

Pedicle screw concept with shape memory components for improved bone anchorage, BIOSPINE 2015

M. Leimert, Ch. Rotsch, M. Werner

Interdisziplinäres Wirbelsäulenzentrum Klinikum Hohwald

Chefarzt: Dr. med. J. Seifert

Fraunhofer IWU Dresden

Leiter: Prof. Dr.-Ing. Welf-Guntram Drossel, Prof. Dr.-Ing. Dirk

Landgrebe, Prof. Dr.-Ing. Matthias Putz

Berlin, 10.04.2015

Motivation, Medical Background

Statistic

- Degenerative disease of the cervical spine Majoritiy of patients > 65 years
- Demographic aging:

Germany 2005 *: > 65 years: 16 Mio.

Prognosis 2030 *: > 65 years: 22 Mio.
(about 40 percent more than in 2005)

* (Angaben Statistische Bundesamt Wiesbaden, 2007)

Motivation, Medical Background

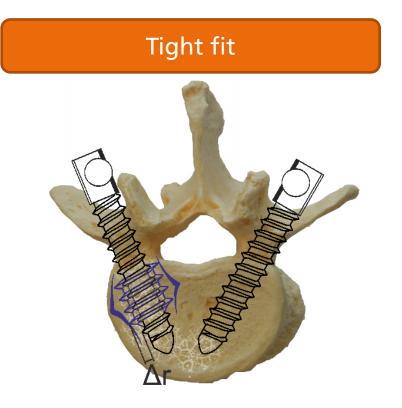
State of the art

- Use of screws with larger cross-section
 - → <u>Problems:</u>
 - Long-term stability in degenerative disease is not ensured
 - Further erosion of the damaged bone
- Use of bone cement (PMMA)
 - → <u>Problems:</u>
 - Monomer of PMMA (MMA): toxic unless polymerized
 - High polymerization temperature → tissue necrosis possible
 - At explantation: spacious destruction of the bone

Motivation, Medical Background

Problems from the perspective of the surgeon (spinal surgery in general):

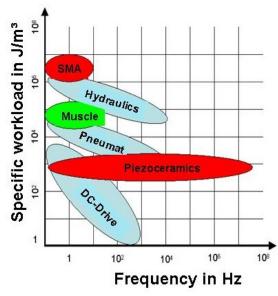

- High expectations regarding the patient's functional outcome, nonunion, cage dislocations, adjacent segment degeneration, implant failure or malpositioning such as persistent complaints after successful osseous restoration of the fused segment
- Limited selection of implants (Side effects trough compromise: mobility restrictions, loosening of the implant)
- Revision rate between 10 20% (McAfee et al., Cinotti et al.)
- Objectives: "...improved preoperative planning, Less stress on the faciet joints, improved revision capability..." (C. Hopf, Abteilung für Wirbelsäulenchirurgie, Kinder, Rheuma- und onkologische Orthopädie, Lubinus Clinicum)



Objectives

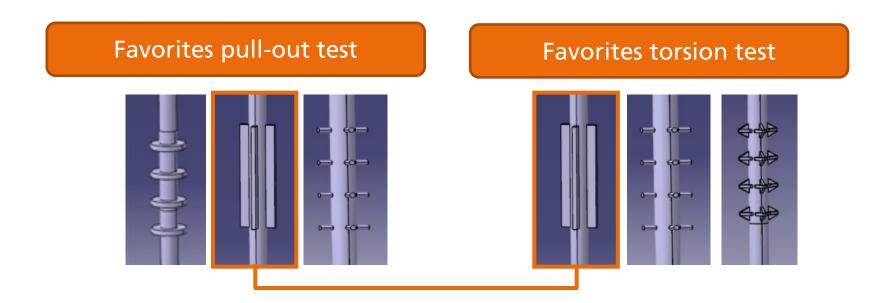
- Improved anchorage of the pedicle screw in the bony surface by force and tight fit
- For use in degenerative (e.g. osteoporotic) bone or damaged bone after revision

Idea


- Integration of actuators
- → Conception of a pedicle screw with active components bases on shape memory alloys (SMA)

Benefit of SMA:

Specific workload and active behaviour is comparable to the natural muscle


Materials are biocompatible

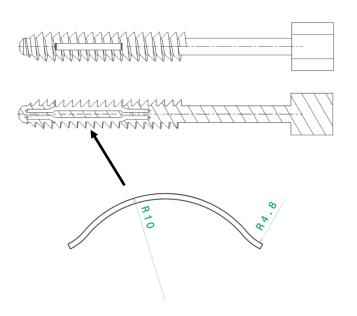
- Additional coating possible
- Super elastic and shape memory effect

