
BRIDE - A toolchain for framework-independent development of
industrial service robot applications

Alexander Bubeck, Fraunhofer IPA, alexander.bubeck@ipa.fraunhofer.de, Germany
Florian Weisshardt, Fraunhofer IPA, florian.weisshardt@ipa.fraunhofer.de, Germany
Alexander Verl, Fraunhofer IPA, alexander.verl@ipa.fraunhofer.de, Germany

Abstract
Software integration is still a challenging and time consuming task and therefore a major part of the development of
industrial and domestic service robot applications. The presented toolchain BRIDE is able to streamline this process by
the separation of user roles and the separation of developer concerns of software components to ensure a frame-work
independent implementation. The impact of the BRIDE toolchain in the development process is demonstrated in a case
study on the SyncMM mobile manipulation control framework.

1 Introduction

Today’s autonomous service robots are complex, software-
intensive and highly integrated systems with impressive
capabilities concerning mobile manipulation. Although
many capabilities are developed open source, software
quality, platform dependencies and the missing encapsu-
lation of system complexity reduce the chance of reusing
software and slowing down development processes to-
wards an application on these complex robot systems. Dur-
ing the last decade several initiatives have been created
to support software development in robotics through the
promotion of functionality-rich robot software frameworks
such as Orocos, OpenRTM, Player and ROS. These frame-
works extend the general ideas of component-based soft-
ware design and development by reusable software com-
ponents with well-defined interfaces as shown in [1]. But
as Brugali et al. [2] exemplified, the reuse of complete
component-based applications and architectures remains
challenging. In particular, the reuse concerning changing
platform, task and environment conditions is still an open
issue.
In order to tackle these problems related domains adopted
the Model Driven Engineering (MDE) approach. Primar-
ily, the goal of MDE is to improve the process of gener-
ating code from abstract models that describe a domain
and thereby increase development speed, enhance software
quality, achieve systematic separation of concerns and fos-
ter software development by the reuse through models [3].
In the work presented here, model driven engineering is
transfered to the domain of robotics in order to carry the
concept of the systematic separation of different concerns
and the separation of user roles in the development pro-
cess, as described in section 2. In contrast to other appli-
cations of MDE in the robotic domains, as in Smartsoft
[4] or Proteus [5], this approach is not mapping UML pro-
files to robotic software but creating a domain specific lan-
guage directly for the existing robot framework ROS. Be-

cause of this approach, the current development workflows
of the robot domain experts can be directly integrated in
the MDE workflow and thus the fast adaption of the tool
chain can be supported. Furthermore, the usage of pro-
prietary components of ROS, which are not based on the
MDE tool chain, is possible and transparent to the end
user. The model driven approach is implemented in an
Eclipse based tool chain mainly targeting the commonly
used robot software framework ROS. Additionally a tar-
geting for the realtime-capable middleware OROCOS was
realized, allowing the usage of both middleware in paral-
lel to implement software architectures with encapsulated
realtime capabilities. This implementation is explained in
section 3 and the application on the mobile manipulation
control system SyncMM analyzed in section 4.

2 A model driven approach to ROS

The Robot Operating System (ROS) is one of the most
commonly used software frameworks in robotics research
today. The large user and developer community is a ben-
efit but also a challenge for the usage of ROS on complex
robot systems. The software concepts for creating a ROS
component are clearly defined in a documentation but are
implicitly coupled with the code after development, creat-
ing a large variety of quality, style and behaviors of ROS
components in the community. Therefore, the selection of
and the integration into a specific platform or application
remains a challenging task. The aim of model driven engi-
neering is to encapsulate complexity and to enforce inter-
faces, architectures and user roles for a specific software
domain. Therefore, it provides the opportunity to increase
the quality of a software produced, as many applications in
computer science have shown.
The Object Management Group, which is a world wide or-
ganization for model driven software approaches, defines
model driven engineering in a multiple layer architecture

