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Abstract— As only the currently required functionality on a 
dynamic reconfigurable FPGA-based system is active, a good 
performance per power ratio can be achieved. To find such a 
good performance per power ratio for a given application is a 
difficult task, as it requires not only knowledge of the behavior of 
the application, but also knowledge of the underlying hardware 
architecture and its influences on the performance and the static 
and dynamic power consumption. Is it for example better to use 
two processors running at half the clock frequency than a single 
processor? The main contributions of this paper are: the 
description of a tool flow to measure the power consumption for 
multiprocessor systems in Xilinx FPGAs, a novel runtime 
adaptive architecture for analyzing the performance per power 
tradeoff and for dynamic clock frequency scaling based-on the 
inter-processor communication. Furthermore, we use three 
different application scenarios to show the influence of the clock 
frequency, different processor configurations and different 
application partitions onto the static and dynamic power 
consumption as well as onto the overall system performance. 

Keywords- Power Consumption, Multiprocessor System-on-
Chip (MPSoC), Dynamic Frequency Scaling, Task Distribution, 
Application Partitioning, Dynamic and Partial Reconfiguration, 
FPGA. 

I.  INTRODUCTION 
Parameterizable function blocks used in FPGA-based 

system development, open a huge design space, which can only 
hardly be managed by the user. Examples for this are 
arithmetic blocks like divider, adder, soft IP-multiplier, which 
are adjustable in terms of bitwidth and parallelism. Additional 
to arithmetic blocks, also soft-IP processor cores provide a 
variety of parameters, which can be adapted to the 
requirements of the application to be realized with the system. 
Especially, Xilinx offers with the MicroBlaze Soft-IP RISC 
processor [1] a variety of options for characterizing the core 
individually. These options are amongst others the use of cache 
memory and its size, the use of an arithmetic unit, a memory 
management unit and the number of pipeline stages. 
Furthermore, the tools offer to deploy up to two processor 
cores as multiprocessor on one FPGA. Every option now can 

be adjusted to find an optimal parameterization of the processor 
core in relation to the target application. For example, a 
specific cache size can speed up the application tremendously, 
but also the optimal partition of functions onto the two cores 
has a strong impact on the speed and power consumption of the 
system. The examples show the huge design space, if only one 
parameter is used. It is obvious, that the usage of multiple 
parameters for system adjustment leads to a multidimensional 
optimization problem, which is not or at least very hardly 
manageable by the designer. In order to gain experience 
regarding the impact of processor parameterization in relation 
to specific application scenario, it is beneficial to evaluate e.g. 
the performance and power-consumption of an FPGA-based 
system and normalize the results to a standard design with a 
default set of parameter. The result of such an investigation is a 
first step for developing standard guidelines for designers and 
an approach for an abstraction of the design space in FPGA-
based system design. This paper presents first results of a 
parameterizable multiprocessor system on a Xilinx Virtex-4 
FPGA, where the parameterization of the processor is 
evaluated in terms of power consumption and performance. 
Moreover, the varying partition of the different application 
scenarios is evaluated in terms of power consumption for a 
fixed performance. For this purpose, a tool flow for analyzing 
the power consumption through generating the value change 
dump (VCD) file from the post place and route simulation will 
be introduced. The presented flow enables to generate the most 
accurate power consumption estimation from this level of 
abstraction. A further output of the presented work is an 
overview of the impact of parameterization to the power 
consumption. The results can be used as a basic guideline for 
designers, who want to optimize their system performance and 
power consumption.  

The paper is organized in the following manner: In Section 
II related work is presented. Section III describes the power 
estimation tool flow used in this approach. The novel system 
architecture used for analyzing the performance and the power 
consumption of the different applications is presented in 
Section IV. The application scenarios are described in Section 
V. In Section VI the application integration and the results for 
performance and power consumption are given. Finally, the 
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paper is closed by presenting the conclusions and future work 
in Section VII. 

II. RELATED WORK 
Optimization of the dynamic and static power consumption 

is very important, especially for embedded systems, because 
they often use batteries as a power source.  