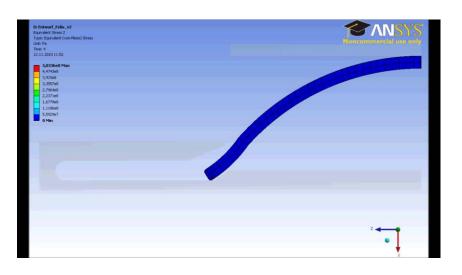
Studies on the optimal actuator geometry

15 geometries tested mechanically

Structure along the screw axis

Design and construction


Favored geometry Position of the pedicle screw Thoracic and Lumbar Cervical Pedicle screw Area with SMA Area without SMA ≤30


Design and construction

CAD

- Core-Ø: 4 mm
- Thread height: 1,5 mm
- Thread length: 40

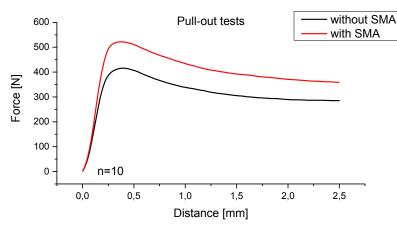
FEM

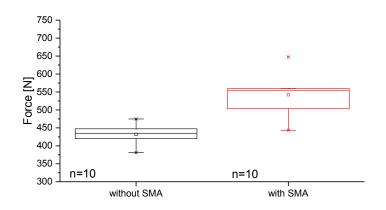
FEM compression test (von Mises equivalent test in Pa)

Design and construction

Functional Model

Activation under X-Ray


8x

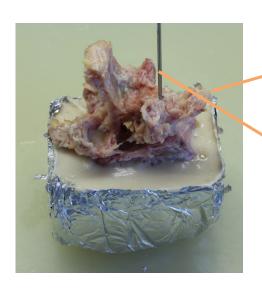

Manufactured by laser beam melting

Pull-out tests in homogeneous bone substitute material

- Test according to ASTM F1839 (Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments)
- Frozen screw is screwed in a bone substitute (Sawbones®)
- Pull-out tests

Average pull-out force:

Without SMA: 442 N (±29 N)


With SMA: 542 N (±53 N)

Pull-out tests on human specimen

- One spine, 4 cervical, 11 thoracic and 5 lumbal vertebrae∑ 20 vertebrae
- left / right randomized

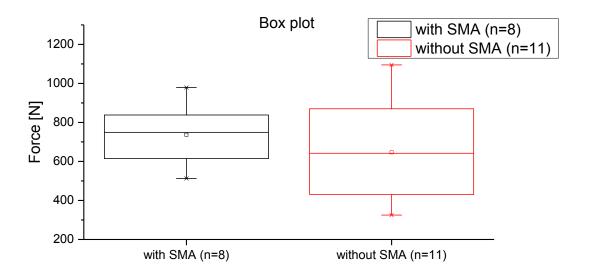
- 1. Alignment and embedding of the vertebra and a threaded sleeve in polyurethane composite
- 2. Marking the target position of the screw via Kirschner wire
- 3. Freezing of the vertebra for transport

Pull-out tests on human specimen

- 4. Drill out the hole to 4 mm
- 5. Integration of a cooled screw with or without SMA


6. X-ray control of the screw position

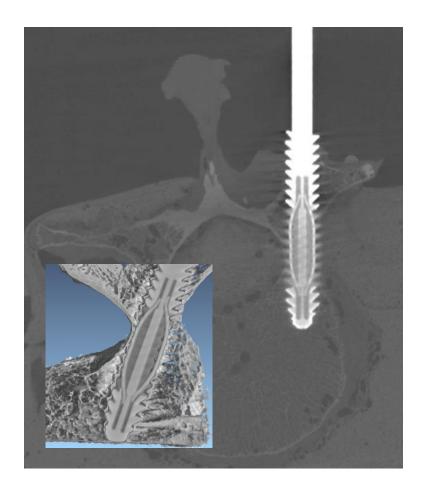
Pull-out tests on human specimen



- 7. Positioning in the testing machine
- 8. Warm up on 36 °C

9. Pull-out test (0.1 mm/s)

Results



- One cervical vertebra was excluded (destruction of the pedicle during the screwing)
- The Average pull-out force is 646 N for the screw without SMA and 737 N with SMA (Δ 14 %)
- Spread of values is reduced

Additional work - µCT

- µCT-Investigation after integration of the pedicle screw
- Functional verification of force and tight fit
- Evaluation of the bone-implant interface

Summary and Outlook

- 25 % increase in average pull-out force with SMA in bone substitute
- 14 % increase in average pull-out force with SMA in human specimen
- Only primary stability was tested
- No osteoporotic bone or revision case
- Handling during in-vitro test was positive (placing time, warming, etc.)
- Surface structuring
 - → Increasing of the pull-out force
- Further studies in specimen from different body donors
 - → Increasing the validity of the results

