
Impact of Task Distribution, Processor
Configurations and Dynamic Clock Frequency

Scaling on the Power Consumption of FPGA-based
Multiprocessors

Diana Goehringer, Jonathan Obie
Fraunhofer IOSB

Ettlingen, Germany
{diana.goehringer, jonathan.obie}@iosb.fraunhofer.de

Michael Huebner, Juergen Becker
ITIV, Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{michael.huebner, becker}@kit.edu

Abstract— As only the currently required functionality on a
dynamic reconfigurable FPGA-based system is active, a good
performance per power ratio can be achieved. To find such a
good performance per power ratio for a given application is a
difficult task, as it requires not only knowledge of the behavior of
the application, but also knowledge of the underlying hardware
architecture and its influences on the performance and the static
and dynamic power consumption. Is it for example better to use
two processors running at half the clock frequency than a single
processor? The main contributions of this paper are: the
description of a tool flow to measure the power consumption for
multiprocessor systems in Xilinx FPGAs, a novel runtime
adaptive architecture for analyzing the performance per power
tradeoff and for dynamic clock frequency scaling based-on the
inter-processor communication. Furthermore, we use three
different application scenarios to show the influence of the clock
frequency, different processor configurations and different
application partitions onto the static and dynamic power
consumption as well as onto the overall system performance.

Keywords- Power Consumption, Multiprocessor System-on-
Chip (MPSoC), Dynamic Frequency Scaling, Task Distribution,
Application Partitioning, Dynamic and Partial Reconfiguration,
FPGA.

I. INTRODUCTION
Parameterizable function blocks used in FPGA-based

system development, open a huge design space, which can only
hardly be managed by the user. Examples for this are
arithmetic blocks like divider, adder, soft IP-multiplier, which
are adjustable in terms of bitwidth and parallelism. Additional
to arithmetic blocks, also soft-IP processor cores provide a
variety of parameters, which can be adapted to the
requirements of the application to be realized with the system.
Especially, Xilinx offers with the MicroBlaze Soft-IP RISC
processor [1] a variety of options for characterizing the core
individually. These options are amongst others the use of cache
memory and its size, the use of an arithmetic unit, a memory
management unit and the number of pipeline stages.
Furthermore, the tools offer to deploy up to two processor
cores as multiprocessor on one FPGA. Every option now can

be adjusted to find an optimal parameterization of the processor
core in relation to the target application. For example, a
specific cache size can speed up the application tremendously,
but also the optimal partition of functions onto the two cores
has a strong impact on the speed and power consumption of the
system. The examples show the huge design space, if only one
parameter is used. It is obvious, that the usage of multiple
parameters for system adjustment leads to a multidimensional
optimization problem, which is not or at least very hardly
manageable by the designer. In order to gain experience
regarding the impact of processor parameterization in relation
to specific application scenario, it is beneficial to evaluate e.g.
the performance and power-consumption of an FPGA-based
system and normalize the results to a standard design with a
default set of parameter. The result of such an investigation is a
first step for developing standard guidelines for designers and
an approach for an abstraction of the design space in FPGA-
based system design. This paper presents first results of a
parameterizable multiprocessor system on a Xilinx Virtex-4
FPGA, where the parameterization of the processor is
evaluated in terms of power consumption and performance.
Moreover, the varying partition of the different application
scenarios is evaluated in terms of power consumption for a
fixed performance. For this purpose, a tool flow for analyzing
the power consumption through generating the value change
dump (VCD) file from the post place and route simulation will
be introduced. The presented flow enables to generate the most
accurate power consumption estimation from this level of
abstraction. A further output of the presented work is an
overview of the impact of parameterization to the power
consumption. The results can be used as a basic guideline for
designers, who want to optimize their system performance and
power consumption.

The paper is organized in the following manner: In Section
II related work is presented. Section III describes the power
estimation tool flow used in this approach. The novel system
architecture used for analyzing the performance and the power
consumption of the different applications is presented in
Section IV. The application scenarios are described in Section
V. In Section VI the application integration and the results for
performance and power consumption are given. Finally, the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 13

paper is closed by presenting the conclusions and future work
in Section VII.

II. RELATED WORK
Optimization of the dynamic and static power consumption

is very important, especially for embedded systems, because
they often use batteries as a power source.

Therefore, many researchers like for example Meintanis et
al [2] explored the power consumption of Xilinx Virtex-II Pro,
Xilinx Spartan-3 and Altera Cyclone-II FPGAs. They
estimated the power consumption at design-time using the
commercial tools provided by Xilinx and Altera. They further
explored the differences between the measured and estimated
power consumption for these FPGAs. Becker et al. [3]
explored the difference between measured and estimated power
consumption for the Xilinx Virtex-2000E FPGA. Furthermore,
they explored the behavior of the power consumption, when
using dynamic reconfiguration to exchange the FPGA-system
at runtime.