Therefore, many researchers like for example Meintanis et 
al [2] explored the power consumption of Xilinx Virtex-II Pro, 
Xilinx Spartan-3 and Altera Cyclone-II FPGAs. They 
estimated the power consumption at design-time using the 
commercial tools provided by Xilinx and Altera. They further 
explored the differences between the measured and estimated 
power consumption for these FPGAs. Becker et al. [3] 
explored the difference between measured and estimated power 
consumption for the Xilinx Virtex-2000E FPGA. Furthermore, 
they explored the behavior of the power consumption, when 
using dynamic reconfiguration to exchange the FPGA-system 
at runtime. 

Other works focus on the development of own tools and 
models for efficient power estimation at design-time for 
FPGA-based systems. Poon et al. [4] present a power model to 
estimate the dynamic, short circuit and leakage power of 
island-style FPGA architectures. This power model has been 
integrated into the VPR CAD flow. It uses the transition 
density signal model [5] to determine signal activities within 
the FPGA. Weiss et al. [6] present an approach for design-time 
power estimation for the Xilinx Virtex FPGA. This estimation 
method works well for control flow oriented applications but 
not so well for combinatorial logic. Degalahal et al. [7] present 
a methodology to estimate dynamic power consumption for 
FPGA-based system. They applied this methodology to explore 
the power consumption of the Xilinx Spartan-3 device and to 
compare the estimated results with the measured power 
consumption. 

All these approaches focus either on the proposal of a new 
estimation model or tool for estimating the power consumption 
at design-time or they compare their own or commercial 
estimation models and tools with the real measured power 
consumption. The focus of the investigations presented in this 
paper is to show the impact of parameterization of IP-cores, 
here specifically the MicroBlaze soft processor, which differs 
from the approaches mentioned above where the topic is more 
on tool development for power estimation. 

The novelty of our approach is to focus on the requirements 
of the target application and to propose a design guideline for 
system developers of processor-based FPGA systems. This 
means, providing guidance in how to design a system to 
achieve a good tradeoff between performance and power 
consumption for a target application. To develop such a 
guideline the impact of the frequency, different processor 
configurations and the task distribution in a processor-based 
design is investigated in this paper for different application 
scenarios. To the best of our knowledge, similar work has not 
done before.  

III. TOOL FLOW FOR POWER MEASUREMENT 
Xilinx provides two kinds of tools for power consumption 

estimation: Xilinx Power Estimator (XPE) [8] and Xilinx 
Power Analyzer (XPower) [9].  

The XPE tool is based on an excel spreadsheet. It receives 
information about the number and types of used resources via 
the report generated by the mapping process (MAP) of the 
Xilinx tool flow. Alternatively, the user can manually set the 
values for the number and type of used resources. The 
frequencies used within the design have to be manually set by 
the user. The advantage of this method is that results are 
obtained very fast. The disadvantage is that the results are not 
very accurate, especially for the dynamic power consumption. 
This is, because the different toggling rates of the signals are 
not taking into account. Also, the results are not as accurate, 
because they are based on the MAP report, and not on the post 
place and route (PAR) report, which resembles the system used 
for generating the bitstream.  

The XPower tool estimates the dynamic and static power 
consumption for submodules, different subcategories and the 
whole system based on the results of a post place and route 
(PAR) simulation. This makes the estimation results much 
more accurate compared to the XPE tool, because the final 
placed and routed system is considered for the power 
estimation. But even more important, due to the simulation of 
the PAR system with real input data, the toggling rates of the 
signals can be extracted and used within the power estimation. 
For estimating the power consumption with the XPower tool 
the following input files are required: 
� Native Circuit Description (NCD) file, which specifies the 

design resources 
� Physical Constraint File (PCF), which specifies the design 

constraints 
� Value Change Dump (VCD) file, which specifies the 

simulated activity rates of the signals 
The NCD and the PCF file are obtained after the PAR 

phase of the Xilinx implementation tool flow. The VCD file is 
generated by doing a simulation of the PAR design with the 
ModelSim simulator. 

