
Paths and Matrices of Propagation

A concept to trace the impact of modifications on
software components 1

Caroline Berthomieu, Ralf-Detlef Kutsche, Stefan Mann
caroline.berthomieu@isst.fhg.de, rkutsche@cs.tu-berlin.de, stefan.mann@isst.fhg.de

64/02
December 2002

1 This work has been supported by the German Federal Ministry of Education and Research (Bun-
desministerium für Bildung und Forschung BMBF) as part of the research project Continuous En-
gineering for Evolutionary I&C Infrastructures (Kontinuierliches Engineering für evolutionäre IuK-
Infrastrukturen KONTENG) under grant 01IS901C





Abstract

Because of growing market requirements, software systems have become comple-
xer than ever. Recently, component-based software engineering has been presented
as a solution to face to this problem. A well defined component model makes com-
ponent based software systems robust and long-lasting. Nevertheless, due to their
complexity, those systems are still difficult to maintain or evolve. Indeed, the impact
of a modification grows proportionally with the complexity of the system.
In this paper, paths of propagation and the concept of matrix of propagation will be
introduced as a technique to trace the impact of required modifications on the system.
More precisely, it guides the engineer by tracing the impact of a given modification of
a component on other components of the system.

Paths and Matrices of Propagation 1



Contents

Contents

1 Introduction 4

2 Component concepts 5

2.1 Structure of a component 5

2.2 Views on component 6

2.3 Component dependencies 8

2.4 Compositionality of components 11

3 The concept of »matrix of propagation« 12

3.1 Notations and semantics 12

3.2 The matrix of propagation as assembly of several concepts 14

3.3 Propagation paths 16

3.4 Example 17

3.4.1 Addition of a service 18

3.4.2 Deletion of a service 19

3.4.3 Modification of a service 22

4 Conclusion 27

5 Bibliography 28

Paths and Matrices of Propagation 2



List of Figures

List of Figures

1 Structure of a component 5

2 Blackbox, greybox and whitebox views 7

3 Detailed whitebox view 7

4 Detailed greybox view 8

5 »Use-relation« between two components 9

6 Direct and indirect dependencies in a component 9

7 Compositionality of components 11

8 How the matrix can be read 13

9 The matrix of propagation 15

10 Subsystem S 17

11 Subsystem S in a Greybox view 18

Paths and Matrices of Propagation 3



Introduction

1 Introduction

Software systems have become more complex than ever. Today engineers face the
biggest challenge to bring out dependable software systems with new technologies
and features, but within a short time. These systems should also be easily modifiable
without to become any harm. One promising solution is component based software
engineering(CBSE). CBSE advocates the production of software systems by using
standardized, prefabricated, stable components. Using CBSE brings down the overall
time and cost without having to compromise on quality.

It is well known that software systems often have a longer life than expected. Since
the market requirements change continuously, software systems need to be modified
appropriately to keep in pace with this development. This is also valid in the case of
systems built out of components. A minor change or replacement of a component
could produce undesirable impacts on the system. It is therefore inevitable to closely
study the effects of the modification of any component on the whole system.

This paper discusses the problems faced during the lifecycle of a component based
software system. Here the concept of the matrix of propagation is presented as a
solution to diagonize the problems faced while modifying components of a system.

Paths and Matrices of Propagation 4



Component concepts

2 Component concepts

A component model defines a set of standards for the structure of components and
the interaction between them. In component model considered in the project »«, com-
ponents will also be considered to be »composable« [2, 3].
In this section, we will first discuss about the structure of components, then three
different views of components will be presented. In a third part, the notion of relation
between components or between parts of components will be developed. Finally, the
compositionality of components will be discussed.

2.1 Structure of a component

Components are coherent software units which can be put together in order to con-
stitute a complete »composable« software system. They encapsulate a specific func-
tionality of the system. In this way, they have well defined interfaces which describe
their functionality, i.e. the services they provide. A service can be defined as a type
offered by a specific component. Each component implements a type and manages
a set of instances of this type [12]. The interfaces allow to hide the implementation
details of the component. Due to this implementation hiding, it is easier to modify or
to replace a component.

In the CSE component model, a component consists of 3 parts, namely an export
interface, an import interface and a body.

Export

Body

Import

Figure 1 Structure of a component

The export interface

The export interface holds the functionality of the component. It contents the ser-
vices that the component provides to its environment, i.e. the services that it offers to

Paths and Matrices of Propagation 5



Component concepts

other components. Those services are implemented in the body of the component,
or in another component. In the second case, the service is imported from the other
component via the import Interface.

The import interface

The import interface states the requirements of the component on other components.
It specifies services that are needed by the body in order to implement properly the
services provided by the component (i.e the exported services). In this way the im-
port interface shows the dependency of the component on other components in its
environment.
Note that every service of the import interface is considered to be used in the body.