Other works focus on the development of own tools and
models for efficient power estimation at design-time for
FPGA-based systems. Poon et al. [4] present a power model to
estimate the dynamic, short circuit and leakage power of
island-style FPGA architectures. This power model has been
integrated into the VPR CAD flow. It uses the transition
density signal model [5] to determine signal activities within
the FPGA. Weiss et al. [6] present an approach for design-time
power estimation for the Xilinx Virtex FPGA. This estimation
method works well for control flow oriented applications but
not so well for combinatorial logic. Degalahal et al. [7] present
a methodology to estimate dynamic power consumption for
FPGA-based system. They applied this methodology to explore
the power consumption of the Xilinx Spartan-3 device and to
compare the estimated results with the measured power
consumption.

All these approaches focus either on the proposal of a new
estimation model or tool for estimating the power consumption
at design-time or they compare their own or commercial
estimation models and tools with the real measured power
consumption. The focus of the investigations presented in this
paper is to show the impact of parameterization of IP-cores,
here specifically the MicroBlaze soft processor, which differs
from the approaches mentioned above where the topic is more
on tool development for power estimation.

The novelty of our approach is to focus on the requirements
of the target application and to propose a design guideline for
system developers of processor-based FPGA systems. This
means, providing guidance in how to design a system to
achieve a good tradeoff between performance and power
consumption for a target application. To develop such a
guideline the impact of the frequency, different processor
configurations and the task distribution in a processor-based
design is investigated in this paper for different application
scenarios. To the best of our knowledge, similar work has not
done before.

III. TOOL FLOW FOR POWER MEASUREMENT
Xilinx provides two kinds of tools for power consumption

estimation: Xilinx Power Estimator (XPE) [8] and Xilinx
Power Analyzer (XPower) [9].

The XPE tool is based on an excel spreadsheet. It receives
information about the number and types of used resources via
the report generated by the mapping process (MAP) of the
Xilinx tool flow. Alternatively, the user can manually set the
values for the number and type of used resources. The
frequencies used within the design have to be manually set by
the user. The advantage of this method is that results are
obtained very fast. The disadvantage is that the results are not
very accurate, especially for the dynamic power consumption.
This is, because the different toggling rates of the signals are
not taking into account. Also, the results are not as accurate,
because they are based on the MAP report, and not on the post
place and route (PAR) report, which resembles the system used
for generating the bitstream.

The XPower tool estimates the dynamic and static power
consumption for submodules, different subcategories and the
whole system based on the results of a post place and route
(PAR) simulation. This makes the estimation results much
more accurate compared to the XPE tool, because the final
placed and routed system is considered for the power
estimation. But even more important, due to the simulation of
the PAR system with real input data, the toggling rates of the
signals can be extracted and used within the power estimation.
For estimating the power consumption with the XPower tool
the following input files are required:
� Native Circuit Description (NCD) file, which specifies the

design resources
� Physical Constraint File (PCF), which specifies the design

constraints
� Value Change Dump (VCD) file, which specifies the

simulated activity rates of the signals
The NCD and the PCF file are obtained after the PAR

phase of the Xilinx implementation tool flow. The VCD file is
generated by doing a simulation of the PAR design with the
ModelSim simulator.

Due to the higher accuracy the XPower tool was used here.
As we wanted to estimate the power consumption for systems
with one or two MicroBlaze processors, the hardware and the
software executables of the different system were designed
within the Xilinx Platform Studio (XPS)[10]. Figure 1. shows
the flow diagram for doing power estimation with XPower for
an XPS system.

Figure 1. Flow Diagram of the EDK XPower Flow

Power Estimation in XPower

System Design in Xilinx Platform Studio (XPS)

Synthesis (using XST) and
Implementation(Translate, Map, PAR) in the

EDK XPS GUI Environment

Timing Simulation and Generation of
VCD file (ModelSim)

Post PAR Timing Simulation Model
Generation (Simgen)

14 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

After the system has been designed and implemented
within the XPS environment, the Simgen [10] tool is used to
generate the post PAR timing simulation model of the system.
This simulation model is the used to simulate the behavior of
the system with the ModelSim simulator and to generate the
VCD file. In the last step XPower is used to read in the VCD,
the NCD and the PCF files of the design and to estimate the
dynamic and static power consumption.Care has to be taken,
because in a normal Xilinx implementation flow the software
executables are integrated into the memories of the processors
after the bitstream has been generated. When using XPower
and the post PAR simulation, the memories of the processor
have to be initialized in an earlier step. This means, into the
post PAR simulation model, otherwise the simulated system
behavior and the VCD file would not be accurate.