1http://www.omg.org/mda/

Conference ISR ROBOTIK 2014

137
ISBN 978-3-8007-3601-0 © VDE VERLAG GMBH · Berlin · Offenbach

that form a MDE tool chain1. The lowest layer (M0) is
the actual running code that conforms to a specific im-
plementation model (M1). The mechanisms of describ-
ing this implementation model are defined in the meta-
model (M2) layer. Usually an additional superordinate
layer provides the toolchain with the mechanism of de-
scribing meta-models, the meta-meta-model (M3). This
model driven engineering concept is also visualized in the
overview figure 1.
The application of this model driven engineering architec-
ture to the ROS component framework allows to model
different concerns, discussed below, in a meta-model de-
scription. Based on this, the different end-users can imple-
ment specific models for the concerns of their development
phase. MDE then gives the opportunity to auto-generate
implementation code based on the models specified in the
M1 layer. As the framework dependent aspects of the com-
ponent are explicitly modeled in the M1 layer the code gen-
eration can separate the code into framework-dependent
and framework-independent parts. In contrast to map-
ping high-level meta-models, such as UML or SysML,
to the domain of robotics, a direct modeling of the ROS
framework was chosen. This reduces the number of non-
formalized assumptions in the code generation from the
M1 to M0 layer and allows to reuse components that were
not created by the MDE approach because there framework
mechanisms can be modeled directly afterwards.

2.1 Separation of Concerns

A software component has to implement a number of dif-
ferent aspects in order to be functional in a component
framework. These aspects usually can be associated with
a specific concern of the usage of this component. Most
of the times, the reuse of software means modification or
exchange of one or many specific concerns. For example
moving a specific control component from one system to
another could only require a change in the configuration of
the control component. Therefore, explicit separation of
these software aspects from each other in the implemen-
tation will improve the reuse of the components. In soft-
ware engineering one can distinguish the configuration, the
communication, the coordination and the actual computa-
tional part of a component [6]. Additionally, it makes sense
to further distinguish the mechanisms of composition in
case of systems with multiple components.

2.2 Separation of User Roles

The development of a robot application takes place in dif-
ferent development phases, which implicate different ac-
tivities and require different knowledge of the developer.
This work focuses on the explicit separation of two phases
of the development process the capability building and the
system deployment. The capability building usually re-
quires specific and detailed knowledge of the domain of

the capability and therefore is generally realized by do-
main experts. These developers usually lack knowledge
or capacity in order to also handle the second phase, the
system deployment. On the other side, software engineers
that can handle the complexity and structure of large com-
ponent systems, as found on complex robot systems like
Care-O-bot R© 3 and rob@work 3, do not dispose the de-
tailed knowledge of all domains of robotics.

Figure 1: Layers of domain specific languages and models
implemented in the BRIDE tool chain.

3 Implementation of BRIDE
The Eclipse Modeling Framework (EMF) and associated
projects provide a toolbox to develop model driven tool
chains. More precisely, we used the EMF language Ecore
(M3 in figure 1) to define a domain specific language
(DSL) for ROS (M2 in figure 1). Based on this DSL, an
infrastructure including a graphical editor and code gen-
erator was developed. This infrastructure, called BRICS
IDE (BRIDE), allows to model capabilities and systems
in an explicit manner with respect to the corresponding
phase in the development process. The code generator cre-
ates runnable ROS code and structures the software into
platform independent and platform dependent parts. The
platform dependent parts are fully autogenerated.
The general programming abstractions and concepts avail-
able in ROS were formalized and used to develop the
meta-model in BRIDE. This ROS DSL is the origin of
our visual domain specific language and the code gener-
ation facilities. The concepts, which are modeled in the
meta-model, are available as primitives in our tool chain
for later use on the M1 layer. In order to ease the model
iteration and tooling the model is structured as a tree with
the architecture primitive as root node. Further, the pack-
age contains topics, services, nodes and actions as core
primitives (see [5]). The meta-model is separated into five
concerns, namely Computation, Coordination, Configura-
tion, Communication and Composition. This separation
enables the systematic formalization of constraints for
each concern. For instance, a Service demands at least
one ServiceServer (Communication) and every Parameter
demands a name, type and value (Configuration). These

Conference ISR ROBOTIK 2014

138
ISBN 978-3-8007-3601-0 © VDE VERLAG GMBH · Berlin · Offenbach

and more constraints are checked in the code generation
facilities.

Figure 2: The graphical representation of a subsystem
model for a rob@work 3 application in the BRIDE editor.

