problems with the ”sandbox model”, in which Applets may only con-
nect back to the server from which they were loaded. After downloading DyCE from its
own server, the DyCE Applet is allowed to connect back to the DyCE server using UDP
and RMI, which allows the distributed system to be established.

Figure 5.7: The DyCE server ready for use
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5.6.2 Transferring Components

Components registered in the Component Broker are stored in JAR (Java ARchive)
files, which include the implementation files of the Groupware Component, as well as the
implementation files that make up the shared data files. Along with these Java class files,
the JAR archive contains any resources, such as icon images, help texts, etc. required
by the component. In order to allow retrieval of the component and its supporting files
at runtime, the Java class loader has been extended to make use of the Component
Broker. Any class file or resource file requests, which cannot be fulfilled by local access
(i.e. by accessing a locally stored file) is delegated to the server’s Component Broker,
which has access to the previously registered JAR archive and can serve the files from
there. Attempting to access local versions of the requested files is a means for providing
developers with the ability to to test out their component implementation together with
the server, without having to re-register the component after every change. Obviously,
for deployed DyCE installations no local component implementations are used, in order
to prevent version mismatches between the collaborators’ installations.

Deployment of new components must also be supported. For this, the HTTP server in
DyCE also accepts HTTP PUT requests for uploading JAR files containing components.
This allows uploading components to the server using an HTML form (see figure 5.8).
This HTML form can again be served from DyCE’s HTTP server, providing an easy Web
interface to extend the system. Similar file uploads to a shared workspace have also been
realized in BSCW [BAB+97] but in BSCW this mechanism is used to maintain repository
contents, not extend the CSCW system itself.
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Figure 5.8: HTML form for Component upload

5.7 Experiences from DyCE development

The DyCE framework was developed following an iterative development model (some-
times also referred to as rapid prototyping - a term which seems to sound a bit negative).
An initial prototype of the framework and some components using it was initially devel-
oped in a rather short time. Subsequently, there were two forms of tests - the framework
suitability for developing groupware components was tested by introducing several devel-
opers (some very experienced in Java development, others less so) to the framework and
having them build additional components. In parallel, the components that were already
present were tried in various collaborative as well as single-user settings. The aim of
these tests was to quickly gather requirements and priorities for the next development
iterations. Since this was a rather informal process, no formal evaluation has been done



134 CHAPTER 5. SYSTEM IMPLEMENTATION

and no formal evaluation results can be presented.

In the following iterations of extensions of the DyCE framework, new functionality
has been added and the framework itself has been refined in a process that can best
be termed stepwise refinement. One of the steps in object-oriented development, which
is gaining more wide-spread acceptance is that of refactoring - improving the design of
existing code to eliminate areas of the design or the implementation that, while they
actually work OK, nonetheless smell bad (see [Fow99] for more details about this).

In the course of refactoring the framework, more and more parts of the framework
were ”bootstrapped”, i.e., the framework was redesigned and extended to, in effect, use
itself. For example, initially there were specific classes (regular Java classes) representing
users, sessions, components and other DyCE-internal data structures. This was neces-
sary in order to get DyCE working at all. Once the general functioning of the framework
had been established, these data structures were gradually replaced with ”DyCE-ified”
versions of themselves, so that now most of the DyCE internal data structures are in fact
ModelObject subclasses and fully benefit from the replication support, concurrency con-
trol, etc. Finally, the DyCE framework is a very homogeneous framework, with very little
control structures outside of the framework. This bootstrapping approach has proven to
be very beneficial in that it aids the framework’s comprehensibility (less underlying con-
cepts need to be understood and issues learnt once can be re-applied in various parts of
the framework) and its maintainability (changes or improvements to a central mechanism
such as the object model or the replication management immediately benefit large parts
of the framework).

These benefits are, in our opinion, only achievable in an iterative development ap-
proach. The final homogeneous, self-referential design of the framework using itself would
have been next to impossible to come up with beforehand (without the previous imple-
mentation experience) and would have been very hard to implement and test from the
beginning.



Chapter 6

Usage Experiences

The system described in this thesis has been used to develop several collaborative com-
ponents for a variety of usage situations. This chapter will present a number of systems
developed on the basis of DyCE. Each system’s design will be presented, followed by a
description of how the system exploits the features of the DyCE system.

6.1 Shared HTML Presentations

Using DyCE as a basis, an HTML-based collaborative presentation system has been
developed, which can be used for slide-show presentations where one presenter shows a
presentation, consisting of a set of slides in HTML format, to a - potentially distributed
- group of viewers (e.g. students).

The HTML presentation system consists of four parts (see figure 6.2):

• The HTMLPresentation model. This is modeled as a list of URLs referencing the
slides making up the presentation and a ”current” slide indicator. The slides them-
selves are stored in the DyCE HTTP server (but could also be fetched from any
Web server).

• The HTMLPresentationController component. This component publishes the task
”control” on the data model class HTMLPresentation. It is used to control the
presentation. For this, it allows paging forwards and backwards through the pre-
sentation slides, updating the ”current” slide in the shared HTMLPresentation
model.

• The HTMLPresenter component. The HTMLPresenter component is a MobileCom-
ponent subclass. It publishes the Task ”control” on an HTMLPresentation. When
invoked on an HTMLPresentation, the HTMLPresenter fetches and displays the
slide indicated in the HTMLPresentation model as the current presentation loca-
tion. In order to do so, it incorporates an HTML viewing panel (from the standard
Java libarary). When the ”current” value of the presentation is changed (by the
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Figure 6.1: Shared browsing in an HTML-based presentation

HTMLPresentationController), the new slide is fetched and the display is updated
accordingly.