The body

The body of a component contains the implementation of the services that are provi-
ded in the export interface. In this way, the implementation details of the component
are transparent to the user.

2.2 Views on component

Generally speaking there exist 3 views on components, namely the blackbox, the
whitebox and the greybox view. These views are based on the visibility of the imple-
mentation details of a component to a user.

The blackbox view

In this view, the user does not get any information about the body of the component.
He only sees which services the component offers and requires, i.e. only the export
and the import interfaces are visible.

The whitebox view

In contrast to the blackbox view, the implementation details of the component appears
to the user. Here, the export and import interfaces, as well as the body are completely
visible (see figure 3).

Paths and Matrices of Propagation 6



Component concepts

Export

Import

Body

Export

Import

Body

Export

Import

Body

Figure 2 Blackbox, greybox and whitebox views

Component A

SAEE11 SAEE22 SAEE33

SAII11 SAII22 SAII33

SA1EE11

SA1II11 SA1II22 SA1II33

AA11 AA22
SA2EE11SA1EE22

Figure 3 Detailed whitebox view

Paths and Matrices of Propagation 7



Component concepts

The greybox view

This view provides more informations about the component than the blackbox view,
but it hides some details of the implementation of the component which are shown in
the whitebox view. Indeed, the user can see the relations between the services of the
export and the import interface of a component independently from the content of the
body (see figure 4).

Component A

SAII11 SAII22 SAII33

SAEE11 SAEE22 SAEE33

Figure 4 Detailed greybox view

2.3 Component dependencies

In this section, two kinds of dependencies will be developed, namely inter-dependencies
between components, and intra-dependencies between component parts.

Inter-dependencies between components

Components are related to each other with »use-relations«. These relations are uni-
directional and show the dependency of a component on another (see figure 5).

Most of the time, such a relation hides the utilization of connectors which have the
task to »glue« components together.
More precisely, a connector binds the import interface of a component (i.e. its require-
ments) with the export interface of a component which provides the required services.
The connector establishes the communication between components, or coordinates
them. In this paper, connectors are considered to be components, therefore they will
not be dealt in detail. For more details, see [2, 3, 5].

Paths and Matrices of Propagation 8



Component concepts

Export

Import

Body

Compon ent A

Export

Import

Body

Compon ent B

A uses B

In details

Export

Import

Body

Compon ent A

Export

Import

Body

Compon ent B

A uses B

In details

Export

Import

Body

Compon ent A
Export

Import

Body

Compon ent B

SSIIAA1 uses SEEAA
22

SSEEAA
11 SSEEAA

22

SSIIAA11 SSIIAA33SSIIAA22

SSIIAA
3 uses  SEEAA

11

(A)

(B)

(C)

Figure 5 »Use-relation« between two components

Export

Body

Import

S1 S2

S4S3

S5

: indirect dependency
: direct dependency

Figure 6 Direct and indirect dependencies in a component

Paths and Matrices of Propagation 9



Component concepts

Intra-dependencies between the parts of a component

There are two kinds of dependencies between the parts of a component (see figure
6).

Direct dependencies

The direct dependencies bind the services of the export or import interface with the
body of of a component. They represent the dependencies shown in the whitebox
view of a component (see figures 6) and 3. There are two kinds of direct dependen-
cies, namely:

1 Direct dependencies between the export interface and the body:
All the services provided by the component are defined in the export interface.
Each of them is directly dependent on its implementation, which is made in the
body of the component.

2 Direct dependencies between the body and the import interface of a component:
Some components have requirements on other components. These requirements
are services which are imported through the import interface of the component.
The body of the component needs the imported services to properly achieve the
implementation of its functionality (i.e. the services in its export interface). So, the
body is directly dependent on the services of the import interface.

Indirect dependencies

The indirect dependencies are used in the greybox view of components. In order to
get a quick overview of a component, it is sometimes relevant to see the relations
between the services of the export and the import interface, without considering the
whole implementation made in the body. In this way, indirect dependencies can be
seen as an abstraction of several direct dependencies which bind a service in the
export interface to a service in the import interface (see figures 4 and 6).

Paths and Matrices of Propagation 10



Component concepts

2.4 Compositionality of components

The composition of components is the art of combining components with each other
in order to create a bigger component (see figure 7). There are two categories of
components in component systems:

– The composite components: they contain other composite components (subsys-
tems) as well as non-compositional component. They can also be dependent on
other components. In this way, a subsystem can be also seen as a composite
component.

– the non-compositional components: their body contain the detail of their imple-
mentation (e.g. code), but no other component.
Note that in this paper, we will always consider non-compositional components in
a greybox or blackbox view in order to hide the details of their body.

The compositionality of components is a good technique to achieve certain levels of
abstraction of the system. The designer has the possibility to hide details of his model
by considering a black box or a more precise greybox view (see chapter 2.2) of some
of the composite components of the model.