Graphical and textual model editors based on the ROS DSL
for the creation of component models (M1 in figure 1),
which e.g. represent the different aspects of a compo-
nent, can be derived. The generation of multiple model
editors based on one domain specific language was cho-
sen to map the different aspects formulated in the DSL to
the user roles in the development process. Since the edi-
tors are developed using a model driven process in Eclipse,
they are directly linked to the ROS Ecore model. Changes
in the Ecore model are therefore directly reflected in the
graphical editors.
Once the capability and system models are created, they
are automatically transformed to another representation,
usually source code (M0 in figure 1). This so-called
model-to-code generation was realized by implementing
templates for the Epsilon generator, which is part of the
Eclipse tool chain. This approach allows to enforce code
quality and standards and to transparently support differ-
ent target languages for the implementation. In case of the
capability model templates for the generation of C++ ROS
components and Python ROS components were realized.
The code generation takes care of creating a node skele-
ton as well as the necessary tool chain files such as mani-
fest.xml, the dynamic reconfigure files, the CMakeLists.txt
etc., finishing with a ready-to-compile C++ or Python ROS
component. In the prepared user code part of the pack-
age the capability builder now can implement the specific
capability independent of the component around it. The
information described in the system deployment model is
transferred to a ROS launch file starting the nodes, renam-
ing the publisher and subscriber topics to the configured
one and setting the parameters to the configured values.
As the auto-generated code and the implementation of the
user can be distinguished, the model-to-code generation

can be executed multiple times when there are changes in
the model resulting in only minor changes by the user if
there are changes in the interfaces. Due to this fact, the
templates for the different targets can be enhanced itera-
tively and the improved code can be easily disseminated to
many implementations.
In case of the capability models, the code generation is
enforcing a standardized computational model in the ROS
components. This is an extension of the ROS component
model, that is necessary to allow a clear separation of ROS
dependent and independent code. Only with this strict sep-
aration the transfer to other robotic software frameworks
can be implemented. The computational model enforces
the usage of a configure function, that is triggered during
start of a component to allow configuration of the neces-
sary objects and interfaces. During runtime of the compo-
nent, the capabilities have to be triggered from within an
update function that is either called in a sequential way or
called by data received on defined input data ports (in case
of ROS: subscriber). With this approach, code generation
of the capabilities into an OROCOS component is possible
in BRIDE in addition to the creation of ROS components.
The generation is realized in a way that allows the usage
of the OROCOS component integrated in the ROS appli-
cation using the rtt_ros_integration project2.

4 The BRIDE tool chain in use
As a demonstration of the application of the model driven
engineering tool chain to a real world problem, the MDE-
based refactoring of the SyncMM controller framework
[7] for Care-O-bot R© 3 will be presented in the following
section. The code of the original implementation, with a
"hand-written" integration in ROS, will be compared to
the refactored version for experimental validation of our
approach.

Figure 3: Functional overview of the SyncMM framework
with current and desired joint positions (q) and Cartesian
velocities (v) of plattform and manipulator

2http://wiki.ros.org/rtt_ros_integration

Conference ISR ROBOTIK 2014

139
ISBN 978-3-8007-3601-0 © VDE VERLAG GMBH · Berlin · Offenbach

4.1 The SyncMM Mobile Manipulation
Controller Framework

The synchronous mobile manipulation (SyncMM) con-
troller framework of Care-O-bot R© 3 consists of a com-
ponent based structure for the subcomponents of the
robot; the non-holonomic over-actuated mobile base and
the redundant manipulator and the overall control of the
kinematic chain with redundancy handling. A func-
tional overview of the different components is shown
in Figure 3. While the manipulator controller is im-
plemented using a standard impedance controller inside
the KUKA LBR controller, the mobile base controller
cob_undercarriage_control [8] transfers the Cartesian ve-
locities in a spherical space in order to directly control the
instantaneous center of rotation (ICR) of the base while
fulfilling the kinematic constraints. This allows singularity
avoidance, resolution of redundancies in the mobile base
and smooth trajectory tracking.
The cob_configuration_control component takes care of
the redundancy resolution of the combined kinematic chain
of manipulator and base giving the controller the ability
to control augmented tasks in addition to the end effec-
tor tracking task. Joint angle avoidance, manipulability
maximation and path following are examples of such aug-
mented tasks. Finally, another component is implement-
ing a high level controller for trajectory following, allow-
ing the Care-O-bot R© 3 to execute tasks that require mobile
manipulation movements such as opening of doors or cup-
boards.
In the original implementation, the different functional
blocks were implemented in ROS nodes "by hand" and
connected by a mixture of direct configuration of topics
and services in the source code and configuration in multi-
ple launch files.