• The HTMLBrowser component. The HTML Browser component extends the com-
ponent HTMLPresenter. It publishes the Task ”browse” on an HTML Presentation.
In addition to the shared presentation functionality inherited from HTMLPresenter,
the HTMLBrowser component allows true cooperative navigation. If a user follows
a link in the HTML page, the shared model is updated and all other users’ browsers
(or presenters) follow. This allows collaborative exploration of HTML content.

The screenshot in figure 6.1 shows two shared presentation sessions (from the point-
of-view of the user controlling the presentation), with the HTMLPresentationController
being used in an individual session by one user (the tutor, who is controlling the pre-
sentation) and the HTMLPresenter component used collaboratively by two users in a
shared session. In the shared presentation component, the users are viewing the pre-
sentation page to which the tutor navigates using the control component. As has been
explained, when navigation (changing pages) occurs in the presentation controller, the
coupled presentation components automatically follow, resulting in a shared presentation.

Using these components on a shared HTMLPresentation model, any number of viewers
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Figure 6.2: Design of HTML Presentation Environment

can simultaneously use the HTMLPresenter to view the presentation that is controlled
by the tutor, using the HTMLPresentationController component.

This HTML Presentation example is also a good example of how shared DyCE models
can be used to synchronize components accessing an external resource (in this case the
presentation of HTML slides stored on a Web server).

6.2 Collaborative Hypermedia with Awareness Sup-

port

The DyCE system has been used to implement the collaborative hypermedia workspace
ideas described in [Haa99]. The goal was to provide a shared Hypermedia Workspace that
provides a number of tools with group awareness mechanisms. The awareness-enhanced
tools include:

• a group aware search tool for performing complex searches on the shared hyperme-
dia workspace (labeled (1) in figure 6.3),

• a structure navigator providing a hierarchically structured overview over the work-
space structure (labeled (2) in figure 6.3) together with awareness information about
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sessions running on the workspace contents,

• a content editor for shared hypermedia content (not shown).

Figure 6.3: Tools of the Shared Hypermedia Workspace

6.2.1 Design of the Shared Hypermedia Workspace

In order to realize the system, the first step was to develop a shared hypermedia model
that was to form the basis of the shared workspace. This hypermedia model was developed
as an extension of the DyCE shared object model. A general hypermedia layer was
implemented (see figure 6.4), which includes:

• a general link model for typed hypermedia structure, which provides support for
multiple link schemas (consisting of a set of permitted link types, defined as a triple
{linktype, sourceclass, destinationclass}.

• a hypermedia framework, consisting of a number of interface definitions (Java in-
terfaces); by implementing these interfaces, any object model class can denote itself
to be linkable and be included in the hypermedia structures.

• support classes providing services such as link management, schema management.
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The shared hypermedia model consists of three distinct areas, each providing classes
with an appropriate nesting structure: Process Structure, Team Structure and Content
Structure.

Figure 6.4: Hypermedia Object Structure - Overview

On the basis of this hypermedia layer, a number of components were implemented,
which provide the functionality described in [Haa99].

A shared navigator visualizes hierarchical structures (such as shared workspaces, query
results, etc.) along with awareness information. Using an Explorer-like presentation con-
sisting of nested folders representing composite elements of the structure to be displayed,
the users can collaboratively navigate such nested structures, showing or hiding sub-
structures as they please.

A group aware search tool allows a group of users to co-operatively search the shared
hypermedia workspace for elements matching certain query conditions. The query can be
formulated interactively, using interaction elements provided by object model implemen-
tations implementing the interfaces from a query framework. As the shared navigator
is used to visualize the query results from the search tool, the query results are auto-
matically group-aware (i.e. contain information about which of the elements found is
currently being used by which users).

The Workspace Editor is used to view and manipulate the structured hypermedia
workspaces. Whereas the navigator provides a tree-like view of hypermedia structures,
the workspace editor provides spatial layout capabilities on two-dimensional workspaces.
The workspace editor provides access to all elements modeled in the shared hypermedia
model. Root elements of the Content Structure, the Team Structure and the Process
Structure allow creating nested structures from the hypermedia model. The graphical
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editor also allows creating the Hypermedia links, according to the current hypermedia
schema, which are not directly expressed in the object model. All accessible link types
are available and can be instantiated in the workspace simply by drawing a connection
between objects in the workspace.

Similar to the Workspace Editor are the editor components for the three areas of
the hypermedia model: the Process Editor, the Composite Editor and the Team Editor.
A speciality of the Process and Composite editors are that they allow the inclusion
of DocumentHolders: Special content objects which can store arbitrary objects from the
shared object space. The DocumentHolder objects in the shared workspace provide access
to the DyCE Task model - they allow direct invocation of the DyCE Tasks published
for the class of which the DocumentHolder content is an instance. So, if for instance
the DocumentHolder contains a reference to a Diagram, the DocumentHolder uses the
services provided by the ComponentBroker (see chapter 5.1) to discover the DyCE Tasks
available for the Diagram class. These Tasks can then be invoked within the same DyCE
session or in a new DyCE session. By including DocumentHolder instances within the
co-operative hypermedia workspace, the Process and Content structures can be used to
structure a shared workspace that provides access to other shared artifacts (of arbitrary
type).