Compon ent A
Export

Body

Figure 7 Compositionality of components

Paths and Matrices of Propagation 11



The concept of »matrix of
propagation«

3 The concept of »matrix of propagation«

At a certain stage of a software lifecycle, designers or developers need to modify so-
me components. Before the modification is actually done, they need to check whether
the component they want to modify is dependent on other components or vice versa.
This verification would avoid dire consequences on the whole component system.
The aim of the matrix of propagation is to guide the tracing of dependencies between
components, and to give to those persons a better view of the impacts of the modifi-
cation of a component on the other components of the system. Thus the matrix helps
the process of evolution of the whole software.
Note that in this chapter, the component-based systems which are taken into consi-
deration (before modification) are assumed to be consistent and reduced:

– Their design must be free of ambiguities or errors (»consistent«),

– Dead code 1 must be avoided (»reduced«).

3.1 Notations and semantics

The modal logic is the study of the deductive behavior of the expressions »it is ne-
cessary that« and »it is possible that« [9].

During their lifecycle, component-based software systems have to be frequently mo-
dified in order to respond to a more and more challenging demand. The matrix of
propagation has been created to trace the impact of such modifications on the sys-
tem. More precisely, it shows if a given modification on a component has necessarily,
probably, or even no impact on other components. Therefore, the symbols »necessi-
ty« and »possibility« of the modal logic have been also used to specify the matrix of
propagation (see figure 8).

1 Dead code can be found in the import interface, as well as in the body of a component. (e.g. in the
import interface: if any imported service is not used by the body, in the body: if there is any element
or piece of code in the body which does not play any role by the specification of any service of the
export interface.

Paths and Matrices of Propagation 12



The concept of »matrix of
propagation«

� : At least one element must be changed. (In the modal logic, this symbol means
»it is necessary that...«)

� : An element (or more) could need a modification. (In the modal logic, this symbol
means »it is possible that...«).
Note: Here, only a person who has a certain comprehension of the system is able
to decide of the propagation of the considered modification

– : not affected

Note : The possible modifications mentioned just before are also associated with the
notion of dead code creation. Here, three cases are possible. Some Modifications
will necessarily bring out dead code, whereas it is by other ones only a possibility.
In the last case, the modifications don’t bring out any dead code.

A prop B: It is the field of the matrix where line A and column B meet together.
Figure 8 shows how the matrix can be read. An action2 will be done on a part3 of
a component. We can see in the matrix which implied effect has this action on an
affected component part, see the following formula:
�Action Part1 prop Part2:

will_be_modified(Part1) ) � is_affected(Part2)

K: in the Matrix of propagation, K is the component which has to be modified.

Affected 
Compon ent Part
(Export, Body or Import)

Action  on
Compon ent 
Part

(Add, 
Remove, or
Modify)

Eff ect:

The affected component part 
must be changed

Initial
Change on
a Compon ent

The affected component part 
could be changed

No impact on the affected 
component part 

::

::

::

Figure 8 How the matrix can be read

2 i.e. add, remove or modify
3 i.e. export interface, body, or import interface

Paths and Matrices of Propagation 13



The concept of »matrix of
propagation«

3.2 The matrix of propagation as assembly of several concepts

With this matrix, the designer or the developer can gain an overview of the mecha-
nisms in order to trace all kinds of dependencies in the software he has to modify.

The component model introduced in chapter 2 shows that a component consists of
three parts, namely the export interface, the body and the import interface. Modifica-
tions can be required in each of those parts. Three kinds of modifications have been
defined in the matrix of propagation:

Add: A service has to be added in one of the tree component parts.

Remove: A service has to be deleted from one of the tree component parts.

Modify: A service has to be syntactically as well as semantically modified in one of
the tree component parts.

Note that in this paper, only modifications on services will be considered. Modification
of properties, as well as behavioral modification have been omitted.

The first step before tracing the impact of a given modification is to identify which kind
of modification it is about (e.g. »deletion of an element from the body of a compo-
nent«). Several kinds of modification have been classified in the first column of the
matrix. For example, the »deletion of an element from the body of a component« can
be repaired in the section »Body«, line »Modify« (see figure 9).

The matrix of propagation covers two main concepts to trace the impact of a mo-
dification. First, it can help to trace the impact of a modification into the modified
component. For that, the modified component must be in a whitebox, or in a greybox
view (see chapter 2.2).
The impact is shown in the second column (entitled »Modified Component«). If the
modified component is in a greybox view, only the light grey parts into the column are
relevant. Else, in a whitebox view, only the white parts have to be considered.

