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Abstract: This report discusses three merit functions to optimize optical in-
terference filter coatings. The applications of these filters are intentionally op-
tical 3D sensors, e.g. a chromatic confocal triangulation sensor. Optimizing
these optical filters is done by minimizing the measurement uncertainty of the
sensor. The measurement task is handled as a parameter estimation problem
and the sensor is considered as a physical experiment. As part of the experi-
mental design, the optical filters are optimized to achieve measurements with
lower uncertainty. The first merit function is based on a frequentistic statistic
utilizing the Cramér-Rao lower bound. An example is used to point out disad-
vantages and two alternative merit functions are proposed. Instead of a lower
bound, the other merit functions incorporate a specific estimator function.

1 Introduction

Designing a sensor from scratch offers many degrees of freedom. The process is
equal to setup an experiment and fixing all the design variables in the sense of an
optimal experimental design. In literature [HK05],[Bos07], [Ber85],[CV95] ex-
perimental design is a well-studied topic. The basic idea is to apply estimation
theory to model the outcome of an experiment. On top of this model optimality
criteria are defined, which quantify the performance of the experiment. Finally,
using these criteria as merit functions in an optimization framework will lead to
improved experimental designs. In [Bos07],[VAdDVDvdB02] it is proposed to
utilize the Cramér-Rao lower bound to quantify the variance of the experimental
outcome. The Cramér-Rao lower bound is a general lower bound of the variance of
an arbitrary estimator function [Bos07]. Because the purpose of this research is to
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optimize a measurement sensor, the variance of an estimator function is of special
interest. According to [fS04], the uncertainty of a measurement is quantified by
variances or standard deviations and the measurement itself is only an estimate of
the value of the measurand. The main advantage of the Cramér-Rao lower bound is
its compact closed form expression. Unfortunately, the Cramér-Rao lower bound
implicit linearizes the physical model for a given set of design variables. This
report emphasizes the resulting drawbacks for oscillating non-linear models. An
example similar to [VDBCT03] is presented. To overcome this problem it is pro-
posed to use a specific estimation function instead of a lower bound. For this
purpose [MVDBB94] proposed to use the variance of a least square estimator.
However, the sensor model had to be linearized. A general approach is Bayesian
experimental design [HM13], [CV95],[VDBCT03], [Ber85]. In [HM13] the ap-
plication of Bayesian experimental design is shown for nonlinear models. They
optimize an experiment based on a merit function utilizing the Kullback-Leibler
divergence. The Kullback-Leibler divergence is used as distance measure between
the posterior and the priori and quantifies the information gain made by an exper-
iment. The idea was originally proposed by [Lin56] and is derived from Shannon
information theory. The principle approach was generalized [Lin72],[CV95] to al-
low other utility functions than the entropy as information measure. In section 3.3
this approach is used in combination with a variance like utility function. However
this approach lead to experimental design, which are optimal on average. As an al-
ternative in section 3.4 a merit function for experimental design is proposed, which
optimizes always the worst case. In this case there is no risk that some working
points of the experiment have higher uncertainty for the benefit for others.

2 Sensor Model

This section provides a rough sensor model. For simplification details are ne-
glected but can be found in [THB13]. The intention of this section is to clarify the
notation and the application. In the next section estimation theory is applied to the
provided model.

The interference filters are optimized for a chromatic confocal triangulation (CCT)
[TB12] sensor. In principle, interference filters can realize arbitrary transmission
characteristics by customized thin film layer stacks. The scope of this research is
to optimize the sensor by adjusting the thicknesses of these thin film layers, which
in turn change the filter transmissions. Assume a CCT sensor with six filters cor-
responding to six camera channels. The gray values of each channel are organized
in a vector and denoted as g = (g1, . . . , g6)>. Each filter is determined by its
thin film layer stack. The characteristic thicknesses of each layer are organized
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as a parameter vector pi and the index i specifies the corresponding optical filter.
For simplification all filters are summarize in one long vector p. In experimental
design these parameters are sometimes called design variables.