6.2.2 Usage Scenario for Shared Hypermedia Workspaces

One possible usage scenario for the shared hypermedia workspaces is a joint writing
process collaboratively structured and then performed by a group of users working on a
scientific paper.

The group is modeled using the Team Structure. Sub-teams can be introduced in
order to distinguish between the authors, colleagues who help in reviewing the paper and
external reviewers.

The structure of the paper is modeled using the nested composite structures from
the Content Structure part of the shared hypermedia model. The paper is subdivided
according to the chapters: Introduction, Chapters 1 through n and References.

The Process Structure part of the shared hypermedia model is used to design a process
model for the shared writing task: Process substructures are created for gathering of
related work, joint writing, reviewing by colleagues, managing of literature references and
finally external peer review. Within the process structure, elements from the team model
are used to assign responsibilities to each user within the process model. Additionally,
elements from the composite structure (such as the composites created for each chapter)
are included in the process structure to denote that a specific step of the process (e.g.
writing chapter one) is associated with a certain composite of the paper (chapter one).

The authors can then proceed to work on the paper, each accessing the composites
created for the chapter on which he or she is supposed to work. In a writing process
stretching over multiple days or weeks (as writing scientific papers usually does), the
search tool can be used to keep track of which composites are currently being worked



6.3. EXTENDED ENTERPRISE ENGINEERING 141

on, which ones are assigned to a user, etc. Within the composites, DocumentHolder
instances can be created for the different elements used in the chapters and a variety
of DyCE components can be used to create the contents: figures can be created using
a diagram editor component, the text body can be written using a shared text editor
component. Material from external sources on the World Wide Web can be referenced
using the shared HTML Presentation component.

6.3 Collaborative Extended Enterprise Engineering

In the EU project EXTERNAL, DyCE has been used as the basis for the development of
a system for distributed collaborative engineering and operation of extended enterprises
(see [WHRT00b]). Here, the collaborative hypermedia workspace implementation was
reused and extended with extended enterprise semantics used for creating and executing
Extended Enterprise (EE) models. The central component of the collaborative extended
enterprise engineering system is the XCHIPS component (see figure 6.5).

By basing the shared EE modeling system on the flexible hypermedia-based shared
workspace, and thus on the DyCE component model, the EXTERNAL implementation
was able to achieve significant re-use of previous components, providing a running proto-
type at a very early stage in the project. This early prototype was deployed very early on
in the project to the project partners and was then extended iteratively. Over the course
of the project (which is an ongoing project at the time of writing this), the EXTERNAL
suite has been extended with additional Groupware Components, which were added to
the already deployed system as Groupware Components. These new components include
an integration of Microsoft NetMeeting conferencing and application sharing tool, an in-
tegration of Microsoft Internet Explorer for access to arbitrary Web content (exceeding
the capabilities of the HTML browser already available as a DyCE component), an ex-
tended shared hypermedia-based EE modeling and operation workspace, an integration
with external tools from other project partners as well as several other components.

By re-using the DocumentHolder model from the shared Hypermedia Workspace, EX-
TERNAL workspaces are directly extensible with any new DyCE components that be-
come available. References to new shared data objects can be inserted into the workspace
at any point in time, tasks can be invoked on these shared objects and new components
can be introduced into the collaboration setting. This approach, along with a re-use of
already existing DyCE components, made it possible to deploy the EXTERNAL pro-
totype at such an early stage in the project, while still maintaining the prototype and
adding extensions to the already deployed system.
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Figure 6.5: The XCHIPS component

6.4 Lessons learned from use of DyCE

When using DyCE as the basis for the development of the components and environments
described above, the advantages of the flexible component-based development approach
became apparent.

Re-use of previously developed components was directly supported and became one
major design focus of the developers involved in these projects. For instance, provid-
ing a general task-aware container (termed document holder) in the shared hyperme-
dia workspace provided a straight-forward way for integrating existing models - and
thus Groupware Components - into the shared workspace. The document holder allows
the users to invoke all published tasks on a given shared object, thereby providing di-
rect access to other components, which weren’t a direct part of the shared hypermedia
workspace. In this way, e.g., it was possible to use a previously developed shared text
editor and a shared diagram editor in order to use the shared hypermedia workspace as
a tool for a collaborative writing process.

In the past year, the DyCE framework has been used regularly as basis for the devel-
opment of new Groupware Components by around ten developers (members of the IPSI
research staff as well as students). In the course of this work, a wide range of components
have been developed, including components for
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• shared multimedia presentations using multi-point access to streaming media (see
[XFT+01]),

• shared multi-point multimedia conferencing,

• collaborative games,

• shared object-oriented sketches,

• collaborative brainstorming, etc.

As development continues, the set of available and reusable Groupware Components
is steadily increasing. By making developers aware of the potential for component re-use,
the components built on DyCE can be made reusable and reuse-friendly. In this way, any
of the above components can e.g, be used to extend the EXTERNAL shared modeling
tool. Should a shared multimedia presentation facility be required in an EXTERNAL
shared workspace, the shared object can be added to the EXTERNAL model (by the
end-users) and the related Groupware Components can be invoked on this object. In this
way, end-user extensibility and modification of their work environment has been achieved.

With regard to the developer requirements shown in chapter 2, a number of experi-
ences were gathered in the course of using the DyCE framework. Over the last couple
of months before writing this thesis, several new developers have been introduced to the
DyCE framework and are now using the DyCE framework in their everyday project work.
The experiences gathered from the introduction of these new developers gave some good
insights into the strengths and weaknesses of the DyCE development framework.