Due to the higher accuracy the XPower tool was used here. 
As we wanted to estimate the power consumption for systems 
with one or two MicroBlaze processors, the hardware and the 
software executables of the different system were designed 
within the Xilinx Platform Studio (XPS)[10]. Figure 1. shows 
the flow diagram for doing power estimation with XPower for 
an XPS system.  

 

Figure 1.  Flow Diagram of the EDK XPower Flow 
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After the system has been designed and implemented 
within the XPS environment, the Simgen [10] tool is used to 
generate the post PAR timing simulation model of the system. 
This simulation model is the used to simulate the behavior of 
the system with the ModelSim simulator and to generate the 
VCD file. In the last step XPower is used to read in the VCD, 
the NCD and the PCF files of the design and to estimate the 
dynamic and static power consumption.Care has to be taken, 
because in a normal Xilinx implementation flow the software 
executables are integrated into the memories of the processors 
after the bitstream has been generated. When using XPower 
and the post PAR simulation, the memories of the processor 
have to be initialized in an earlier step. This means, into the 
post PAR simulation model, otherwise the simulated system 
behavior and the VCD file would not be accurate. 

IV. NOVEL SYSTEM ARCHITECTURE 
The system structure of the dual-processor system is shown 

in Figure 2. Three new components have been designed and 
implemented: the Virtual-IO, the Bridge and the 
Reconfigurable Clock Unit. All three components have been 
integrated into a library for the XPS tool. Therefore, they can 
be inserted and parameterized using the graphical user interface 
(GUI) of the XPS tool, which makes them easy reusable within 
other XPS designs. 

 

Figure 2.  Dual processor design with three new components: 
Virtual-I/O, Bridge and Reconfigurable Clock Unit 
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The Virtual-IO receives data from the host PC and sends 
results back to the host PC via the PCI-bus. The Virtual-IO 
communicates via the Fast Simplex Links (FSLs) [11] with two 
MicroBlaze processors (μB0 and μB1). μB0 communicates 
with the user via the UART interface. It also has a timer, which 
is used to measure the performance of the overall system. The 
two processors communicate with each other via FSLs over the 
Bridge component. Depending on the fill level of the FIFOs 
within the Bridge reconfiguration signals are send to the 
Reconfigurable Clock Unit. The Reconfigurable Clock Unit 
reconfigures the clocks of the two processors based on the 
reconfiguration signals issued by the Bridge. For the uni-
processor system, which is used for comparison, the Bridge, 
the Reconfigurable Clock Unit, μB1 and their connections 
were removed as shown in Figure 3.  

 

Figure 3.  Uni-processor system 
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The following subsections explain the new components and 
their features more in detail. 

A. Virtual-IO 
The Virtual-IO component is used to communicate with the 

host PC via the PCI-bus. It provides an input and an output port 
to the PCI-bus and one input and one output port for each 
MicroBlaze processor. It consists of two FIFOs, one for the 
incoming and one for the outgoing data of the PCI-bus. Each 
FIFO is controlled via a Finite State Machine (FSM), as it is 
shown in Figure 4.  

 

Figure 4.  Virtual-IO component 
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The Virtual-IO is a wrapper around 6 different modules. 
The first module is Virtual-IO 1, which sends data first to μB0 
and then to μB1. It then receives the calculated results in the 
same order. The second module is Virtual-IO 2, which sends 
data only to μB0. Results are only received over μB1. 
Therefore, μB0 sends its results to μB1, which then sends the 
results of μB0 together with its own results back to the Virtual-
IO 2. The third module is Virtual-IO 3, which sends first data 
to μB0. Afterwards, it sends in parallel to both processors μB0 
and μB1 the same data. Finally, it sends some data only to 
μB1. After the execution of the processors, first μB0 and then 
μB1 send their results back to the Virtual-IO 3. The fourth 
module is Virtual-IO 4, which is only connected to one of the 
processors, e.g. μB0. Due to this, this module is used in all uni-
processor designs. For a dual-processor design it sends data to 
μB0, which then forwards parts of the data to μB1. After 
execution μB1 sends its results back to μB0, which forwards 
the results of the execution of the two processors to the Virtual-
IO 4. The fifth module is Virtual-IO 5, which sends the same 
data to both processors in parallel, but receives the results only 
via μB0. The sixth module is Virtual-IO 6. It is very similar to 
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Virtual-IO 5. The only difference is that it receives the 
calculation results from μB1 instead of μB0. 