Secondly, the matrix helps by tracing dependencies between components. Here, the-
re are two cases to consider:

Paths and Matrices of Propagation 14



The concept of »matrix of
propagation«

Export

Body

Expor t Body I mpor t
Si ngl e

I mpor t er   
Set of

I mpor t er s

Add

Add

Add

Remove

Remove

Remove

Mod i f y

Mod i f y

Mod i f y

Set of
Expor t er s

Importer 
Compon ents

Exporter 
Compon ents

Import

Si ngl e 
Expor t er  

Modified 
Compon ent

Modified 
Compon ent

**

**

**

Figure 9 The matrix of propagation

—————————–
�These modifications may imply a dead code creation (see chapter 3.1).

– When the export interface of a component has to be modified, the modification
can have an impact on the components which use it. In this case, the matrix shows
either if a certain component is affected by the modification (column Importer com-
ponents, subcolumn I), or the impact on the set of all the component which use
the functionality of the modified component at all(column Importer components,
subcolumn I’).

– Symmetrically, the modification of the import interface of a component can have
an impact on the component it uses 4. Here also, the matrix considers the case of
one certain component (column Exporter components, subcolumn E), or the set
of components used by the modified component (column Exporter components,
subcolumn E’).

4 because the export interface of these components could also have to be changed in order to cover
the demanded functionality

Paths and Matrices of Propagation 15



The concept of »matrix of
propagation«

3.3 Propagation paths

Step by step, the matrix shows the impact of an initial modification of a given element
in a component on other elements in the same component and in others. For example,
let us consider that »n« (n 2 N) is the number of the elements concerned by the initial
modification. Due to the initial modification, a given number of them (»m«, where m
2 N), have also to be modified.
Thus the initial modification induces »m« new modifications in the system. Each of
those induced modifications must also be verified with the matrix of propagation, and
so on.

In order to get an overview of the impact of the initial modification, all the induced
modifications will be registered in the form of a path. This path is called »Propagation
Path«.

Since the system is considered to be consistent and reduced (see introduction of
chapter 3), no induced modification will be left unhandled. A cycle could appear in
the propagation path. In such a case, the engineer should be able know how the
propagation goes on.

Paths and Matrices of Propagation 16



The concept of »matrix of
propagation«

3.4 Example

AA

SAEE11 SAEE22 SAEE33

SAII11 SAII22

SA1EE11

SA1II11 SA1II22

A1
SA2EE11SA1EE22

SBEE11 SBEE22

SBII11 SBII22

SCEE11

SCII11

SDEE11

SD1EE11

SD1II11

D1 D2

SDEE22

SD2EE11 SD2EE22

SEEE11

BB CC

DD EE

SA2II11

A2

Figure 10 Subsystem S

The example of figure 10 illustrates a subsystem S which contains 9 components.
Components A and D are compositional components which contain each of them 2
components, respectively A1 and A2, and D1 and D2. Components B, C, E, A1, A2,
D1, and D2 are in a greybox view. For example, we can imagine that they are non-
compositional, or still in the design phase, and only their interfaces are defined. In the
following sections, we will trace the impact of the three kinds of modifications on this
system, namely:

1 Addition of the service SCI2 in the import interface of the component C

2 Deletion of the service SAE3 of the export interface of the component A

3 Modification of the service SAE1 of the export interface of the component A

In the first case (addition of SCI2), we will trace the dependencies from a greybox
view. The second and third example (deletion of SAE3, and modification of SAE1)
will be studied from both greybox and whitebox view.

Paths and Matrices of Propagation 17



The concept of »matrix of
propagation«

AA
SAEE11 SAEE22 SAEE33

SAII11 SAII22

SBEE11 SBEE22

SBII11 SBII22

SCEE11

SCII11

SDEE11 SDEE22 SEEE11

BB
CC

DD EE

Figure 11 Subsystem S in a Greybox view

3.4.1 Addition of a service

Let us consider that a service named SCI2 has to be added in the import interface
of the component C (see figure 11).

The matrix of propagation shows that the addition of a service in an import interface
can have an impact on an Exporter component.
Indeed, if the new required service is not already exported by any component, either
an existing component has to be modified in order to provide it (Column »Exporter
Components«, part »Single Export« of the matrix), or a new component which will
export it has to be added in the system (Column »Exporter Components«, part »Sum
of Exports« of the matrix). For the example, we will decide to add a new service
named SEE2 in the export interface of E on which will depend SCI2.
Thus, the propagation path of the addition of SCI2 will start as follow:

AddCI (SCI2)! EE(SEE2)

Now, we must trace the impact of the addition of SEE2.
The matrix shows that the addition of a service in the export interface of a compo-
nent could have an impact on the import interface of the same component. It means
that, in order to provide the new service SEE2, E can possibly require the import of
any service from another component. Let us consider that E requires a new service

Paths and Matrices of Propagation 18



The concept of »matrix of
propagation«

»SEI1« in order to provide SEE2.
Thus, the propagation path of the addition of SCI2 will continue as follow:

AddCI (SCI2)! EE(SEE2)! EI(SEI2)

We are now in a similar case as at the beginning of this example: we must check the
addition of SEI2 in the import interface of E. After verifying in the matrix like in the
case above, we know there are two possibilities: The service SEI2 depends on an
already exported service, or on a new one. Let us consider that SEI2 matches with
the service SDE2. In this case, the addition of SEI2 requires no further addition or
modification of any other service. Thus, the propagation path of the addition of SCI2

is:

AddCI (SCI2)! EE(SEE2)! EI(SEI2)

3.4.2 Deletion of a service

In this paragraph, we will trace the impact of the deletion of the serviceSAE3.
Before deleting this service, it is preferable to overview the consequences of such a
deletion.