Figure 4: Graphical representation of the
cob_base_drive_chain component

4.2 Implementation of capabilities

For the model driven refactoring of SyncMM for each of
the different controllers, a component model was created
using the graphical capability modeling editor in BRIDE.
The communication mechanisms and parameters of the
controller were modeled graphically, as can be seen for
the example of the cob_base_drive_chain in Figure 4. The

textual representation of the component used for the auto-
generation of the component skeleton is listed in Listing
1. The auto-generation can be done for the different target
languages C++ and Python in the same way. In this ex-
ample, a C++ implementation was chosen. After the auto-
generation the existing controller code was ported to the
provided classes for platform independent user code. The
implementation details of ROS techniques such as topics
or dynamic_reconfigure are encapsulated from the compo-
nent developer.

Listing 1: XML representation of capability model for
cob_base_drive_chain

<?xml version="1.0" encoding="UTF−8"?>
<ros:Package xmi:version="2.0" xmlns:xmi="http://www.

omg.org/XMI" xmlns:ros="http://ros/1.0" name="
cob_base_drive_chain" author="Alexander Bubeck"
description="Driver for mobile base" license="LGPL"
>

<node name="cob_base_drive_chain">
<publisher name="Pub_JointState" msg="sensor_msgs::

JointState"/>
<publisher name="Pub_ControllerState" msg="

pr2_controllers_msgs::JointTrajectoryControllerState"
/>

<publisher name="Pub_Diagnostic_global" msg="
diagnostic_msgs::DiagnosticArray"/>

<publisher name="Pub_Diagnotic_drive" msg="
diagnostic_msgs::DiagnosticStatus"/>

<subscriber name="Sub_JointStateCmd" msg="
pr2_controllers_msgs::JointTrajectoryControllerState"
/>

<serviceServer name="init" msg="cob_srvs::Trigger"/>
<serviceServer name="recover" msg="cob_srvs::Trigger"

/>
<parameter name="IniDirectory" value="Platform/

IniFiles/" type="string"/>
<parameter name="PublishEffort" value="false" type="

bool"/>
</node>
<depend>diagnostic_msgs</depend>
<depend>sensor_msgs</depend>
<depend>cob_srvs</depend>
<depend>pr2_controllers_msgs</depend>
<depend>cob_canopen_motor</depend>

</ros:Package>

4.3 Implementation of System Architecture
After all controllers had been ported, the system configu-
ration was realized by using the system deployment edi-
tor in BRIDE. The component code of the capabilities is
generated in a way that all topics, services and actions are
disconnected by default, meaning that all connections have
to be configured explicitly. Since this configuration can be
realized graphically, it provides the system engineer with
the full overview of the communication and dependencies
of the components in the system. Additionally, all param-
eters defined by the capability builder are accessible to the

Conference ISR ROBOTIK 2014

140
ISBN 978-3-8007-3601-0 © VDE VERLAG GMBH · Berlin · Offenbach

system engineer, making direct deployment time config-
uration (e.g. for CAN devices) possible. A part of the
SyncMM system configuration in BRIDE can be seen in
the screenshot in Figure 1. Since the launch file for the
system is generated automatically the system deployer can
completely configure the SyncMM framework graphically.
The configuration is implemented in a single launch file in
contrast to the original implementation.

4.4 Evaluation
After the refactoring with the MDE tool chain the per-
formance of the system was compared to the original
SyncMM implementation using a similar use case of open-
ing a cupboard as was demonstrated with the original ver-
sion (see Figure 5). No difference in performance was
noticed. This was expected since no changes in the algo-
rithms of the controllers were made.

Figure 5: Execution of the SyncMM controller

As can be seen in Table 1, for each component the amount
of code that had to be written by the user was reduced,
since the ROS framework code was auto-generated from
the model. On components with small computational parts,
as the cob_config_controller, the ratio of auto-generation
is very high. This not only accelerates the development,
it also reduces the possibility of software bugs and guar-
antees a certain code quality. The only code coming from
the ROS system, in the part, the capability developer ac-
cesses, are the ros_msgs definitions, which are structural
data classes that are independent of the ROS framework.
The capability developer did not have to dispose of any
knowledge of the ROS framework mechanisms.