The modules can be selected in the XPS GUI via the 
parameters of the Virtual-IO component. Other parameters that 
can be set by the user are: the number of input and output 
words for each processor separately, the number of common 
input words and the size of the image (only for image 
processing applications). 

B. Bridge 
The Bridge module is used for the inter-processor 

communication. It consists of two asynchronous FIFOs 
controlled by FSMs, to support a communication via the two 
different clock domains of the processors, as shown in Figure 
5. This Bridge component controls the fill level of the two 
FIFOs. If one FIFO is to nearly full, it is assumed that the 
processor, which reads from this FIFO, is too slow. As a result, 
a reconfiguration signal to increase the clock rate of this 
processor is send to the Reconfiguration Clock Unit. 

 

Figure 5.  Internal structure of the Bridge 
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C. Reconfigurable Clock Unit 
The internal structure of the Reconfigurable Clock Unit is 

shown in Figure 6. It consists of two Digital Clock Managers 
(DCMs) [12], two Clock Buffer Multiplexer primitives 
(BUFGMUXes) [13] and the Logic component, which controls 
the reconfiguration of the DCMs. 

 

Figure 6.  Internal structure of the Reconfigurable Clock Unit 
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The Logic component receives the reconfiguration signals 
of the Bridge component. It then starts the reconfiguration of 
the DCM primitive for the slower processor. For the 
reconfiguration the specific ports provided by Xilinx for 
dynamic reconfiguration of the Virtx-4 DCM primitive are 
used. During the reconfiguration process the DCM has to be 
kept in a reset state for a minimum of 200 ms. During this time 
interval the outputs of this DCM are not stable and cannot be 

used. Instead of stalling the corresponding processor, the 
BUFGMUX primitive is used to provide CLK_IN, the original 
input clock of the two DCM, to the processor, whose DCM is 
under reconfiguration. The BUFGMUX is a special clock 
multiplexer primitive, which assures, that no glitches occur, 
when switching to a different clock. After the configuration of 
the DCM is finished, the BUFGMUX is used to switch back to 
the DCM clock. An alternative would be to stall the processor, 
while its clock is being reconfigured. Because 200 ms are quite 
a long time, especially for image processing applications, 
where each 40 ms a new input frame is received from a 
camera; this would result in a loss of input data. 

To prevent an oscillation, the controller logic will stop 
increasing the clock frequency, if 125 MHz for this MicroBlaze 
have been reached, which is the maximum frequency supported 
by the MicroBlaze and its peripherals, or if its clock frequency 
has been increased for three consecutive times. If the 
reconfiguration signal is still asserted meaning the processor is 
still too slow, then the DCM of the faster processor is 
reconfigured to provide a slower clock to the faster processor.  

Alternatively, instead of dynamically reconfiguring the 
DCM, different output ports of a DCM could be used to 
generate different clocks. Using several BUFGMUXes the 
different clocks could be selected. The advantage is a faster 
switch between different clocks and the drawback is that not as 
many different clocks are possible as when dynamic 
reconfiguration is used. This will be investigated in future 
work. 