IV. NOVEL SYSTEM ARCHITECTURE
The system structure of the dual-processor system is shown

in Figure 2. Three new components have been designed and
implemented: the Virtual-IO, the Bridge and the
Reconfigurable Clock Unit. All three components have been
integrated into a library for the XPS tool. Therefore, they can
be inserted and parameterized using the graphical user interface
(GUI) of the XPS tool, which makes them easy reusable within
other XPS designs.

Figure 2. Dual processor design with three new components:
Virtual-I/O, Bridge and Reconfigurable Clock Unit

FPGA

µB0 µB1BRIDGE

VIRTUAL_IO

PCI Bus

FSL

RECONFIGURABLE CLOCK UNIT

FSL

Clock0 Clock1

FSL FSL

TIMER

UART

PLB

Reconfiguration
Signal

Key:
FSL : Fast Simplex Link
PLB : Processor Local Bus
UART : Universal Asynchronous Receiver Transmitter
µB : Microblaze
PCI : Peripheral Component Interconnect

The Virtual-IO receives data from the host PC and sends
results back to the host PC via the PCI-bus. The Virtual-IO
communicates via the Fast Simplex Links (FSLs) [11] with two
MicroBlaze processors (μB0 and μB1). μB0 communicates
with the user via the UART interface. It also has a timer, which
is used to measure the performance of the overall system. The
two processors communicate with each other via FSLs over the
Bridge component. Depending on the fill level of the FIFOs
within the Bridge reconfiguration signals are send to the
Reconfigurable Clock Unit. The Reconfigurable Clock Unit
reconfigures the clocks of the two processors based on the
reconfiguration signals issued by the Bridge. For the uni-
processor system, which is used for comparison, the Bridge,
the Reconfigurable Clock Unit, μB1 and their connections
were removed as shown in Figure 3.

Figure 3. Uni-processor system

FPGA

µB0

VIRTUAL_IO

PCI Bus
FSL

TIMER

UART

PLB

Key:
FSL : Fast Simplex Link
PLB : Processor Local Bus
UART : Universal Asynchronous Receiver Transmitter
µB : Microblaze
PCI : Peripheral Component Interconnect

The following subsections explain the new components and
their features more in detail.

A. Virtual-IO
The Virtual-IO component is used to communicate with the

host PC via the PCI-bus. It provides an input and an output port
to the PCI-bus and one input and one output port for each
MicroBlaze processor. It consists of two FIFOs, one for the
incoming and one for the outgoing data of the PCI-bus. Each
FIFO is controlled via a Finite State Machine (FSM), as it is
shown in Figure 4.

Figure 4. Virtual-IO component

To μBs

From μBs

FIFO

FSM

FSM

FIFOTo LB

From LB

The Virtual-IO is a wrapper around 6 different modules.
The first module is Virtual-IO 1, which sends data first to μB0
and then to μB1. It then receives the calculated results in the
same order. The second module is Virtual-IO 2, which sends
data only to μB0. Results are only received over μB1.
Therefore, μB0 sends its results to μB1, which then sends the
results of μB0 together with its own results back to the Virtual-
IO 2. The third module is Virtual-IO 3, which sends first data
to μB0. Afterwards, it sends in parallel to both processors μB0
and μB1 the same data. Finally, it sends some data only to
μB1. After the execution of the processors, first μB0 and then
μB1 send their results back to the Virtual-IO 3. The fourth
module is Virtual-IO 4, which is only connected to one of the
processors, e.g. μB0. Due to this, this module is used in all uni-
processor designs. For a dual-processor design it sends data to
μB0, which then forwards parts of the data to μB1. After
execution μB1 sends its results back to μB0, which forwards
the results of the execution of the two processors to the Virtual-
IO 4. The fifth module is Virtual-IO 5, which sends the same
data to both processors in parallel, but receives the results only
via μB0. The sixth module is Virtual-IO 6. It is very similar to

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 15

Virtual-IO 5. The only difference is that it receives the
calculation results from μB1 instead of μB0.

The modules can be selected in the XPS GUI via the
parameters of the Virtual-IO component. Other parameters that
can be set by the user are: the number of input and output
words for each processor separately, the number of common
input words and the size of the image (only for image
processing applications).

B. Bridge
The Bridge module is used for the inter-processor

communication. It consists of two asynchronous FIFOs
controlled by FSMs, to support a communication via the two
different clock domains of the processors, as shown in Figure
5. This Bridge component controls the fill level of the two
FIFOs. If one FIFO is to nearly full, it is assumed that the
processor, which reads from this FIFO, is too slow. As a result,
a reconfiguration signal to increase the clock rate of this
processor is send to the Reconfiguration Clock Unit.