The measurement procedure of a CCT sensor is to estimate a height, which is op-
tical encoded by a wavelength λ, based on the gray values g. Apart of a nonlinear
relationship, height and wavelength λ are equivalent and instead of the height, λ is
used as the parameter of interest. Assuming an arbitrary estimation function f(.)
the normal working procedure of a CCT senor can be formalized as:

λ̂ = f(g;p),

with the target to estimate the corresponding wavelength. In estimation literature
the parameters p are denoted as nuisance parameter, because they are not of in-
terest. In experimental design these parameter are the adjustment screws to gain
better performance.

A requirement to apply powerful estimation functions, like the Maximum Likeli-
hood estimation, is to specify the distribution of the measurements. The dominant
non-systematic error source in the CCT sensor is the photon noise of the involved
camera. For large number of photons the Poisson distribution can be approximated
by the normal distribution. For this case the six channel camera gray value g is
modeled as random variable G:

E{G} = gµ(λ;p),gµ : R→ R6, λ 7→ g

G ∼ N
(
gµ(λ;p), diag(σ2

1(λ;p), . . . , σ2
6(λ;p))

)
, with

σ(λ,p) = σd + kgµ(λ;p), σ : R→ R6, λ 7→ σ = (σ1, . . . , σ6)>

p(g|λ,p) =
6∏
i=1

1√
2πσi

e
− 1

2

(
gi−gµ,i(λ;p)

σi

)2

(2.1)

The sensor model gµ(λ;p) defines the expectation value of G. In [Bos07] this
sensor model is called expectation model. The random variable G is assumed to
be normal like distributed and each of the six camera channels is assumed to be
statistically independent. The independence property results in a diagonal covari-
ance matrix. The variance of each camera channel is a function of the sensor model
again, to realize an approximation of the Poisson distribution.

For the Bayesian framework the deterministic parameter λ is considered as a ran-
dom variable Λ. A non-informative a priori probability density function is as-



4 Miro Taphanel

sumed:

p(λ) =

{
1

λmax−λmin
, if λmin ≤ λ ≤ λmax

0, else,

which just expresses the knowledge that the wavelength will be within certain
boundaries. Using the Bayes’ theorem, the a posteriori probability density function
is given by:

p(g|p) =

∫
p(g|λ,p)p(λ)dλ

p(λ|g,p) =
p(g|λ,p)p(λ)

p(g|p)

=


p(g|λ,p)∫ λmax

λmin
p(g|λ,p)dλ

, if λmin ≤ λ ≤ λmax

0, else.

3 Optimizing the Experimental Sensor Design

In this section merit functions are derived to optimize the sensor performance.
Optimizing the performance of such a sensor aims to minimize the measurement
uncertainty. According to [fS04] the measurement uncertainty is defined as stan-
dard deviation (or variance) of the measurement result, while the measurement
is only an estimation of the true value. Because the measurement process is an
estimation procedure, the optimization tries to minimize the variance of the esti-
mation. The following subsections define different design criteria, which propose
optimal design parameters p? for optimal experimental design settings.

3.1 Cramér-Rao Lower Bound Approach

The Cramér-Rao lower bound is a fundamental lower bound for the variance of
any estimator. Because the lower bound is a function of the experimental design
parameters, too, it is a easily accessible way to improve an experiment. The as-
sumption behind this approach is that estimators are available, which reach this
lower bound at least asymptotically. A famous example is the Maximum Like-
lihood estimator[Bos07] (p. 81). According to [Bos07] the Cramér-Rao lower
bound for normal distributed observations is defined as:

Var{f(g;p)} ≥
(
∂g>(λ,p)

∂λ
C−1

∂g(λ,p)

∂λ

)−1
,
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with a covariance matrix C. In the CCT sensor application only one parameter λ
is of interest, this scalar variance measure can directly be used as a merit function
to optimize the experimental design. Because a sensor is only as good as its worst
working point, a Minimax optimization is proposed:

p? = arg min
p

max
λ

Var {f (g(λ,p))} ,

which concentrates on minimizing the highest variance whithin the measurement
range.