V. APPLICATION SCENARIOS 
Three different applications scenarios were used to explore 

the impact of the processor configurations, the task distribution 
and the dynamic clock frequency scaling on the power 
consumption of FPGA-based processor systems. The three 
different algorithms are described in detail in the next 
subsections. The first algorithm is the well known sorting 
algorithm called Quicksort [14]. It consists of a lot of branches 
and comparisons. The second algorithm is an image processing 
algorithm called Normalized Squared Correlation (NCC), 
which consists of many arithmetic operations, e.g. multiply and 
divide. The third algorithm is a variation of a bioinformatic 
algorithm called DIALIGN [15], which consists of many 
comparisons and additions and subtractions. These algorithms 
with their different algorithm requirements, e.g. branches, 
comparators, multiply & divide, add & subtract, were used to 
provide a user guideline of designing a system with a good 
performance per power tradeoff for a specific application. By 
comparing the algorithm requirements of new applications with 
the three example algorithms, the system configurations of the 
most similar example algorithm is chosen as a starting system. 
Such a guideline to limit the design space is very important to 
save time and achieve a higher time-to-market, because the 
simulation and the power estimation with XPower are very 
time-consuming. Also, the bitstream generation to measure the 
performance of the application on the target hardware 
architecture is time-consuming. These long design times can be 
shorten by starting with an appropriate design, e.g. the right 
processor configurations, a good task distribution and a well 
selected execution frequency. 
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A. Sorting Algorithm: Quicksort 
Quicksort [14] is a well known sorting algorithm with a 

divide and conquer strategy. It sorts a list by recursively 
partitioning the list around a pivot and sorting the resulting 
sublists. It has an average complexity of � (n log n). 

B. Image Processing Algorithm: Normalized Squared 
Correlation 
2D Squared Normalized Correlation (NCC) is often used to 

identify an object within an image. The evaluated expression is 
shown in equation (1). 
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This algorithm uses a template T of the object to be 
searched for and moves this template over the search region A 
of the image. Ap, the subwindow of the search region at point p 
with the same size as T, is then correlated with T. The result of 
this expression is stored at point p in the result image C. The 
more similar Ap and T are the higher is the result of the 
correlation. If they are equal, the result is 1. The object is then 
detected at the location with the highest value. 

C. Bioinformatic Algorithm: DIALIGN 
DIALIGN [15] is a bioinformatics algorithm, which is used 

for comparison of the alignment of two genomic sequences. It 
produces the alignment with the highest number of similar 
elements and therefore the highest score as shown in Figure 7.  

 

Figure 7.  Alignment of two sequences a and b with DIALIGN. 
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VI. INTEGRATION AND RESULTS 
For the power consumption estimation and the performance 

measurement a Xilinx Virtex-4 FX 100 FPGA was used. The 
performance was measured on the corresponding FPGA Board 
from Alpha Data [16]. As measuring the exact power 
consumption of the FPGA on this board is not possible, it was 
estimated at design-time using the XPower tool flow as 
described in Section III. The impact of the clock frequency, the 
configuration of the processor and the task distribution onto the 
power consumption and the performance of the system has 
been explored and the results are presented in the following 
subsections. For each exploration some parameters had to be 
kept fixed to assure a fair comparison. For the exploration of 
the impact of the clock frequency, the algorithm and the 
processor configuration have been kept fixed. For the 
exploration of the impact of the configuration of the processor 
the clock frequency were kept fixed. Finally, for the 
exploration of the task distribution, the processor configuration 
and the performance were kept fixed to lower the overall 
system power consumption while maintaining the performance 
similar to the performance achieved with a reference uni-

processor design running at 100 MHz, which is a standard 
frequency for Virtex-4 based MicroBlaze systems.  

A. Impact of the clock frequency 
First of all the impact of the variation of the clock 

frequency onto the power consumption was explored for a uni-
processor system, which executes the NCC algorithm on one 
MicroBlaze. The MicroBlaze was configured to use a 5-stage 
pipeline and no arithmetic unit. The results for the dynamic and 
quiescent power consumption for the core and the other 
components as well as the total power consumption of the 
system are given in TABLE I. The quiescent power 
consumption is also called static power consumption in the 
following, because it represents the power consumption of the 
user configured FPGA without any switching activity. 