3.4.2.1 Deletion of a service from a greybox view

In this paragraph, we will trace the impact of the deletion of the service SAE3,
considering A from a greybox view (see figure 11).

From a greybox view, the matrix of propagation shows that the deletion of an exported
service may have an impact on the import interface of the same component, and on
at least one of the Importer components.

First, let us consider the list of the Importer components of A. We must search in the
example the components which import the service SAE3 from A. Figure 11 shows
that the service SCI1 of the import interface of the component C depends on SAE3.
Thus, if SAE3 is deleted, the service SCI1 required by component C is not being
performed anymore. The designer has now 3 possibilities:

Paths and Matrices of Propagation 19



The concept of »matrix of
propagation«

1 There is some component in the system providing a service which matches with
SCI1. In this case, the use-relation between SCI1 and SAE3 must be deleted
and a new relation between SCI1 and the new service must be created. This
case corresponds to a modification of SCI1.

2 The designer modifies any component in the system in order to provide a service
which matches with SCI1. In this case also, the use-relation between SCI1 and
SAE3 must be deleted and a new relation between SCI1 and the new service
must be created.This case corresponds to a modification of SCI1.

3 The designer modifies the component C in the way that it does not require the
functionality of SCI1 anymore. In this case, SCI1 will be deleted.

Figure 11 shows that SCI1 is the only service depending on SAE3. So, the propa-
gation path of the deletion of SAE3 will begin as follows:

RemoveAE (SAE3)! CI(SCI1)

We know that SCI1 has to be either deleted or modified. We must now consider the
services depending on SCI1. The matrix of propagation shows that in the case of a
deletion or modification of an imported service, the services of the export interface of
the same component may be affected.
From a greybox view, we can see that the only service depending (indirectly) on it
is SCE1. In this way, SCE1 could be affected by the modification. This implies that
SCE1 must also figure in the propagation path.
Moreover, the example does not show which component depends on the service
SCE1. In this way, the tracing of the impact of the deletion of SAE3 on the Importer
components of A can be closed. The resulting propagation path is:

RemoveAE (SAE3)! CI(SCI1)! CE(SCE1)

In the second step, we must consider the impact of the deletion of SAE3 on the
import interface of A. The matrix shows that the deletion of an exported service may
create dead code in the import interface of the same component.

Figure 11 shows that SAE3 only depends (indirectly) on SAI2. Moreover another
service named SAE1 depends on the same service. Thus, if SAE3 is deleted, there
will be no dead code creation in the import interface of A. The tracing of the impact of
this deletion is in this case closed.

To summarize, the propagation path of the deletion of SAE3 by considering S in a
greybox view is the following:

RemoveAE (SAE3)! CI(SCI1)! CE(SCE1)

Paths and Matrices of Propagation 20



The concept of »matrix of
propagation«

3.4.2.2 Deletion of a service from a whitebox view

After having traced the impact of the deletion of SAE3 from a greybox view, we
arrived to the conclusion that another component would be affected, namely compo-
nent C. The resulting propagation path was the following:

RemoveAE (SAE3)! CI(SCI1)! CE(SCE1)

Now, we can observe from the whitebox view what will happen in the bodies of the
affected components, namely A and C. The matrix of propagation shows that the
deletion of an exported service may create dead code in the body of the component.
In the figure 10, we can see that component A is a composite component which
contains two subcomponents A1 and A2. Component C on the other hand, is still
shown as a greybox. Thus, we can see which impact has the deletion of SAE3 into
the body of A.
If we look in details, the deletion of SAE3 implies that the service SA2E1 on which
it depends won’t be used anymore into the system. In order to maintain a reduced 5

system, the service SA2E1 must be also removed from the export interface of A2.
This deletion must figure in the propagation path.

Now, we are in the same case as before: the deletion of a service in the export inter-
face of a component, namely SA2E1. Since A2 only provides the serviceSA2E1, the
deletion of this one implies a deletion of the whole component (because the system
must be maintained reduced).