The potential for reuse of existing programming knowledge (RD1) was first experi-
enced with the development of a shared multi-user chat component. This component
was developed by an inexperienced DyCE developer (but an experienced Java developer)
by taking an existing Chat Applet (already conforming to the Model-View/Controller
abstraction due to its use of the Swing GUI framework as a basis) and replacing the data
model used by the Applet with a DyCE shared data model. This adaptation was done
within the course of one day after starting to use the DyCE framework. A couple of the
existing components, such as the shared HTML presentation component, demonstrate
the value of a common shared data model that can be reused across multiple compo-
nents (RD2). In the presentation example, a single shared presentation model is used
across several components. The shared data models, in combination with support for
transparent sharing of data objects (RD3), without having to implement command- or
event-based protocols between the components or other communication means, has been
observed to simplify design and development discussions and to aid distributed develop-
ment of components in a team of several developers. After the developers agreeing on
a common data model, complex collaborative environments could be decomposed into
several components, which were developed independently by different developers. Due
to the unifying nature of the common data model, the independent development and
subsequent integration of the components have become comparatively easy. The support
for server-side components (RD9) has greatly simplified the design of a set of components
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for collaborative learning, where functionality regarding the control of learning protocols
(structured approaches to tackling collaborative tasks in learning situations) could be
implemented in a server-side component, thus resolving complex scheduling and control
issues that complicated a previous design. Over the course of the next months, the sup-
port for combining existing components into configurations (RU10) will be used to put
together an integrated (but adaptable) learning environment for language learning.

In the course of the projects based on DyCE so far, little experience has been gathered
with end-user tailoring and combination of the Components. So far, use of the DyCE
framework has focused on use of the development framework by developers and use of
the resulting Components by end-users. It is anticipated that a new project, scheduled to
begin in 2001, will exploit DyCE features for combining Groupware Components into new
system prototypes. In this new project, rapid prototyping of Components for computer-
based language training will necessitate faster iterations of component development and
experiments with new designs. One of the aspects under examination is the layout and
composition of tools for language learning and group awareness. Using the component
configuration functionality provided by DyCE, it is envisioned that changes to the working
environment can be made by end-users or other non-developer members of the research
staff, simply by changing the composition of the components available.
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Discussion

This chapter will summarize the main aspects of the thesis and compare the presented
approach to the requirements stated in chapter 2. A comparison to the state of the
art will motivate the list of the thesis’ main contributions. The thesis concludes with a
number of topics for future research that can be based on the work presented here.

7.1 Summary

Today’s flexible team structures and evolving collaboration processes, as encountered,
e.g., in creative working environments and in the context of Extended Enterprises, place
high demands on the groupware environments aiming to support these collaborations.

The main requirement, from which other requirements can be derived (both in terms
of users’ as well as developers’ requirements) is to have available flexible, extensible
groupware environments which can be modified and extended by end-users as well as by
developers at run-time, as the users’ collaborative processes evolve. This thesis aims at
making a contribution to the design, development and deployment of such collaborative
environments.

The approach taken is that of component-based development: collaborative envi-
ronments can be constructed from Groupware Components - interactive collaborative
components that can be dynamically deployed, invoked and combined into new config-
urations which can then be used collaboratively. In order to support the development
of Groupware Components, a Java-based development framework has been designed and
implemented. This framework, called DyCE (Dynamic Collaboration Environment), is
presented in this thesis along with the underlying concepts that were developed to allow
the design and implementation of flexible collaboration environments.

The separation between the implementation of components and the shared domain
objects manipulated by the components aids the combination of different components and
the use of shared artifacts in evolving collaborative processes. Component implementa-
tions are stored in a central Component Repository and are dynamically downloaded to
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the client machines when they are required.

The flexible combination of components and the runtime extensibility of the resulting
system are supported by the task-based programming model presented in chapter 4.
Using this model, components are bound to shared object classes and are retrieved from
a Component Broker when a specific task is invoked on a shared data object. As has been
discussed in section 4.6, this loose binding between components and shared objects allows
different components to be invoked on common shared data objects and allows a selection
of components based on different types of end-points, different end-user requirements, etc.

Groupware Components can be linked in a number of ways, depending on user pref-
erences and requirements. First of all, components can invoke other components (indi-
rectly) by performing a certain task which is published in the Component Repository
by another component. Multiple components can access (display and modify) the same
shared data items (potentially in different ways). The DyCE framework ensures that
the components are notified and that they are kept in a consistent state. Additionally,
object-based event propagation is available between the components (see section 4.5).
This allows components to send events to all components currently accessing a shared
object. The combination of these approaches gives developers great flexibility in designing
the Groupware Components and collaboration environments based on them.

End-user tailorability is supported by providing a graphical tailoring interface that
allows users to combine different components. These combined components (Configura-
tions) are also modeled as shared objects, can be shared between users and allow access
to groups of components as composed entities.

7.2 Comparison to requirements

This section will present an overview of the way in which the requirements from chapter
2 have been addressed in the system design and implementation.

7.2.1 End-User Requirements

RU1 - Access to shared artifacts and collaborative tools: The shared artifacts,
which are modeled as shared objects, are stored persistently in a shared object database.
The artifacts, along with the implementation of the components, are distributed in the
system at runtime, as soon as they are required.

RU2 - Computer guidance in selecting appropriate tools: This is supported
through the use of the task-based programming model. Using these tasks, users can invoke
components on shared objects and can quickly find out which components are available
for use with a given shared object. Learning how to use the available components is
supported through provision of hypertext-based online help for each component.