The impact of the clock frequency onto the static - and the 
dynamic power consumption is presented in Figure 8. and 
Figure 9. respectively. As can be seen the static power 
consumption increases by around 0,24 mW / MHz, while the 
dynamic power consumption increases by around 3,26 mW / 
MHz. 

Out of this results the impact onto the total power 
consumption, which is around 3,5 mW / MHz. The impact on 
the total power consumption as well as on the performance is 
shown in Figure 10.  

 

Figure 8.  Impact of the clock frequency onto the static 
power consumption of a uni-processor design. 
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Figure 9.  Impact of the clock frequency onto the dynamic 
power consumption of a uni-processor design. 
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Figure 10.  Impact of the clock frequency onto the total 
power consumption and onto the execution time of a uni-

processor design executing the NCC algorithm. 
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B. Impact of the processor configurations 
For exploration, a uni-processor design consisting of a 

single MicroBlaze running at 100 MHz was used. The results 
were compared against a reference configuration, which was a 
MicroBlaze with a 5-stage pipeline and no arithmetic unit 
(integer divider and barrel shifter). The following 
configurations were explored:  

i. adding an arithmetic unit (AU) 
ii. reduction of the pipeline to 3-stages (RP)  

iii. combination of i and iii (AU+RP) 
The impact onto the power consumption and the performance 
was explored for all three algorithms. The impact is very 
different for the different applications, due to the different 
algorithm requirements, as mentioned in Section V and its 
subsections. 

Figure 11. and TABLE II. show the impact of the different 
configurations for the Quicksort algorithm. Due to the multiple 
branches in the algorithm a reduction of the pipeline stages is 
very beneficial in terms of execution time and power 
consumption. The impact of the addition of the arithmetic unit 
only provides a minimal improvement in terms of performance, 
but with a stronger degradation of the power consumption. 
Depending on the performance and power consumption 
constraints, either the system with the AU + RP or the RP 
system would be chosen. 

 

Figure 11.  Impact of the MicroBlaze configurations for 
the Quicksort algorithm. 
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Figure 12. and TABLE III. show the impact of the different 
configurations for the NCC algorithm. As this algorithm 
requires many arithmetic operations, the addition of an AU 
improves the overall execution time, while the reduction of the 
pipeline stages results in a strong degradation (over 50%). This 
degradation is due to the reason that the execution of arithmetic 
operations take more clock cycles, if the pipeline is reduced. 
Therefore, for this and similar algorithms a system with an AU 

and a 5-stage pipeline would be optimal from a performance 
perspective. If the power consumption needs to be reduced and 
some performance degradation is acceptable, than the reference 
system or the AU+RP system would be a good choice. 

 

Figure 12.  Impact of the MicroBlaze configurations for 
the NCC algorithm. 
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In Figure 13. and TABLE IV. the impact onto the 
performance and power consumption of the three different 
processor configurations compared to the reference system are 
presented for the DIALIGN algorithm. Adding an AU 
improves the execution time only a little bit, while increasing 
the overall power consumption compared to the reference 
design. The reduction of the pipeline to 3-stages improves the 
total power consumption by 6,8%, but worsening the execution 
time by 25%. The combination of AU+RP shows nearly the 
same impact as the RP system. Therefore, the reference system 
is the best choice, if performance is the most important factor. 
If on the other hand the power consumption is more important, 
than the RP system would be a good choice for these kinds of 
algorithms. 

 

Figure 13.  Impact of the MicroBlaze configurations for 
the DIALIGN algorithm 
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TABLE I.  IMPACT OF THE VARIATION OF THE CLOCK FREQUENCY ONTO THE POWER CONSUMPTION 
 

Clk Freq. (MHz) PCoreDynamic(mW) POthersDynamic(mW) PCoreQuiescent(mW) POthersQuiescent(mW) PTotal(mW) PTotal(%) 

50 180 26 453 641 1298 - 11,9 
60 232 26 457 641 1355 - 8,0 
70 243 26 458 641 1367 - 7,2 
80 273 26 460 641 1398 - 5,1 
90 301 26 462 641 1428 - 3,1 
100 343 26 465 641 1473 NA 
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C. Impact of the task distribution and the frequency scaling 
To measure the impact onto the power consumption the 
algorithms were partitioned onto two MicroBlaze processors. 
The frequency for the two processors was chosen in such a 
way, that the execution time of the dual-processor design was 
as similar as possible to the reference system consisting of a 
single MicroBlaze running at 100 MHz. For all systems the 
configurations of the processors were fixed to a 5-stage 
pipeline and no arithmetic unit. 