We must now verify if the deletion of A2 has any impact on the import interface of
A. The matrix of propagation shows that the deletion of an element in the body of a
component may create dead code in its import interface. Figure 10 shows that the
service SA2I1 of the import interface of A2 depends directly on the service SAI1.
Moreover SA1I2 also depends on SAI1. So, the deletion of SA2I1 has no impact on
the service SAI1 which is still needed by SA1I2. In this way, the deletion of SAE3

implies only the deletion of component A2 in the body of A.

If we summarize the whole in a propagation path, this one sees as follows:

RemoveAE (SAE3)! CI(SCI1)! CE(SCE1)
&A2E(SA2E1)! A2

5 It is a prerequisite for using the matrix of propagation (see introduction of chapter 3)

Paths and Matrices of Propagation 21



The concept of »matrix of
propagation«

3.4.3 Modification of a service

The third kind of change we want to trace is the »modification« of a service. The word
modification is quite abstract, so that the expression »modification of a service« can
have a lot of significations. It can mean for example that the static specification, or the
dynamic specification of the service has to be changed.
The goal of this paper is first to introduce the matrix of propagation as a method
to trace dependencies in component-based software systems. In this way, we will
consider the notion of »modification« in its global meaning.
In the following paragraphs, we will trace the impact of a modification of the service
SAE1 on the components A, B, C, D and E. We will start with a greybox view of both
components, and then in more details with a whitebox view.

In this paper, we considered that if a given modification of an element has an impact
on another element, this impact is a modification or a deletion of the second element
(in case of deletion, the deleted element would be replaced by a new one). In this
section, in order to simplify the example, we will consider that the impact of a modi-
fication is always modification (for the cases »addition« and »deletion«, see sections
3.4.1 and 3.4.2).

3.4.3.1 Modification of a service from a greybox view

From a greybox view, the matrix of propagation shows that the modification of ser-
vice in an export interface may have an impact on the import interface of the same
component, and has an impact on at least one of its Importer components (since the
system is reduced, at least one component imports the modified service).
Figure 11 shows that one service called SBI1 depends directly on SAE1, and that
SAE1 depends indirectly on the two services SAI1 and SAI2. In this way, if SAE1

is modified, all SBI1, SAI1, SAI2 could be concerned, i.e they could also need a
modification. The propagation path of the modification of SAE1 will start with three
cases, as follows:

%AI(SAI2)

ModifyAE(SAE1)! AI(SAI1)
&BI(SBI1)

The matrix of propagation shows that the modification of service in an import inter-
face may have an impact on the export interface of the same component, and has an
impact on at least one of its Exporter components (since the system is reduced, the
modified service depends on another service which will also have to be modified).
Now we must consider the three potential modifications of SBI1, SAI1, SAI2. The

Paths and Matrices of Propagation 22



The concept of »matrix of
propagation«

example shows that only one service depends on SBI1, namely SBE1. Moreover,
SAI1 depends on SDE1, and SAI2 on SEE1. Thus, the service SBE1 could have
to be modified , and SDE1, and SEE1 will have to be modified. The propagation path
of the modification of SAE1 continues as follows:

%AI(SAI2)! EE(SEE1)

ModifyAE(SAE1)! AI(SAI1)! DE(SDE1)
&BI(SBI1)! BE(SBE1)

In these three new states of the propagation, the tracing method is the same like in
the beginning: a service of the import interface has to be modified, and the modifica-
tion will probably have an impact on imported services... and so on. If we continue so
on the basis of the example of figure 11, we will obtain the following propagation path:

AI(SAI2)! EE(SEE1)
% &AE(SAE3)! CI(SCI1)! CE(SCE1)

ModifyAE(SAE1)! AI(SAI1)! DE(SDE1)

&BI(SBI1)! BE(SBE1)! BI(SBI2):::

:::! AE(SAE2)! AI(SAI2):::

As we can see in this propagation path, it can happen that an element appears several
times (see blue line in the propagation path). In such a case, the designer has to
decide if the modifications on the same element are compatible. In order to simplify
the example, we considered that the modifications are always compatible. In this way,
both modifications of SAI2 have the same impact. Thus, the propagation of one of
both cases would be stopped.

Paths and Matrices of Propagation 23



The concept of »matrix of
propagation«

3.4.3.2 Modification of a service from a whitebox view

After tracing the impact of the modification of SAE1 from a greybox view, we will
go into more details with a whitebox view of the components.
The composition of components was hided in the greybox view. Now, we have to
repair the impact of the modification of their imported and exported services on their
bodies. Here, two cases can appear:

1 The propagation path studied from a greybox view shows the direction of the pro-
pagation of a modification through indirect dependencies. For example SAE1 !

SAI1 shows that the modification of SAE1 has indirectly an impact on SAI1, or
SAI2 ! SAE1 shows that the modification of SAI2 has indirectly an impact on
SAE3. This indirect impact shows actually that »something« happens between
SAE1 and SAI1 (or between SAI2 and SAE3)into the body of A. This »some-
thing« will be traced in details from the whitebox view.

