Decision Support for the crew scheduling problem in ship management

Ole John, Michael Böttcher, Carlos Jahn

Michael Böttcher

COMPIT 2013

Cortona 17.04.2013

Agenda

Challenges of crew scheduling in ship management

Problem description

Comparison to the airline sector

Benefits of mathematical optimization

Conclusion and future research

Agenda

Introduction

Challenges of crew scheduling in ship management

Problem description

Comparison to the airline sector

Benefits of mathematical optimization

Conclusion and future research

Crew scheduling as a part of ship management

Output of crew scheduling in ship management

 \rightarrow For every position on every ship:

Assignment of seafarers for a specific time period

Example: Cap Roberta

Agenda

Introduction

Challenges of crew scheduling in ship management

Problem description

Comparison to the airline sector

Benefits of mathematical optimization

Conclusion and future research

Challenges of crew scheduling in ship management

Various requirements

Large problem sizes

→ Large ship managers have hundreds of ships and thousands of seafarers

Long term planning

 \rightarrow It is done mostly for short term

- Less reliability of seafarers
- Feasibility check to manage new ships
 - → It is done mostly through a rough estimation

Agenda

Introduction

Challenges of crew scheduling in ship management

Comparison to the airline sector

Benefits of mathematical optimization

Sequential approach

Sequential Approach – Contract Period Construction

Sequential Approach – Crew assignment

contract period construction

Master	D. Va	clev	J. Below	l. Ja	acek	M. Sm	nirnow	A.	Popow	A. Tito	ow		
Chief Officer	I. N	I. Nikitin A. Iljin			J. Baranow A. Lasar			ew P. Kusmin					
2nd Officer		P. Estrada			S. Pelaez			T. Ramos					
3rd Officer	T. Aqu	iino	F.	F. Villa M. Qu				zon					
Chief Engineer	U.	Lopez		F. Roxas					Z. Tolentino				
2nd Engineer	J. Bin	ay	W. A	W. Aguinaldo				C. Romulo I. Remonde					
3rd Engineer	:	•	Y. Nowikow					P. Petrow					
4th Engineer	A. k	Kusmin		J. Gussew					B. Sorrokin				
()	1	2 3	4	5 6 Mor	7 hth	8	9	10	11	17		

Contract Period Construction Problem - Constraints

Constraint 1: A Crew Change can only be conducted in a port

Contract Period Construction Problem - Constraints

Constraint 2: Minimum time interval between some crew changes

Contract Period Construction Problem - Constraints

Constraint 3: Maximum deviation from a fixed contract duration

Contract Period Construction Problem

Further possible constraints:

- The number of position changes in the same port has to be less than a maximum value.
- The number of crew changes for one ship has to be less than a maximum value.

Possible objective values:

- Minimize the number of crew changes (crew change fix costs)
- Minimize the deviation from the fixed contract durations

Constraint 1: Extended overlap for new seafarers in rank or in the company

1 day overlap

Master	D. Vad	clev	J. Belo	w	I. Ja	cek	M. 9	Smirnow		4. Popow	A	. Tito	w
Chief Officer	I. N	likitin		A. Iljin	J	. Barano	w	A. Lasa	arew	P. K	usmin		
2nd Officer		P. Estrada			S. Pelaez				T. Ramos				
3rd Officer	T. Aqu	iino	:	F. Vil	la			М. (Quezon				
Chief Engineer	U.	Lopez				F. Roxas		:		Z. To	lentin) D	
2nd Engineer	J. Bin	ay	;	W. Aguiı	naldo			C. Romu	lo	l.	Remo	nde	
3rd Engineer		. Y. Nowikow					P. Petrow					:	
4th Engineer	A. k	Kusmin	J. Gussew				ew	B. Sorrokin				kin	
()	1	2	3 2	1 5	5 é Mo	5 nth	7 8	C) 10)	1	1

Constraint 3: Consideration of minimum and maximum leave times

* depends on the contract duration

Crew Assignment Problem

Further possible constraints:

- Every seafarer could be assigned only to a specific ship type (container, bulker ...)
- Earliest contract start dates of the seafarer have to be considered
- Preferred assignment of permanently employed seafarers

Possible objective values:

- Minimize the deviation of seafarer experience times among the ships
- Minimize the deviation of real leave times from optimal leave times

Agenda

Introduction

Challenges of crew scheduling in ship management

Problem description

Comparison to the airline sector

Benefits of mathematical optimization

Conclusion and future research

The crew scheduling problem in airline sector

Usual a sequential approach is used:

Solving the Crew Pairing Problem

Solving the Crew Assignment Problem

Comparison of maritime and airline problem structure

Comparison aspect	Airline sector	Maritime sector			
Basic unit	Flight leg	Contract period			
Typical length of basic unit	hours	months			
Given start/end time of basic unit	yes	no 1			
Feasible sequence of basic units	Pairing (Sequence of flight legs)	Sequence of contract periods			
Restrictions for sequences	high	low 2			

Leads to increased complexity in maritime context

the presented subsequent approach is pursued to cope with it

Leads to reduced complexity in maritime context

integration of the crew pairing in the assignment problem is pursued

2

Agenda

Introduction

Challenges of crew scheduling in ship management

Problem description

Comparison to the airline sector

Benefits of mathematical optimization

Conclusion and future research

Benefits of mathematical optimization for crew scheduling

- Optimized crew scheduling for the whole fleet of ships
- Possibility to create a reliable long term plan (e.g. one year)
- Increase the reliability of the seafarers through a reliable crew schedule and vice versa
- Possibility to conduct strategic capacity planning

Agenda

Introduction

Challenges of crew scheduling in ship management

Problem description

Comparison to the airline sector

Benefits of mathematical optimization

Conclusion and future research

Conclusion

- The state of research in crew scheduling in ship management is far behind the airline context
- No suitable approach about long term crew scheduling could be identified in literature
- There are various benefits of using OR techniques for crew scheduling in ship management

Future research

- Develop a solution method (under consideration of methods in airline sector)
- Critical review of the presented approach

Thank you for your attention!

Contact

Dipl.-Kfm. Michael Böttcher

Fraunhofer Center for Maritime Logistics and Services

Schwarzenbergstraße 95 D 21073 Hamburg

- Tel.: +49 40 / 42878 6109
- Fax: +49 40 / 42878 4452
- Email: <u>michael.boettcher@cml.fraunhofer.de</u>

www.cml.fraunhofer.de