TABLE V. shows the results for distributing the Quicksort 
algorithm on two processors instead of one. Two partitions 
were done. The first one is called Dual_2 (80/50 MHz), which 
means, that the Virtual-IO 2 was used and μB0 was running at 
80 MHz while μB1 was running at 50 MHz. The algorithm was 

so partitioned that μB0 receives the whole data to be sorted. It 
then divides the data into two parts and sends the second part to 
μB1. Both then sort their partition. μB0 forwards its sorted part 
of the list to μB1, which sends the final combined sorted list 
via the Virtual-IO 2 to the host PC. With this partition the 
overall power consumption could be reduced by 6,43% 
compared to the single processor reference system.  

The second partition called Dual_5 (95 MHz) uses the 
Virtual-IO 5 to send incoming data to both processors running 
at 95 MHz. μB0 searches the list for elements smaller and μB1 
searches the list for elements bigger than the pivot. When one 
has found an element the position of this element is send to the 
other processor. Both processor then update their lists by 
swapping the own found element with the one the other 
processor has found. At the end both processors have as a 

TABLE II.  IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE QUICKSORT ALGORITHM AT 100 MHZ 
 

μB Parameter  P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (ms) 
Default 438,33 26,13 472,91 639,56 1576,93 NA 18,42 

Arithmetic Unit 493,26 26,14 477,20 639,58 1636,18 + 3,76 18,10 
3-stage Pipeline 354,23 26,13 466,41 639,56 1486,33 - 5,75 17,21 

Both  372,84 26,13 467,84 639,58 1506,39 - 4,47 16,89 

TABLE III.  IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE NCC ALGORITHM AT 100 MHZ 
 

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (ms) 
Default 341,68 26,09 465,44 639,57 1472,78 NA 67,74 

Arithmetic Unit 366,28 26,13 467,33 639,57 1499,31 + 1,80 53,62 
3-stage Pipeline 269,63 26,10 459,97 639,57 1395,27 - 5,26 103,64 

Both  269,40 26,12 459,95 639,58 1395,05 - 5,28 88,84 

TABLE IV.  IMPACT OF THE MICROBLAZE CONFIGURATIONS FOR THE DIALIGN ALGORITHM AT 100 MHZ 
 

μB Parameter P
CoreDynamic

(mW) P
OthersDynamic

(mW) P
CoreStatic

(mW) P
OthersStatic

(mW) P
Total

(mW) P
Total

(%) Time (μs) 
Default 431,67 26,06 472,38 639,58 1569,69 NA 786,48 

Arithmetic Unit 464,39 26,06 474,93 639,59 1604,97 + 2,25 777,64 
3-stage Pipeline 343,01 26,05 465,54 639,59 1474,19 - 6,08 982,85 

Both  355,88 26,06 466,53 639,58 1488,05 - 5,20 988,05 

TABLE V.  QUICKSORT POWER CONSUMPTION 
 

 Uni-Processor (100MHz) Dual_2 (80/50 MHz) Dual_5 (95 MHz)  
Execution Time - ms  18,42 18,80 19,27 

Core (dyn/stat)_Power - mW 438,33 / 472,91 295,89 / 461,95 384,34 / 468,72 
Total Power - mW 1576,93 1475,56 1570,79 
Total Power - % NA - 6,43 - 0,39 

TABLE VI.  NCC POWER CONSUMPTION 
 

 Uni-Processor (100MHz) Dual_3 (54 MHz) Dual_2 (87,5/50 MHz)  
Execution Time - ms  67,74 67,28 67,62 