2 The propagation path studied from a greybox view also shows standalone services
of an interface of composite components (the last service of any branch of the
path, e.g. SDE1). The modification of such services must also be traced into the
body of the component.

Let us begin with the modifications hidden by the indirect dependencies of compo-
sitional components. For that, we have to repair such dependencies in the propa-
gation path of paragraph 3.4.3.1. They are the following: AE(SAE1) ! AI(SAI1),
AE(SAE1)! AI(SAI2),AE(SAE2)! AI(SAI2), andAI(SAI2)! AE(SAE3).
The matrix of propagation shows that the modification of a service in the export inter-
face has necessarily an impact into the body. After seeing figure 10, we can conclude
that AE(SAE1) ! A1E(SA1E1). Since A1 is in a greybox view, we can apply the
same rules as in chapter 3.4.3.1, and obtain the following result:

AE(SAE1)! A1E(SA1E1)! A1I(SA1I1)
&A1I(SA1I2)

Here, the matrix shows that the modification of an element in the body of a compo-
nent may create dead code into the import interface. Thus, with the same example,
we will obtain:

AE(SAE1)! A1E(SA1E1)! A1I(SA1I1)! AI(SAI1)
&A1I(SA1I2)! AI(SAI2)

If we do the same for the indirect dependency AE(SAE2) ! AI(SAI2), we will
have: AE(SAE2)! A1E(SA1E2)! A1I(SA1I2)! AI(SAI2).

Paths and Matrices of Propagation 24



The concept of »matrix of
propagation«

We will now study the case of the indirect dependency corresponding toAI(SAI2)!

AE(SAE3). The matrix shows that the modification of a service in the import inter-
face of a component has necessarily an impact into its body. Indeed, figure 10 indi-
cates that SA2I1 depends directly on SAI2. In this way, we obtain AI(SAI2) !

A2I(SA2I1). Since A2 is in a greybox view, we can apply the same rules as in chap-
ter 3.4.3.1. The result is the following:
AI(SAI2)! A2I(SA2I1)! A2E(SA2E1)
The matrix shows that the modification of an element into the body of a compo-
nent has necessarily an impact on its export interface. For the case AI(SAI2) !

AE(SAE3) (which was studied from a greybox), view we will have in a whitebox view
the following path:

AI(SAI2)! A2I(SA2I1)! A2E(SA2E1)! AE(SAE3)

As a last step, we will trace the impact of modifications of services mentioned at the
end of a path (like explained in number 2). In the propagation path from paragraph
3.4.3.1, we can find such a service, namely SDE1. If we use the matrix like just
before, we can see that the modification of this exported service has an impact on
the service SD1E1. Since D1 is in a greybox view, we can adopt the same method
like in paragraph 3.4.3.1 to find out that the modification of SD1E1 has an impact
on SD1I1, and that if SD1I1 is modified, SD2E1 will be also concerned. Moreover,
since SDE2 directly depends on SD2E1, the modification of SD2E1 concerns also
SDE2. The modification of SDE1 will be traced from a whitebox view as follows:

DE(SDE)1! D1E(SD1E)1! D1I(SD1I)1! D2E(SD2E)1! DE(SDE)2

By summarizing the results of paragraph 3.4.3.1 and the results obtained in the above
paragraphs, we can say that the propagation path of the modification of the service
SAE1 of the component A is the following:

Paths and Matrices of Propagation 25



The concept of »matrix of
propagation«

A1I(SA1I2)! AI(SAI2)! EE(SEE1)
% &A2I(SA2I1):::

:::! A2E(SA2E1)

:::! AE(SAE3):::

:::! CI(SCI1)

:::! CE(SCE1)

ModifyAE(SAE1):::

:::! A1E(SA1E1) ! A1I(SA1I1)! AI(SAI1):::

:::! DE(SDE1)! D1E(SD1E1):::

:::! D1I(SD1I1)! D2E(SD2E1)

&BI(SBI1)! BE(SBE1)! BI(SBI2):::

:::! AE(SAE2)! A1E(SA1E2):::

:::! A1I(SA1I2)! AI(SAI2):::

Paths and Matrices of Propagation 26



Conclusion

4 Conclusion

The matrix of propagation was introduced to trace the impact on modifications on
components. In this paper, various aspects of using the Matrix have been evaluated.
However, it has to be taken into consideration that the Matrix of Propagation is in an
early stage of research.

Therefore, efforts must be invested in terms of research in this field in order to de-
velop and extend this idea. Since it is out of scope of this paper to investigate all
possible aspects regarding the matrix, some areas can be proposed for future works.
For example, the term »modify« in the matrix would be treated in its global meaning.
In the future, several aspects of a modification will have to be identified, e.g. seman-
tical modification of an element in a component, or modification of the behavior of
a component etc. Additionally, the notion of component properties could be introdu-
ced in the future. Properties may be added, deleted, modified, but they can also be
strengthened or weakened. Therefore a new matrix could be developed in order to
describe the impact of the modification of properties in a better way.