Figure 5. Internal structure of the Bridge

Clock Domain 1

FIFO

To μB1

From μB1

FIFO

FSM FSM

To μB0

From μB0

Clock Domain 0

Reconfiguration
Signal for Clock 0

Reconfiguration
Signal for Clock 1

C. Reconfigurable Clock Unit
The internal structure of the Reconfigurable Clock Unit is

shown in Figure 6. It consists of two Digital Clock Managers
(DCMs) [12], two Clock Buffer Multiplexer primitives
(BUFGMUXes) [13] and the Logic component, which controls
the reconfiguration of the DCMs.

Figure 6. Internal structure of the Reconfigurable Clock Unit

LOGIC

DCM

DCM

CLOCK 0

To μB0

CLOCK 1

To μB1
CLK IN

Reconf iguration
Signals

The Logic component receives the reconfiguration signals
of the Bridge component. It then starts the reconfiguration of
the DCM primitive for the slower processor. For the
reconfiguration the specific ports provided by Xilinx for
dynamic reconfiguration of the Virtx-4 DCM primitive are
used. During the reconfiguration process the DCM has to be
kept in a reset state for a minimum of 200 ms. During this time
interval the outputs of this DCM are not stable and cannot be

used. Instead of stalling the corresponding processor, the
BUFGMUX primitive is used to provide CLK_IN, the original
input clock of the two DCM, to the processor, whose DCM is
under reconfiguration. The BUFGMUX is a special clock
multiplexer primitive, which assures, that no glitches occur,
when switching to a different clock. After the configuration of
the DCM is finished, the BUFGMUX is used to switch back to
the DCM clock. An alternative would be to stall the processor,
while its clock is being reconfigured. Because 200 ms are quite
a long time, especially for image processing applications,
where each 40 ms a new input frame is received from a
camera; this would result in a loss of input data.

To prevent an oscillation, the controller logic will stop
increasing the clock frequency, if 125 MHz for this MicroBlaze
have been reached, which is the maximum frequency supported
by the MicroBlaze and its peripherals, or if its clock frequency
has been increased for three consecutive times. If the
reconfiguration signal is still asserted meaning the processor is
still too slow, then the DCM of the faster processor is
reconfigured to provide a slower clock to the faster processor.

Alternatively, instead of dynamically reconfiguring the
DCM, different output ports of a DCM could be used to
generate different clocks. Using several BUFGMUXes the
different clocks could be selected. The advantage is a faster
switch between different clocks and the drawback is that not as
many different clocks are possible as when dynamic
reconfiguration is used. This will be investigated in future
work.

V. APPLICATION SCENARIOS
Three different applications scenarios were used to explore

the impact of the processor configurations, the task distribution
and the dynamic clock frequency scaling on the power
consumption of FPGA-based processor systems. The three
different algorithms are described in detail in the next
subsections. The first algorithm is the well known sorting
algorithm called Quicksort [14]. It consists of a lot of branches
and comparisons. The second algorithm is an image processing
algorithm called Normalized Squared Correlation (NCC),
which consists of many arithmetic operations, e.g. multiply and
divide. The third algorithm is a variation of a bioinformatic
algorithm called DIALIGN [15], which consists of many
comparisons and additions and subtractions. These algorithms
with their different algorithm requirements, e.g. branches,
comparators, multiply & divide, add & subtract, were used to
provide a user guideline of designing a system with a good
performance per power tradeoff for a specific application. By
comparing the algorithm requirements of new applications with
the three example algorithms, the system configurations of the
most similar example algorithm is chosen as a starting system.
Such a guideline to limit the design space is very important to
save time and achieve a higher time-to-market, because the
simulation and the power estimation with XPower are very
time-consuming. Also, the bitstream generation to measure the
performance of the application on the target hardware
architecture is time-consuming. These long design times can be
shorten by starting with an appropriate design, e.g. the right
processor configurations, a good task distribution and a well
selected execution frequency.

16 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

A. Sorting Algorithm: Quicksort
Quicksort [14] is a well known sorting algorithm with a

divide and conquer strategy. It sorts a list by recursively
partitioning the list around a pivot and sorting the resulting
sublists. It has an average complexity of � (n log n).

B. Image Processing Algorithm: Normalized Squared
Correlation
2D Squared Normalized Correlation (NCC) is often used to

identify an object within an image. The evaluated expression is
shown in equation (1).