RU3 - Provision of Group Awareness: Group awareness is available on the task
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and session layer. The system can provide information about which users are accessing
which objects in which sessions (i.e. together with which other users). More sophisticated
group and process awareness mechanisms have been built on top of the DyCE framework,
e.g., in the Shared Hypermedia Workspace presented in chapter 6.

RU4 Support for synchronous as well as asynchronous collaboration: Syn-
chronous collaboration is supported by the tight coupling between the shared objects and
facilitated by the automatic view updating at the GUI level. Dynamic object replica-
tion, in combination with consistency maintenance based on transaction management, as
well as the object-based event broadcasting channels, support synchronous collaborations
across sites and between components. Asynchronous collaboration is supported by the
persistent Object Storage, which is used to store object structures between editing ses-
sions (and therefore serves also as a basis for the exchange taking place in asynchronous
collaboration).

RU5 - Ubiquitous access to collaboration environment: The ability to de-
ploy DyCE workspaces over the Web, by using DyCE’s integrated Web server as a
collaboration-extended Intranet server makes shared workspaces available in many en-
vironments.

RU6 - Multiple simultaneous collaboration modes and transitions between
them: Users can invoke individual (non-shared) editing or viewing sessions on any shared
objects. At any point, additional users can be invited into the editing session, thereby
making the transition from private to group work. The design decision has been made
to allow concurrent access to shared objects also in multiple private sessions, thereby in
effect providing coupled collaboration across sessions. A locking mechanism (or other
means to restrict shared objects to private use) could be a useful extension.

RU7 - Dynamic extensions of the collaboration environment: Components
can be added to the system (to the Component Broker) at runtime, without the need
to shut down running clients and without disrupting running collaborations in any way.
Newly added components are registered in the Component Broker using their task inter-
face and are immediately available to all users for collaborative use.

RU8 - Coupling of different tools: This requirement is also fulfilled by the task-
based programming model, using tasks to provide a binding between components and
shared objects (or object classes). The division between component implementation
and object-oriented shared data model allows invoking several different components on
common shared data objects.

RU9 - Support for mobile work: Mobile appliances have certain restrictions, e.g.,
in terms of memory and display size. By extending the task-based programming model
to contain information about the infrastructure constraints that apply to a component
(e.g. the information that a certain component is ”PDA-Compliant”), such devices can be
supported and can take part in complex collaborative work situations. Also, the dynamic
nature of the system, the fact that components are downloaded when required and shared
data objects are dynamically replicated, support the use of such mobile appliances with
limited resources in collaborative situations.
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RU10 - Combination of existing tools (End-User tailorability): Using the
interactive configuration editor, users can combine the available components into config-
urations, which can then be shared with other users. Also, by introducing new compo-
nents into the system and invoking components on any shared data objects (through the
task information published by the component), users can flexibly extend and adapt their
collaborative work environments.

RU11 - High system performance: System performance is addressed in the DyCE
framework by the use of dynamic replication mechanisms (which results in only the cur-
rently required objects being replicated to a client’s machine) and the use of optimistic
concurrency control for the users’ actions. Also, the UDP-based network layer has been
developed specifically in order to improve scalability and performance of the overall sys-
tem. No systematic evaluation of system performance and scalability has been done so
far, so that concrete performance measurement results cannot be presented in this thesis.
Such performance evaluations remain as future work.

7.2.2 Developer Requirements

RD1 - Reuse of existing programming knowledge and experience: Every new
development framework requires some time to learn and to become proficient in (see
[Pre99]) - DyCE is no exception. Yet, the Groupware Components are based on Java’s
Swing component set; in fact, they provide a natural extension to these models/toolkits.
The use of Java RMI for the object communication also allows reuse of programming
experience. The (necessary) design decision to instate a separate type and variable sys-
tem (the Slots) makes it necessary for experienced Java developers to learn additional
concepts.

RD2 - Reusable data models: The decoupling of data objects and Groupware
Components presented in chapter 4 makes the shared data model reusable for different
components.

RD3 - Transparent sharing of collaboration artifacts: The transparent sharing
is achieved through the tight binding between the Object Management and Replication
Management and the fact that objects are accessed through the appropriate interfaces,
which automatically make use of the Replication Management Service and the Object
Management Service.

RD4 - Support for shared as well as private data items: Shared data objects
are modeled using the RObject and Slot classes from the DyCE framework. These
objects can automatically by replicated by the system. Non-Shared (local) data items
are available by using Java’s regular instance and class variables.

RD5 - Access to co-operation information when required: Using the informa-
tion available from the Session Manager and Component Broker as presented in section
5 allows the creation of group awareness mechanisms such as the user lists present in
the sample Groupware Components developed for the group-aware shared hypermedia
workspace, described in section 6.1.
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RD6 - Deployment of newly developed components: The deployment is facil-
itated by the Component Management Service GUI which allows importing new Group-
ware Components over the net, as well as by the feedback mechanisms present in the
Component Broker and Component Desktop UI, which give users information about
the set of available components and make newly deployed components usable instantly,
without the need to restart the client application, etc.

RD7 - Technical scalability of the solution: The collaboration framework pre-
sented in this thesis imposes scalability along multiple dimensions. The main determining
factors appear to be the size of the shared object space and the number of shared data
objects used concurrently as well as the number of simultaneously connected clients.
Through the use of dynamic replication and reference to collaboration session informa-
tion for object discarding, etc., a graceful degradation of performance is expected. On
order to address the scalability issues with respect to the number of connected clients, an
asynchronous network communication layer based on UDP has been implemented. No
measurements of performance issues have been done, though.