After achieving a certain level of maturity, the matrix should be implemented in a
software tool. This tool will automatically calculate the propagation path of a given
modification of any component of a system. Thus, it could become a very helpful tool
for any component based software developer.

On the other side the matrix cannot be considered as a universal solution for diagno-
sing all the problems arising inside a component based system. For instance, binary
codes inside components have not been considered in this paper. In such cases, the
matrix could be combined with tools and techniques which analyze these codes. Cer-
tainly more research has to be done in this direction to find out the ways to extend
it.

The component model considered in this paper is still under way. Within the scope
of the project »Continuous Software Engineering« [2][3][6], the component specifica-
tions of this component model are under research [6]. In this way, the technique of
propagation matrices as such cannot be actually used at the implementation phase
and after deployment. Future work should adapt this idea for technologies which are
currently used, e.g. Enterprise Java Beans.

Paths and Matrices of Propagation 27



Bibliography

5 Bibliography

[1] C. Berthomieu: Matrix of propagation - A concept to trace dependencies in
component-based software systems.
Diplomarbeit, Technische Universität Berlin, 2002.

[2] S. Mann, A. Borusan, H. Ehrig, M. Große-Rhode, R. Mackenthun, A. Sünbül, H.
Weber: Towards a Component Concept for Continuous Software Engineering.
Technischer Bericht 55/00, Fraunhofer ISST, Berlin,2000.

[3] A. Borusan, M. Große-Rhode, H. Ehrig, R-D. Kutsche, S. Mann, J. Padberg,
A. Sünbül, H. Weber: Kontinuierliches Engineering: Grundlegende Terminologie
und Basiskonzepte.
Interner Bericht des Projekts Kontinuierliches Engineering für Evolutionäre IuK-
Infrastrukturen, Fraunhofer ISST, 2000.

[4] M. Große-Rhode, R-D. Kutsche, F. Bübl: Concepts for the Evolution of
Component-Based Software Systems.
Technical Report 2000/11, Technische Universität Berlin, Dep. of computer
science, 2000.

[5] F. Bübl: Introducing Context-Based Constraints.
In proc.: Fundamental Approaches to Software Engineering (FASE), Grenoble,
France, April 2002. Eds.: R. Kutsche, H. Weber.
Springer Verlag, Lecture Notes in Computer Science 2306.

[6] U. Kriegel: ComponentML - Eine Markup-Language zur Spezifikation von Kom-
ponenten , version 0.6.
Interner Bericht des Projekts Continuous Software Engineering, Fraunhofer
ISST, 2000.

[7] S. Comella-Dorda , K. Wallnau, R. C. Seacord, J. Robert: A Survey of Legacy
System Modernization Approaches.
Technical Report 2000, Carnegie Mellon University, Software Engineering Insti-
tute, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/
00tn003.html

[8] N. Weiderman, D. Smith, S. Tilley: Approaches to Legacy System Evolution
Technical Report 1997, Carnegie Mellon University, Software Engineering Insti-
tute, 1997.
http://www.sei.cmu.edu/publications/documents/97.reports/97tr014/
97tr014abstract.html

Paths and Matrices of Propagation 28



Bibliography

[9] Stanford Encyclopedia of Philosophy, Modal Logic.
The metaphysics Research Lab, Center for the Study of Language and Informa-
tion, Stanford University.
http://plato.stanford.edu/

[10] H. Schumann, M. Goedicke, Component Oriented Software Development with
�, paper, 1994.

[11] G.T. Heineman, W.T. Councill: Component-Based Software Engineering, Putting
the Pieces Together.
Addison Wesley, 2001.

[12] P. Herzum, O. Sims: Business Component Factory.
OMG Press, Wiley, 2000.

[13] J. Rumbaugh, G. Booch, I. Jacobson: The Unified Modeling Language Refe-
rence Manual.
Addison Wesley, 1999.

[14] J. Cheesman, J. Daniels: UML Components.
Addison Wesley, 2000.

[15] M. Fowler: UML Distilled.
Addison Wesley, 1997.

[16] D.F. D’Souza,A.C. Wills: Objects, components, and frameworks with UML, The
Catalysis Approach.
Addison Wesley, 1998.

[17] Ed Roman: Mastering Enterprise Java Beans and the Java2 Platform.
Wiley, 1999.

[18] R. Burkhadt: UML- Unified Modeling Language, Objektorientierte Modellierung
Für die Praxis
Addison Wesley, 1997.

[19] C. Szyperski: Component Software - Beyond Object-Oriented Programming.
Addison Wesley, 1997.

Paths and Matrices of Propagation 29