Core (dyn/stat)_Power - mW 341,68 / 465,44 297,39 / 462,07 322,32 / 463,96 
Total Power - mW 1472,78 1477,20 1504,02 
Total Power - % NA + 0,30 + 2,12 

TABLE VII.  DIALIGN POWER CONSUMPTION 
 

 Uni-Processor (100MHz) Dual_5 (50 MHz) Dual_6 (50 MHz)  
Execution Time - ms  30,21 30,16 30,16 

Core (dyn/stat)_Power - mW 431,67 / 472,38 440,80 / 473,09 352,45 / 466,27 
Total Power - mW 1569,69 1631,62 1536,44 
Total Power - % NA + 3,95 - 2,12 
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result a searched list. μB0 then sends its resulting list back to 
the host PC via the Virtual-IO 5. The power consumption of 
this version is nearly the same as the reference system, while 
the total execution time increases. 

TABLE VI. shows the result for the partitioning of the 
NCC algorithm onto two processors. The first partitioning uses 
the Virtual-IO 3 to partition the incoming image into two 
overlapping tiles, one for each processor. The overlapping part 
is send to both processors simultaneously. As the NCC is a 
window-based image processing algorithm, the boarder pixels 
between the two tiles are needed by both processors. Each of 
the processors runs at 54 MHz, which results in a similar 
execution time, and also in a similar total power consumption 
as the reference design.  

The second partition called Dual_2 (87,5 /50 MHz) uses 
Virtual-IO 2 to send the whole image to μB0. μB0 runs at 87, 5 
MHz and calculates the complete numerator and the 
denominator. Then it forwards both to μB1, which does the 
division and sends the results back to the Virtual-IO 2. μB1 
runs at 50 MHz. While the execution time is nearly the same, 
the overall power consumption is increased slightly by 2,12%. 

TABLE VII. shows the result for executing the DIALIGN 
Algorithm with two processors. Two partitions were done. The 
first one is called Dual_5 (50 MHz) and uses Virtual-IO 5 to 
send the incoming sequences to both processors running at 50 
MHz. Each processor calculates half of the resulting score 
matrix. μB0 calculates on a row-based fashion all values above 
the main diagonal. μB1 calculates on a column-based fashion 
all values below the main diagonal. The scores on the main 
diagonal are calculated by both processors. After μB0 has 
finished calculating one row and μB1 one column respectively, 
they exchange the first score nearest to the main diagonal, as 
this score is needed by both processors for calculating the next 
row/column respectively. While the execution time is nearly 
the same, the overall power consumption is increased by 
3,95%. 

The second partition is called Dual_6 (50 MHz). It uses the 
Virtual-IO 6 to send the sequences to the processors, which run 
both at 50 MHz. Here a systolic array approach is used for 
executing the DIALIGN algorithm. μB1 then sends the final 
alignment and the score back to the host PC. With this partition 
the overall power consumption could be reduced by 2,12% 
compared to the single processor reference system. 

VII. CONCLUSIONS AND OUTLOOK 
This paper reports the research and evaluation of different 

microprocessor parameterization, application and data 
partitioning on a dual-processor system. The results of the 
experiments show the impact of the different parameterization 
on the power consumption and performance in relation to a set 
of selected applications. Depending on the application type it 
can be seen that different parameter configurations, e.g. 
configuration of the processors and their frequencies, but also a 
good application partitioning, are essential for achieving an 
efficient tradeoff between performance and power constraints. 
The results can be used to guide developers what parameter set 
suits to a certain application scenario. The vision is that more 
application scenarios will be analyzed in order to provide a 
broad overview of the parameter impact. It is envisioned to 

extend existing hardware benchmarks from different 
application domains in terms of a parameterization guideline 
also for further FPGA series from Xilinx. 

Furthermore, the paper provides a tutorial for the estimation 
of the power consumption on a high level of abstraction, but 
with a high accuracy through post place and route simulation. 
Therefore, other research in this area can be done and 
exchanged in the community.  
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