RD8 - Support for integration into external architectures: This integration
is supported by the HTTP-based access to information from the collaboration situations.
Using these standard access mechanisms, DyCE components can be embedded into Web
pages, etc.

RD9 - Support for server-side components: Server-side components are sup-
ported by a specific base class of the system. Like all other components, these server-side
components can access shared objects and publish task information. Invoking such a
component (either through another component performing a task or by user interaction)
opens the component on the server, with access to shared data objects. A server-side user
interface can provide interactive elements (e.g. for monitoring or interaction purposes).

7.3 Comparison to related work

Chapter 3 has presented a number of systems for developing groupware. The comparison
to these systems will concentrate on the main deficits identified in those systems with the
same focus as DyCE, namely the development and deployment of flexible, component-
based groupware (see section 3.4).

The Visual Component Suite system does not give the end-users access to the com-
ponents that make up the collaborative system. In this approach, users cannot extend
the system by adding new components (RU7), not can different components be flexibly
coupled on common shared data (RU8), as is supported by the ModelObject part of the
DyCE framework. Since there is no end-user tailoring support such as the Configuration
Editor (see section 5.5), end-users cannot flexibly combine existing components (RU10).

The Disciple system lacks a common shared data model, which can be reused across
different components (RD2). Therefore, the system cannot support the coupling of differ-
ent tools on shared data (RU8). The deployment of newly developed components (RD6)
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is supported by being able to load JavaBeans components into the shared workspace from
Web locations, similar to the functionality supported by the HTTP server part of the
Component Broker. Disciple has no equivalent to the task-based programming model
though, so users are not provided with support in selecting the appropriate tools for the
task at hand (RU2).

The approach to sharing taken in the TeamComponents system (multicast method
invocation) results in lack of support for combining different components (RU8). Also,
due to the fully distributed nature of the DreamTeam environment underlying the Team-
Components, no support is provided for server-side components (RD9).

The EVOLVE platform provides a high degree of support for end-user tailorability of
the collaboration system (RU10), dynamic extension of the collaborative system (RU7)
and easy deployment of components and newly tailored instances of components (RD6).
The approach of encapsulating the collaboratively edited data items in the components
and providing data sharing only through synchronized RMI (Remote Method Invoca-
tion) access to the shared data items stored in one location, will result in low system
performance (not fulfilling requirement RU11), and prohibits the coupling of different
tools on the same shared artifact (RU8). In order to address these requirements, the
DyCE framework uses a data replication approach and uses transaction management
and concurrency control to address concurrency issues. Also, it remains unclear how
the EVOLVE platform can support asynchronous collaborative work (RU4), with users
accessing shared objects even if the other users’ components (which hold that shared
artifact) are not currently available.

The GROOVE system provides a collaboration environment within which workspace
contents (shared data items and tools) are fully replicated between users. GROOVE
provides comprehensive support for tool deployment (RD6) and synchronous as well
as asynchronous collaboration (RU4). The GROOVE approach to data sharing is to
encapsulate data changes into ”command” objects, which can be serialized and broadcast
to all connected clients. This means that GROOVE applications have to be specifically
developed with collaboration in mind and there is no transparent sharing of data items
(RD3) - the GROOVE tools needs to accept and handle the command objects that
encapsulate application-specific behaviour. Also, there is no explicit data model that
could be reused across components (RD2); due to this fact, GROOVE does not support
the coupling of different tools on the same shared item (RU8). GROOVE does not provide
any support for dynamic replication, as is done in DyCE - the entire contents of a shared
workspace are replicated to all connected users. It is unclear how this approach scales
with workspace size (RD7). Especially, the initial replication of a new shared workspace
has been experienced to take a rather long time (this also depends on available network
bandwidth), which can hinder spontaneous collaborations. The DyCE framework, on the
other hand, only replicates those objects that are currently required, allowing users to
start working with a new shared workspace quickly, and replicating additionally required
objects on-demand, as work in the shared workspace progresses.
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7.4 Contributions to the state of the art

The work presented in this thesis advances the state of the art in the following areas:

Component-based groupware: The approach of constructing extensible groupware
from large-scale collaborative components aids flexibility and extensibility of groupware
environments. The use of the DyCE framework in a number of projects has demonstrated
the applicability and benefits of this approach.

Extensible component-based environments: The concept of loose coupling be-
tween the interactive components and the data objects manipulated by them, in the
form of the proposed task-based development framework, with its extensions for multi-
platform components, can also be used beneficially in the design of single-user extensible
environments.

Interactions in component architectures: The ability to combine different (kinds
of) components in collaborative sessions, with the possibilities offered by dynamic, run-
time extensions, aid the creation of flexible collaborative environments, well-suited to
fulfill the requirements posed by today’s highly dynamic team-work settings. The ability
to couple different types of components on the same shared data objects, with object
consistency and object-based event broadcasting mechanisms supporting the coupling of
the components, allows the decomposition of the collaborative system into individually
deployable and exchangeable functional modules.

Modeling component-based groupware: The proposed extensions of the UML
notation aid the design and discussion of groupware environments, especially when build-
ing groupware in teams of several developers.

7.5 Future Research

In its current state, the DyCE framework can be (and is) used to develop a variety
of components for different collaborative activities. A number of issues remain, which
should be investigated further.