� � � �� �� �
� �� � � �� �

pp

p

n
i

m
j

n
i

m
j

n
i

m
j

AA

A

jiji

jiji
pC

T

T

 ofMean :

T ofMean :

Columns m and Rowsn h region witsearch theof windowSub :

Columns m and Rowsn with image Template :

0 0
2

0 0
2

pp

2

0 0 pp

T),(TA),(A

T),(T*A),(A
)(

* � �� �
� �

� �� �

� �

��

��
�

(1)

This algorithm uses a template T of the object to be
searched for and moves this template over the search region A
of the image. Ap, the subwindow of the search region at point p
with the same size as T, is then correlated with T. The result of
this expression is stored at point p in the result image C. The
more similar Ap and T are the higher is the result of the
correlation. If they are equal, the result is 1. The object is then
detected at the location with the highest value.

C. Bioinformatic Algorithm: DIALIGN
DIALIGN [15] is a bioinformatics algorithm, which is used

for comparison of the alignment of two genomic sequences. It
produces the alignment with the highest number of similar
elements and therefore the highest score as shown in Figure 7.

Figure 7. Alignment of two sequences a and b with DIALIGN.

A T G A G C A G

C A T G A G T C A G

A T G A G C A G

C A T G A G T C A G

-Sequence a:

Sequence b:
DIALIGN

VI. INTEGRATION AND RESULTS
For the power consumption estimation and the performance

measurement a Xilinx Virtex-4 FX 100 FPGA was used. The
performance was measured on the corresponding FPGA Board
from Alpha Data [16]. As measuring the exact power
consumption of the FPGA on this board is not possible, it was
estimated at design-time using the XPower tool flow as
described in Section III. The impact of the clock frequency, the
configuration of the processor and the task distribution onto the
power consumption and the performance of the system has
been explored and the results are presented in the following
subsections. For each exploration some parameters had to be
kept fixed to assure a fair comparison. For the exploration of
the impact of the clock frequency, the algorithm and the
processor configuration have been kept fixed. For the
exploration of the impact of the configuration of the processor
the clock frequency were kept fixed. Finally, for the
exploration of the task distribution, the processor configuration
and the performance were kept fixed to lower the overall
system power consumption while maintaining the performance
similar to the performance achieved with a reference uni-

processor design running at 100 MHz, which is a standard
frequency for Virtex-4 based MicroBlaze systems.

A. Impact of the clock frequency
First of all the impact of the variation of the clock

frequency onto the power consumption was explored for a uni-
processor system, which executes the NCC algorithm on one
MicroBlaze. The MicroBlaze was configured to use a 5-stage
pipeline and no arithmetic unit. The results for the dynamic and
quiescent power consumption for the core and the other
components as well as the total power consumption of the
system are given in TABLE I. The quiescent power
consumption is also called static power consumption in the
following, because it represents the power consumption of the
user configured FPGA without any switching activity.

The impact of the clock frequency onto the static - and the
dynamic power consumption is presented in Figure 8. and
Figure 9. respectively. As can be seen the static power
consumption increases by around 0,24 mW / MHz, while the
dynamic power consumption increases by around 3,26 mW /
MHz.

Out of this results the impact onto the total power
consumption, which is around 3,5 mW / MHz. The impact on
the total power consumption as well as on the performance is
shown in Figure 10.

Figure 8. Impact of the clock frequency onto the static
power consumption of a uni-processor design.

450
452
454
456
458
460
462
464
466
468
470

40 50 60 70 80 90 100 110

mW

MHz

Uni-Processor Results with NCC
core_quiescent

� 0,24 mW/MHz

Figure 9. Impact of the clock frequency onto the dynamic
power consumption of a uni-processor design.

150

200

250

300

350

40 50 60 70 80 90 100 110

mW

MHz

Uni-Processor Results with NCC
core_dynamic

� 3,26 mW/MHz

Figure 10. Impact of the clock frequency onto the total
power consumption and onto the execution time of a uni-

processor design executing the NCC algorithm.

� 3,5 mW/MHz

1250
1300
1350
1400
1450
1500

50 60 70 80 90 100

Total_Pow er

MHz

mW

50
70
90

110
130
150

50 60 70 80 90 100

Execut ion Time

MHz

ms

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 17

B. Impact of the processor configurations
For exploration, a uni-processor design consisting of a

single MicroBlaze running at 100 MHz was used. The results
were compared against a reference configuration, which was a
MicroBlaze with a 5-stage pipeline and no arithmetic unit
(integer divider and barrel shifter). The following
configurations were explored:

i. adding an arithmetic unit (AU)
ii. reduction of the pipeline to 3-stages (RP)

iii. combination of i and iii (AU+RP)
The impact onto the power consumption and the performance
was explored for all three algorithms. The impact is very
different for the different applications, due to the different
algorithm requirements, as mentioned in Section V and its
subsections.