As comparison in [THB13] several merit functions were presented. To link this re-
sult to these, a slightly different noise model (2.1) is assumed. For this comparison
the covariance matrix Cov = σ2I is modeled with constant standard deviation σ
and identity matrix I. In this case the Cramér-Rao lower bound can be expressed
as:

Var{f(λ)} =

(
∂g>(λ,p)

∂λ
(σ2I)−1

∂g(λ,p)

∂λ

)−1
=

1

σ2

(∥∥∥∥∂g(λ,p)

∂λ

∥∥∥∥−1
2

)2

, (3.1)

which is identical to the proposed ”sensitivity” merit function in [THB13] and
reflects the result in a different light.

Unfortunately, this kind of experimental optimization will fail due to the non-
linearity of the CCT sensor model. The model g(λ,p) is highly non-linear and
has in particular an oscillating character. Optimizing only the lower bound of the
estimation variance will lead to an ill-posed estimation problem. The well posed
property will be lost, because the oscillating character of g(λ,p) will cause ambi-
guities. To clarify the problem, an example is provided in the next section.

3.2 Example - Effect of Non-Linear Models

The following example is intent to emphasize the problem of a non-linear CCT
sensor model. Especially, the oscillating function character leads to ambiguities
and causes the estimation problem to be ill-posed. The example is adapted from
[VDBCT03]. Instead of investigating the CCT sensor model an simplified sensor
model is assumed:

gµ(λ,p) =
1

2
sin (p1(λ− p2)) +

1

2
, (3.2)
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Figure 3.1: Blue graph depicts the non-linear (sinus like) relationship between
the gray value gµ(λ,p) and λ. Furthermore, the normal distribution p(g|λ0) is
depicted and the gradient at λ0 as part of the Cramér-Rao lower bound. Finally,
the posteriori probability density function is illustrated, too. The posteriori shows
four peaks with equal probability. However, this ambiguity is not recognized by the
gradient used to calculate the Cramér-Rao lower bound. The example is adapted
from [VDBCT03].

with clear oscillating character. The model is depicted in Fig. 3.1 as blue graph.
This model lead to an estimation process which is ill-posed due to ambiguities.
Assuming a measurement (observation) of g = 200, there is no evidence to prefer
one of the four estimates: λ̂ ∈ {415, 460, 565, 610}. The task of a experimental
design is to remove the ill-posed property and too ensure measurements with low
uncertainty. The key idea is, that this can be done in parallel if the current esti-
mation variance is minimized. Ambiguities in the estimation process increase the
uncertainty of the estimate and thus the variance of the estimator.

Assume that the frequency p1 and the offset p2 in the example model (3.2) would
be adjustable design parameters of the experiment. Then, an optimal solution for
a setup with well posed estimation process is shown in Fig. 3.2. The depicted
solution is optimal, because every higher frequency p1 would introduce an ambi-
guity. On the other side, a lower frequency would decrease the gradient ∂gµ/∂λ
and according to the Cramér-Rao lower bound increase the variance of the estima-
tion. The step between the result depicted in Fig. 3.1 and the proposed preferred
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Figure 3.2: Blue graph shows a sensor model g(λ) in optimal experimental set-
tings. The estimation problem is well-posed and the uncertainty for this case is
minimal.

result in Fig. 3.2 is optimizing the experimental design. However, the Cramér-
Rao lower bound approach will lead to a contrary result. According to equation
(3.1), the lower bound involves a sensor model gradient. With view to the exam-
ple model (3.2) an optimized design would increase the frequency p1 to infinity,
because:

∂g(λ,p)

∂λ
=

1

2
cos(p1(λ− p2))p1 ≤

1

2
p1.

This shows clearly that ambiguities are not recognized by the local gradient.

In the following two sections experimental design approaches are presented, which
incorporate a specific estimation function. If e.g. an Maximum-a-Posteriori Prob-
ability (MAP) estimator is used, the estimate is just the maximum of the poste-
riori probability density p(λ|g, λ0). As depicted in Fig. 3.1 the posteriori prob-
ability density function consists of four asymmetric gaussian like distributions.
These four peaks contain the information of an increased measurement uncer-
tainty, caused by ambiguities due to the non-linear sensor model. Utilizing the
MAP estimator variance will prevent the experimental design optimization to turn
into an ill-posed problem.
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3.3 Bayesian Experimental Design

The last two sections show that the Camér-Rao lower bound variance measure is
not suitable for non-linear models. This section overcomes the disadvantages of
a lower bound by involving a estimation function. Restricting to a specific esti-
mation function allows to access the variance without approximation. As shown
in example 3.1, ambiguities heavily increase the estimation variance. Minimizing
this variance in an experimental design optimization will prevent ambiguities in
the estimation process.