7.5.1 Support for mobile disconnected work

Mobile disconnected operation (use of mobile devices that are not permanently connected
to the network) is one of the scenarios in supporting mobile users. By integrating a
versioned object model and by supporting intelligent caching of Groupware Components,
support for mobile disconnected work could be provided.

An important part of such research would certainly be in how far disconnected (or
intermittently connected) users can be tightly integrated into collaboration processes
(e.g. by using intelligent agents to represent the interests of the users while they are
disconnected).
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7.5.2 Extension of Task framework

Currently, the Tasks presented in this thesis carry little to no syntactic and semantic
information. By extending the Task framework to provide syntactic and semantic infor-
mation (e.g. which tasks are allowed to which users within the context of which other
tasks, how many participants are required for a certain task, etc.), more meaningful Task
structures could be constructed.

Such an extended Task framework could also be used in other collaboration settings,
e.g., as the basis for the POC (”points of collaboration”) model described in [WP00].

7.5.3 Support for time-dependent media

Currently, there are no hard constraints placed on the timing and distribution of transac-
tions. The solution chosen in the DyCE framework is suitable even for highly interactive
Groupware Components.

For time-dependent media (video or audio clips or even multimedia teleconferencing,
see [Ste99]), timing and synchronization mechanisms need to be developed that allow
the modification and presentation of data in collaborative tools to be synchronized with
media streams. Additionally, mechanisms need to be developed that ensure that all
users in a collaborative session are receiving synchronized media streams (played out at
the same time). Lack of such synchronization could severely disrupt collaboration and
coordination between the users.

Envisioning a shared workspace as the one presented in the experiences chapter, en-
hanced with the ability to store videos or audio clips in the shared workspace, the ad-
ditional problem of late-joiner support arises. How can a late-joiner ”catch up” with
the group currently using the shared workspace? How can a sensible point of entry be
determined, which permits a meaningful continuation of collaboration in the session?

The issue of time-dependent media is becoming more important as we are faced with
the development of distributed collaborative learning environments. A large part of
learning material (e.g. in the case of language learning) is available as movie or sound
files and collaborative learning support is becoming increasingly important in today’s
business and education settings.

7.5.4 Improved network structure

The current network structure of the DyCE framework uses a star-shaped topology with
multiple clients connecting to a single central server. The system performance and scala-
bility can be improved by implementing a more extensible network structure, e.g., using
a hierarchical, tree-type network topology, with intermediate caches, routers and multi-
plexers. Such a network topology can greatly benefit the use of DyCE-based collabora-
tion environments in corporate and other large-scale installations. The router modules



7.5. FUTURE RESEARCH 153

required for such network structures should also make DyCE-based environments us-
able in network environments with firewalls, e.g., by providing so-called application-level
gateways which can allow DyCE network traffic to be processed and forwarded through
firewalls.

Additionally, object mobility and load balancing mechanisms can be explored, which
allow a more optimal distribution of shared objects and load between multiple servers.

As a first step towards this goal, a number of performance measurements of the
network transfer, and its influence on overall system performance should be performed.
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Appendix A

Implementation of a sample
Groupware Component

Shown here for illustrative purposes is the source code of a sample component and its
associated data model.

A.1 The sample component

The sample component allows interaction with two data values (which form the data
model) - a String value, edited in a text entry field, and a numeric value, modified
through two buttons (for increasing and decreasing the numeric value). These values can
be modified collaboratively, changes to the data values are displayed to all connected
users. he user interface of the sample component is shown in figure A.1

Figure A.1: GUI of sample component

The following sections show the source code of the domain data model class developed
for this component and the source code of the component itself. The source code is fully

155



156 APPENDIX A. A SAMPLE GROUPWARE COMPONENT

commented in order to illustrate the main aspects of developing DyCE components and
data models.

A.2 The data model class

package Demo;

import GroupComponents.ObjectModel.ModelObject;

import GroupComponents.ObjectModel.RObject;

public class DemoModel extends ModelObject

{

/** "Empty" Constructor */

public DemoModel() { super(); }

/** Constructor for passing an existing RObject instance.

Used when replicating objects, when we fetch an RObject

instance from the server and locally need to wrap it

in an appropriate ModelObject subclass instance.

ote: We only replicate RObjects. The ModelObjects are

created locally. This is possible, since each RObject

knows its appropriate ModelObject class and since

ModelObject subclasses cannot add any replicated

state outside of the RObject (instance or class variables

are considered to be local and non-replicated). */

public DemoModel(RObject o) { super(o); }

/** public getter for the counter slot. Convert

Integer value to int for easier handling. This method

needs to be called within a transaction (this can also be

a displaytransaction, since no contents are modified). */

public int getCounter()

{

Integer i = (Integer)(get("counter"));

return i.intValue();

}

/** public setter for the counter slot. This method

must be called in a transaction, which can’t be a

DisplayTransaction, since slot contents are modified. */

public void setCounter (int i)

{
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set ("counter", new Integer(i));

}

/** Public getter for the counter slot, returning the

Integer instance */

public Integer getCounterInt()

{

return (Integer)get("counter");

}

/** Initialize the Demo Object’s slots */

public void initializeSlots()

{

/* A slot is described by a slot name and an initial

Slot content object. This slot content object defines

the slot value’s type. The definition of a slot

called counter, below, is similar to defining

an instance variable as

Integer counter = new Integer(1);

If DemoModel were to extend a ModelObject class

other than ModelObject itself, we would need to call

super.initializeSlots here. We don’t in this case, as

the ModelObject base class doesn’t have any slots. */

newSlot ("counter", new Integer(1));

newSlot ("text", new String ("Hello World"));