Figure 11. and TABLE II. show the impact of the different
configurations for the Quicksort algorithm. Due to the multiple
branches in the algorithm a reduction of the pipeline stages is
very beneficial in terms of execution time and power
consumption. The impact of the addition of the arithmetic unit
only provides a minimal improvement in terms of performance,
but with a stronger degradation of the power consumption.
Depending on the performance and power consumption
constraints, either the system with the AU + RP or the RP
system would be chosen.

Figure 11. Impact of the MicroBlaze configurations for
the Quicksort algorithm.

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

AU RP AU + RP

Total_Power (mW)

Core_Dynamic (mW)

Core_Stat ic (mW)

Execut ion Time (ms)

Referenced to System
w ith 5-Stage Pipeline
and no AU

% Quicksort at 100 MHz

AU : Arithmetic Unit
RP: Reduced Pipeline

Figure 12. and TABLE III. show the impact of the different
configurations for the NCC algorithm. As this algorithm
requires many arithmetic operations, the addition of an AU
improves the overall execution time, while the reduction of the
pipeline stages results in a strong degradation (over 50%). This
degradation is due to the reason that the execution of arithmetic
operations take more clock cycles, if the pipeline is reduced.
Therefore, for this and similar algorithms a system with an AU

and a 5-stage pipeline would be optimal from a performance
perspective. If the power consumption needs to be reduced and
some performance degradation is acceptable, than the reference
system or the AU+RP system would be a good choice.

Figure 12. Impact of the MicroBlaze configurations for
the NCC algorithm.

%
Referenced to System
w ith 5-Stage Pipeline
and no AU

-30

-20

-10

0

10

20

30

40

50

60

AU RP AU + RP

Total_Power (mW)

Core_Dynamic (mW)

Core_Stat ic (mW)

Execut ion Time (ms)

NCC at 100 MHz

AU : Arithmetic Unit
RP: Reduced Pipeline

In Figure 13. and TABLE IV. the impact onto the
performance and power consumption of the three different
processor configurations compared to the reference system are
presented for the DIALIGN algorithm. Adding an AU
improves the execution time only a little bit, while increasing
the overall power consumption compared to the reference
design. The reduction of the pipeline to 3-stages improves the
total power consumption by 6,8%, but worsening the execution
time by 25%. The combination of AU+RP shows nearly the
same impact as the RP system. Therefore, the reference system
is the best choice, if performance is the most important factor.
If on the other hand the power consumption is more important,
than the RP system would be a good choice for these kinds of
algorithms.

Figure 13. Impact of the MicroBlaze configurations for
the DIALIGN algorithm

-30

-20

-10

0

10

20

30

AU RP AU + RP

Total_Power (mW)

Core_Dynamic (mW)

Core_Stat ic (mW)

Execut ion Time (ms)

%

AU : Arithmetic Unit
RP: Reduced Pipeline

Referenced to System
w ith 5-Stage Pipeline
and no AU

Dialign at 100 MHz

TABLE I. IMPACT OF THE VARIATION OF THE CLOCK FREQUENCY ONTO THE POWER CONSUMPTION

Clk Freq. (MHz) PCoreDynamic(mW) POthersDynamic(mW) PCoreQuiescent(mW) POthersQuiescent(mW) PTotal(mW) PTotal(%)

50 180 26 453 641 1298 - 11,9
60 232 26 457 641 1355 - 8,0
70 243 26 458 641 1367 - 7,2
80 273 26 460 641 1398 - 5,1
90 301 26 462 641 1428 - 3,1
100 343 26 465 641 1473 NA

18 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

C. Impact of the task distribution and the frequency scaling
To measure the impact onto the power consumption the
algorithms were partitioned onto two MicroBlaze processors.
The frequency for the two processors was chosen in such a
way, that the execution time of the dual-processor design was
as similar as possible to the reference system consisting of a
single MicroBlaze running at 100 MHz. For all systems the
configurations of the processors were fixed to a 5-stage
pipeline and no arithmetic unit.

TABLE V. shows the results for distributing the Quicksort
algorithm on two processors instead of one. Two partitions
were done. The first one is called Dual_2 (80/50 MHz), which
means, that the Virtual-IO 2 was used and μB0 was running at
80 MHz while μB1 was running at 50 MHz. The algorithm was

so partitioned that μB0 receives the whole data to be sorted. It
then divides the data into two parts and sends the second part to
μB1. Both then sort their partition. μB0 forwards its sorted part
of the list to μB1, which sends the final combined sorted list
via the Virtual-IO 2 to the host PC. With this partition the
overall power consumption could be reduced by 6,43%
compared to the single processor reference system.