The idea to incorporate a concrete estimation function in experimental design does
not justify to change over from a frequentistic to a Bayesian approach. It’s rather
a free decision of the author. In [CV95] a general approach of Bayesian exper-
imental design was presented. An experimental design is defined by the design
variables p and observations g which will be made in the experiment. Based on g
an estimation function λ̂ = f(g;p) estimates the unknown parameter of interest
λ. Then, the best Bayesian experimental design is given by [CV95]:

p? = arg min
p

min
f∈F

∫ ∫
u(f, λ,p,g)p(λ|g,p)p(g|p)dλdg. (3.3)

The utility function u(f, λ,p,g) reflects the purpose of the experiment and with
the idea of a variance measure it is chosen to u(f, λ,p,g) = (λ− λ̂)2. The double
minimization takes into account, that both, a suitable estimation function f out of
a set of estimation function F and the best design parameters p must be chosen.
Suitable estimation function are e.g. the Bayesian estimator:

λ̂ =

∫
λp(λ|g,p)dλ

and the Maximum a posteriori (MAP) estimator:

λ̂MAP = arg max
λ

p(λ|g,p).

Without prove, the MAP estimator is preferred, because the non-linear model will
cause an asymmetric posterior probability density function which will cause a bias
for the Bayesian estimator. Although, the Bayesian estimator is proven to have the
lowest variance [Ber85](p.136).

3.4 Worst Case Experimental Design

The approach of the Bayesian experimental design (section 3.3) contains a hidden
risk. The integral over λ causes an averaging over all possible working points.
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Thus an experimental design can be improved by increasing the measurement un-
certainty of a single working point for the benefit for others. However, a sensor is
only as good as its worst working point and this behavior is undesirable. In litera-
ture, the worst case optimization in combination with experimental design is rarely
studied. A related idea Maximum Mean Squared Error optimization was proposed
by [SSW89] and [SWMW89]. In [Coh96],[SHL12] an similar idea was discussed.
As a side note, the following formulation of a merit function is neither purely fre-
quentistic nor Bayesian. For a given working point λ0, the squared difference of
an estimator function λ̂ = f(g) is given by:

u(f, λ0,p,g) = (λ̂− λ0)2,

as a function of the observations g and its corresponding random variable G. Ac-
cording to [Coh96] the expected mean squared error (MSE) is given by:

EMSE{G} =

∫
(λ̂− λ0)2p(g|λ0,p)dg.

This equation evaluates the expected MSE at the working point λ0. The best worst
case experimental design is then given by:

p? = arg min
p

max
λ0

∫
(λ̂− λ0)2p(g|λ0,p)dg.

In contrast to (3.3) the optimization of the selected estimation function was ne-
glected.

4 Conclusion

The research points out, that the Cramér-Rao lower bound implicit linearizes a
sensor model. Using the lower bound to optimize the experimental setup for non-
linear models is problematic. For the application to optimize interference filters for
a CCT sensor, the optimized experimental design results in a ill-posed estimation
task. To avoid this problem an alternative approach is proposed. Specifying a con-
crete estimator, the estimation variance can directly be minimized. Open questions
are an experimental validation with a comparison between the Bayesian experi-
mental design and the proposed worst case experimental design. In an former pub-
lication [THB13] the problem of an ill-posed estimation process was avoided by an
additional merit function. A comparison with this approach would be interesting,
too. Another open question is the selection of a suitable estimation function.
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A topic that was not tackled is the numerical realization in an optimization frame-
work. Due to the non-linearities, the overall optimization problem is highly non-
convex. The found optimized experimental design will be a local optimum with
high probability. For this reason, the calculation complexity will influence the
quality of experimental design, too. For the application itself, the calculation speed
is of great importance.
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