Table 1: Statistics of auto-generated lines of code

Component manual-coded auto-generated %
cob_undercarriage_control 1397 260 18.61
cob_base_drive_chain 2292 256 11.1
cob_config_controller 594 289 48.6
cob_cartesian_trajectories 781 296 37.9

Table 2: Comparison of ROS independent code in number
of lines

Component SyncMM Model driven SyncMM
cob_undercarriage_control 965 1397
cob_base_drive_chain 1998 2292
cob_config_controller 357 594
cob_cartesian_trajectories 0 781

Table 2 shows that that the code that is independent of ROS
is increased. This is a major improvement for the reusabil-
ity of the algorithms in different frameworks, especially
for the algorithms that were tightly integrated with ROS,
as the cob_cartesian_trajectories component. For demon-
stration, one component, the cob_base_drive_chain, was
additionally ported to OROCOS using BRIDE. The ROS
independent part of the component, created with the MDE
tool chain, could completely be reused. The autogenerated
ROS part of the component was regenerated by using the
OROCOS code generation templates, without any manual
input. In this example the amount of code generated was
86 lines.
Since the original SyncMM implementation used three
different launch files and had implicit connections be-
tween components in the source code, it was impossible
to configure the system deployment without knowledge
of the component internals. In contrast, this information
was completely transparent to the system deployer in the
case of the MDE implementation. Additionally, the con-
figuration of every deployment aspect in one launch files
accelerated the testing process afterwards.

5 Conclusion
Adopting the concepts of model driven engineering to
robotics has high impact on reusability of existing software
and the performance of robot application, system and ca-
pability development as was shown in this work for the use
case of mobile manipulator control. Furthermore, the sep-
aration of user roles similar to product development pro-
cesses in industry can lower the entry barrier towards com-
plex mobile manipulation system. The tool chain shown
here is promoted inside the ROS community for the de-
velopment of applications and components on additional
platforms, in e.g. the ROS industrial initiative. An integra-
tion with an additional different robot software framework,
OROCOS, has been demonstrated. As the number of users
of BRIDE rises more robot frameworks will be supported.

References
[1] D. Brugali and A. Shakhimardanov, “Component-

based Robotic Engineering Part II: Systems and
Models,” IEEE Robotics and Automation Magazine,
vol. 17, no. 1, pp. 100–112, 2010.

[2] D. Brugali, L. Gherardi, A. Luzzana, and A. Za-
kharov, “A Reuse-Oriented Development Process for

Conference ISR ROBOTIK 2014

141
ISBN 978-3-8007-3601-0 © VDE VERLAG GMBH · Berlin · Offenbach

Component-based Robotic Systems,” in International
Conference on Simulation, Modeling and Program-
ming for Autonomous Robots (SIMPAR 2012), 2012.

[3] T. Stahl and M. Völter, Model-Driven Software Devel-
opment. Wiley & Sons, 2006.

[4] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “De-
sign Abstraction and Processes in Robotics: From
Code-Driven to Model-Driven Engineering,” in Simu-
lation, Modeling, and Programming for Autonomous
Robots - Second International Conference, SIMPAR
2010, Darmstadt, Germany, November 15-18, 2010.
Proceedings, vol. 6472. Springer, 2010, pp. 324–335.

[5] G. Lortal, S. Dhouib, and S. Gérard, “Integrating on-
tological domain knowledge into a robotic DSL,” in
Proceedings of the 2010 international conference on
Models in software engineering, ser. MODELS’10.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 401–
414.

[6] M. Radestock and S. Eisenbach, “Coordination in
Evolving Systems,” in International Workshop on
Trends in Distributed Systems, 1996.

[7] A. Bubeck, C. Connette, M. Haegele, and A. Verl,
“SyncMM - A Reactive Path Planning and Control
Framework for the Mobile Manipulator Care-O-bot
3,” in Proceedings of the International Symposium on
Robotics (ISR), 2012.

[8] C. Connette, A. Pott, M. Hägele, and A. Verl, “Ad-
dressing input saturation and kinematic constraints
of overactuated undercarriages by predictive potential
fields,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2010, pp. 4775–
4781.

Acknowledgments
The work leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gram (FP7/2007-2013) under grant agreement no 609206.

Conference ISR ROBOTIK 2014

142
ISBN 978-3-8007-3601-0 © VDE VERLAG GMBH · Berlin · Offenbach