The second partition called Dual_5 (95 MHz) uses the
Virtual-IO 5 to send incoming data to both processors running
at 95 MHz. μB0 searches the list for elements smaller and μB1
searches the list for elements bigger than the pivot. When one
has found an element the position of this element is send to the
other processor. Both processor then update their lists by
swapping the own found element with the one the other
processor has found. At the end both processors have as a

TABLE II. IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE QUICKSORT ALGORITHM AT 100 MHZ

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (ms)
Default 438,33 26,13 472,91 639,56 1576,93 NA 18,42

Arithmetic Unit 493,26 26,14 477,20 639,58 1636,18 + 3,76 18,10
3-stage Pipeline 354,23 26,13 466,41 639,56 1486,33 - 5,75 17,21

Both 372,84 26,13 467,84 639,58 1506,39 - 4,47 16,89

TABLE III. IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE NCC ALGORITHM AT 100 MHZ

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (ms)
Default 341,68 26,09 465,44 639,57 1472,78 NA 67,74

Arithmetic Unit 366,28 26,13 467,33 639,57 1499,31 + 1,80 53,62
3-stage Pipeline 269,63 26,10 459,97 639,57 1395,27 - 5,26 103,64

Both 269,40 26,12 459,95 639,58 1395,05 - 5,28 88,84

TABLE IV. IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE DIALIGN ALGORITHM AT 100 MHZ

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (μs)
Default 431,67 26,06 472,38 639,58 1569,69 NA 786,48

Arithmetic Unit 464,39 26,06 474,93 639,59 1604,97 + 2,25 777,64
3-stage Pipeline 343,01 26,05 465,54 639,59 1474,19 - 6,08 982,85

Both 355,88 26,06 466,53 639,58 1488,05 - 5,20 988,05

TABLE V. QUICKSORT POWER CONSUMPTION

 Uni-Processor (100MHz) Dual_2 (80/50 MHz) Dual_5 (95 MHz)
Execution Time - ms 18,42 18,80 19,27

Core (dyn/stat)_Power - mW 438,33 / 472,91 295,89 / 461,95 384,34 / 468,72
Total Power - mW 1576,93 1475,56 1570,79
Total Power - % NA - 6,43 - 0,39

TABLE VI. NCC POWER CONSUMPTION

 Uni-Processor (100MHz) Dual_3 (54 MHz) Dual_2 (87,5/50 MHz)
Execution Time - ms 67,74 67,28 67,62

Core (dyn/stat)_Power - mW 341,68 / 465,44 297,39 / 462,07 322,32 / 463,96
Total Power - mW 1472,78 1477,20 1504,02
Total Power - % NA + 0,30 + 2,12

TABLE VII. DIALIGN POWER CONSUMPTION

 Uni-Processor (100MHz) Dual_5 (50 MHz) Dual_6 (50 MHz)
Execution Time - ms 30,21 30,16 30,16

Core (dyn/stat)_Power - mW 431,67 / 472,38 440,80 / 473,09 352,45 / 466,27
Total Power - mW 1569,69 1631,62 1536,44
Total Power - % NA + 3,95 - 2,12

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 19

result a searched list. μB0 then sends its resulting list back to
the host PC via the Virtual-IO 5. The power consumption of
this version is nearly the same as the reference system, while
the total execution time increases.

TABLE VI. shows the result for the partitioning of the
NCC algorithm onto two processors. The first partitioning uses
the Virtual-IO 3 to partition the incoming image into two
overlapping tiles, one for each processor. The overlapping part
is send to both processors simultaneously. As the NCC is a
window-based image processing algorithm, the boarder pixels
between the two tiles are needed by both processors. Each of
the processors runs at 54 MHz, which results in a similar
execution time, and also in a similar total power consumption
as the reference design.

The second partition called Dual_2 (87,5 /50 MHz) uses
Virtual-IO 2 to send the whole image to μB0. μB0 runs at 87, 5
MHz and calculates the complete numerator and the
denominator. Then it forwards both to μB1, which does the
division and sends the results back to the Virtual-IO 2. μB1
runs at 50 MHz. While the execution time is nearly the same,
the overall power consumption is increased slightly by 2,12%.

TABLE VII. shows the result for executing the DIALIGN
Algorithm with two processors. Two partitions were done. The
first one is called Dual_5 (50 MHz) and uses Virtual-IO 5 to
send the incoming sequences to both processors running at 50
MHz. Each processor calculates half of the resulting score
matrix. μB0 calculates on a row-based fashion all values above
the main diagonal. μB1 calculates on a column-based fashion
all values below the main diagonal. The scores on the main
diagonal are calculated by both processors. After μB0 has
finished calculating one row and μB1 one column respectively,
they exchange the first score nearest to the main diagonal, as
this score is needed by both processors for calculating the next
row/column respectively. While the execution time is nearly
the same, the overall power consumption is increased by
3,95%.