}

}

A.3 The component implementation

package Demo;

/** Each Component should be in a package. Its model

clas should be in the same package. A package can

hold multiple components (actually, this i what is to be

expected in complex systems). */

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.Vector;

import javax.swing.JLabel;

import javax.swing.JButton;
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import GroupComponents.swing.DyCETextField;

import GroupComponents.ComponentModel.MobileComponent;

import GroupComponents.ComponentModel.ObjectComponentTask;

import GroupComponents.ObjectModel.ObjectChangeListener;

import GroupComponents.ObjectModel.ObjectChangeEvent;

import GroupComponents.Transactions.DisplayTransaction;

import GroupComponents.Transactions.Transaction;

import Demo.DemoModel;

/** Sample component used to initeract with a

DemoModel instance. It displays the counter part of

the DemoModel in a label and provides two buttons

for increasing and decreasing the counter. The text

part of the model is jointly edited in a shared textfield

(provided as a convenience widget in DyCE). */

public class DemoComponent extends MobileComponent

implements ObjectChangeListener, ActionListener

{

/** The label for displaying the counter content from the model */

JLabel counterLabel;

/** A DyCE-enabled Textfield for the string content from the model */

DyCETextField textfield;

/** Component Constructor, only used for initializing

REALLY important state. We don’t do User Interface

stuff here, since that is only done in the prepareGUI

method, which is called by the DyCE framework at the

appropriate time. */

public DemoComponent()

{

super();

}

/** Set up the component’s GUI elements. The DyCE

framework ensures that at this point, setModel has

already been called so that the component knows

its Model. This might be necessary in initializing the GUI. */

public void prepareGUI()

{

/** Since we’re accessing the model when creating
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* the GUI, we’ll need to do this within a

* DisplayTransaction

*/

(new DisplayTransaction()

{

public void txBody()

{

setLayout (new GridLayout(3,2));

counterLabel = new JLabel(getDemoModel().

getCounterInt().toString());

add (new JLabel ("Counter : "));

add (counterLabel);

add (new JLabel ("Text : "));

/* Set up a DyCETextField and bind it to the slot

called "text" in the model. The TextField will take care

of interacting with the slot contents and keeping current. */

textfield = new DyCETextField (10,getModel(), "text");

add (textfield);

JButton b1 = new JButton ("-");

b1.addActionListener(DemoComponent.this);

add (b1);

JButton b2 = new JButton ("+");

b2.addActionListener(DemoComponent.this);

add (b2);

}

}).doIt();

}

/** Return the task bindings for this component. The

DemoComponent publishes the Task "demonstrate" on a

ModelObject. This information serves as the basisfor

the dynamic binding between ModelObject instances

and GroupComponents. */

public void giveTaskBindings(Vector taskList)

{

/* Each Task published by a component is modelled

by an instance of ObjectComponentTask, which contains

a Task name, the full name of the ModelObject subclass

to which this task applies and the name of the component

class itself. */

taskList.addElement (new ObjectComponentTask (
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"demonstrate",

"Demo.DemoModel",

getClass().getName()));

}

/** Helper method for accessing the component’s Model */

protected DemoModel getDemoModel()

{

return (DemoModel)(getModel());

}

/** Notification method to receive ObjectChangeEvents.

Overridden from ObjectChangeListener interface.

Called whenever the contents of this component’s

Model change. */

public void objectChanged(ObjectChangeEvent ev)

{

/* We need to do the GUI updating within a

display transaction. */

(new DisplayTransaction()

{

public void txBody()

{

counterLabel.setText(getDemoModel().getCounterInt().

toString());

}

}).doIt();

}

/** Increase the ModelObject’s counter value */

protected void increase()

{

/* This needs to be done in a transaction. Giving the

transaction an identifying name might later help in

debugging. */

(new Transaction("increase")

{

public void txBody()

{

getDemoModel().setCounter(getDemoModel().getCounter()+1);

}

}).doIt();

/* We’re not doing any GUI refreshing, etc. here. This will

be done when the transaction commits. DyCE will have gathered
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up all objects affected by a transaction and will notify

their ObjectChangeListeners. That’s why we have our objectChanged

method which does the updating.

*/

}

/** Decrease the ModelObject’s counter value */

protected void decrease()

{

/** Similar to increase(). See there for details. */

(new Transaction("decrease")

{

public void txBody()

{

getDemoModel().setCounter(getDemoModel().getCounter()-1);

}

}).doIt();

}

/** Notifier method from ActionListener */

public void actionPerformed(ActionEvent e)

{

if (e.getActionCommand().equals("+"))

increase();

if (e.getActionCommand().equals("-"))

decrease();

}

}



162 APPENDIX A. A SAMPLE GROUPWARE COMPONENT



Appendix B

UML Overview

This appendix presents a brief overview over the notation elements of the Unified Mod-
eling Language (UML), as used in the body of this thesis. For more details about the
UML, see [Fow00].

B.1 Standard UML notation

UML class diagram notation basics

Figure B.1: Basic class representation
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Figure B.2: Inheritance Relationships between classes

Figure B.3: Other Relationships between classes
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B.2 UML extensions for Groupware Components

The following extensions to the UML notation have been defined in this thesis to model
collaborative environments consisting of Groupware Components.

Figure B.4: UML extensions for modeling Groupware Components
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Figure B.5: UML extensions for modeling running sessions

Figure B.6: UML extensions for modeling running sessions on a specific node
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