The second partition is called Dual_6 (50 MHz). It uses the
Virtual-IO 6 to send the sequences to the processors, which run
both at 50 MHz. Here a systolic array approach is used for
executing the DIALIGN algorithm. μB1 then sends the final
alignment and the score back to the host PC. With this partition
the overall power consumption could be reduced by 2,12%
compared to the single processor reference system.

VII. CONCLUSIONS AND OUTLOOK
This paper reports the research and evaluation of different

microprocessor parameterization, application and data
partitioning on a dual-processor system. The results of the
experiments show the impact of the different parameterization
on the power consumption and performance in relation to a set
of selected applications. Depending on the application type it
can be seen that different parameter configurations, e.g.
configuration of the processors and their frequencies, but also a
good application partitioning, are essential for achieving an
efficient tradeoff between performance and power constraints.
The results can be used to guide developers what parameter set
suits to a certain application scenario. The vision is that more
application scenarios will be analyzed in order to provide a
broad overview of the parameter impact. It is envisioned to

extend existing hardware benchmarks from different
application domains in terms of a parameterization guideline
also for further FPGA series from Xilinx.

Furthermore, the paper provides a tutorial for the estimation
of the power consumption on a high level of abstraction, but
with a high accuracy through post place and route simulation.
Therefore, other research in this area can be done and
exchanged in the community.

ACKNOWLEDGMENT
The authors would like to thank Prof. Alba Cristina M. A.

de Melo and Jan Mendonca Correa for providing us with their
C code implementation of the DIALIGN algorithm.

REFERENCES
[1] “Xilinx MicroBlaze Reference Guide”, UG081 (v7.0), September

15, 2006, available at: http://www.xilinx.com.

[2] D. Meintanis, I. Papaefstathiou: “Power Consumption Estimations
vs Measurements for FPGA-based Security Cores”; International
Conference on Reconfigurable Computing and FPGAs 2008
(ReConFig 2008), Cancun, Mexico, December 2008.

[3] J. Becker, M. Huebner, M. Ullmann: “Power Estimation and
Power Measurement of Xilinx Virtex FPGAs: Trade-offs and
Limitations”; In Proc. of the 16th Symposium on Integrated
Circuits and Systems Design (SBCCI’03), Sao Paulo, Brazil,
September 2003.

[4] K. Poon, A. Yan, S.J.E. Wilton: “A Flexible Power Model for
FPGAs”; In Proc. of 12th International Conference on Field-
Programmable Logic and Applications (FPL 2002), September
2002.

[5] F. Najm: “Transition density: a new measure of activity in digital
circuits”; IEEE Transactions on Computer-Aided Design, vol. 12,
no. 2, pp. 310-323, February 1993.

[6] K. Weiss, C. Oetker, I. Katchan, T. Steckstor, W. Rosenstiel:
“Power estimation approach for SRAM-based FPGAs”; In Proc. of
International Symposium on Field Programmable Gate Arrays
(FPGA’00), pp. 195-202, Monterey, CA, USA, 2000.

[7] V. Degalahal, T. Tuan; “Methodology for high level estimation of
FPGA power consumption”; In Proc. of ASP–DAC 2005
Conference, Shanghai, January 2005.

[8] “Xilinx Power Estimator User Guide”, UG440 (v3.0), June 24,
2009, available at: http://www.xilinx.com.

[9] “Development System Reference Guide”, v9.2i, Chapter 10
XPower, available at: http://www.xilinx.com.

[10] “Embedded System Tools Reference Manual”, Embedded
Development Kit, EDK 9.2i, UG111 (v9.2i), September 05, 2007,
Chapter 3, available at: http://www.xilinx.com.

[11] “Fast Simplex Link (FSL) Bus (v2.00a)”; DS449 Dec. 1, 2005,
available at http://www.xilinx.com.

[12] “Virtex-4 FPGA Configuration User Guide”, UG071 (v1.11), June
9, 2009, available at: http://www.xilinx.com.

[13] “Virtex-4 FPGA User Guide”, UG070 (v2.6), December 1, 2008,
available at: http://www.xilinx.com.

[14] C. A. R. Hoare: “Quicksort”; Computer Journal, vol. 5, 1, 10–15
(1962).

[15] A. Boukerche, J. M. Correa, A. C. M. A. de Melo, R. P. Jacobi: “A
Hardware Accelerator for Fast Retrieval of DIALIGN Biological
Sequence Alginments in Linear Space”; IEEE Transactions on
Computers, vol. 59, no. 6, pp. 808-821, 2010.

[16] Alpha-Data: http://www.alpha-data.com

20 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

