

Dissertation Eric Ras - Annex 2:

Material from the Empirical Studies

Authors:
Eric Ras

IESE-Report No. 002.09/E
Version 1.0
January 20, 2009

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Copyright © Fraunhofer IESE 2009 v

Abstract

This report contains all the material used during the controlled experiment (Sec-
tion 1):

• Slides that have been used to introduce the students to the experiment
(Section 1.1)

• Briefing questionnaire for assessing the disturbing factors related to
experience and learning style (Section 1.2)

• Pre- and post-test questionnaires for assessing the knowledge acquisition
difference (Section 1.3)

• Template of an experience package and experience packages that were used
in the experiment (Section 1.4)

• Learning elements for generating learning spaces used during the
experiment (Section 1.5)

• Assignments for assessing reading time and application time (Section 1.6)
• Exercises for assessing efficiency, completeness, and accuracy (Section 1.7

and Section 1.8)
• Debriefing questionnaire for assessing the other disturbing factors (Section

1.9)
In addition, the material of the “Use and Acceptance” case study is included
(Section 2).

Keywords: experience management, experience factory, learning space

Copyright © Fraunhofer IESE 2009 vii

Table of Contents

1 Material of the Controlled Experiment 1
1.1 Slides 2
1.2 Briefing Questionnaire 8
1.3 Pre- & Post-Questionnaires 11
1.4 Experience Packages for Experimentation 24
1.4.1 Experience Package Template 24
1.4.2 Experience Package: Code Smell Long Method 25
1.4.3 Experience Package: Code Smell Type Embedded in Name 26
1.4.4 Experience Package: Code Smell Comments 26
1.4.5 Experience Package: Code Smell Uncommunicative Name 27
1.4.6 Experience Package: Code Smell Long Parameter List 28
1.4.7 Experience Package: Code Smell Lazy Class 29
1.4.8 Experience Package: Code Smell Data Class 30
1.5 Learning Spaces for Experimentation 31
1.5.1 Learning Space: Code Smell Comments 31
1.5.2 Learning Space: Code Smell Long Method 38
1.5.3 Learning Space: Code Smell Type Embedded in Name 48
1.5.4 Learning Space: Code Smell Uncommunicative Name 53
1.5.5 Learning Space: Code Smell Long Parameter List 57
1.5.6 Learning Space: Code Smell Lazy Class 67
1.5.7 Learning Space: Code Smell Data Class 77
1.6 Assignments 86
1.6.1 Assignment Information and Related Exercises (Mo-Mo-G1):

(Group:_________________) 86
1.6.2 Assignment Information and Related Exercises (Mo-Aft-G2):

(Group:_________________) 87
1.6.3 Assignment Information and Related Exercises (Tu-Mo-G2):

(Group:_________________) 89
1.6.4 Assignment Information and Related Exercises (Tu-Aft-G1):

(Group:_________________) 91
1.6.5 Answer Sheet for Exercises (example) 93
1.6.6 Answer Sheet for Assignments 94
1.7 Exercises of the Assignments (Monday) 95
1.7.1 Exercise to Experience Package for Amica Interaction Group:

Long Method 95
1.7.2 Exercise to Experience Package for Amica Interaction Group:

Type Embedded in Name 104
1.7.3 Exercise to Experience Package for Computation: Long

Method 113

Copyright © Fraunhofer IESE 2009 viii

1.7.4 Exercise to Experience Package for Computation Group: Type
Embedded in Name 119

1.7.5 Exercise to Experience Package for Location Manager Group:
Long Method 122

1.7.6 Exercise to Experience Package for Location Manager Group:
Type Embedded in Name 128

1.7.7 Exercise to Experience Package for Persistence Group: Long
Method 130

1.7.8 Exercise to Experience Package for Persistence Group: Type
Embedded in Name 145

1.7.9 Exercise to Experience Package for Synchronization Group:
Long Method 160

1.7.10 Exercise to Experience Package for Synchronization Group:
Type Embedded in Name 169

1.7.11 Exercise to Experience Package for UI Group: Long Method172
1.7.12 Exercise to Experience Package for UI Group: Type Embedded

in Name 181
1.8 Exercises of the Assignments (Tuesday) 188
1.8.1 Exercise to Experience Package for Amica Interaction Group:

Comments 188
1.8.2 Exercise to Experience Package for Amica Interaction Group:

Uncommunicative Name 198
1.8.3 Exercise to Experience Package for Computation Group:

Comments 208
1.8.4 Exercise to Experience Package for Computation Group:

Uncommunicative Name 218
1.8.5 Exercise to Experience Package for Location Manager Group:

Comments 224
1.8.6 Exercise to Experience Package for Location Manager Group:

Uncommunicative Name 234
1.8.7 Exercise to Experience Package for Persistence Group:

Comments 240
1.8.8 Exercise to Experience Package for Persistence Group:

Uncommunicative Name 250
1.8.9 Exercise to Experience Package for Synchronization Group:

Comments 256
1.8.10 Exercise to Experience Package for Synchronization Group:

Uncommunicative Name 266
1.8.11 Exercise to Experience Package for UI Group: Comments 272
1.8.12 Exercise to Experience Package for UI Group:

Uncommunicative Name 280
1.9 Debriefing Questionnaire 288

2 Material of the “Use and Acceptance” Case Study 291

Copyright © Fraunhofer IESE 2009 1

1 Material of the Controlled Experiment

This section contains all the material used during the experiment:

• Slides that have been used to introduce the students to the experiment
(Section 1.1)

• Briefing questionnaire for assessing the disturbing factors related to
experience and learning style (Section 1.2)

• Pre- and post-test questionnaires for assessing the knowledge acquisition
difference (Section 1.3)

• Template of an experience package and experience packages that were used
in the experiment (Section 1.4)

• Learning elements for generating learning spaces used during the
experiment (Section 1.5)

• Assignments for assessing reading time and application time (Section 1.6)
• Exercises for assessing efficiency, completeness, and accuracy (Section 1.7

and Section 1.8)
• Debriefing questionnaire for assessing the other disturbing factors (Section

1.9)

Copyright © Fraunhofer IESE 2009 2

1.1 Slides

Copyright © Fraunhofer IESE 2009 3

Copyright © Fraunhofer IESE 2009 4

Copyright © Fraunhofer IESE 2009 5

Copyright © Fraunhofer IESE 2009 6

Copyright © Fraunhofer IESE 2009 7

Copyright © Fraunhofer IESE 2009 8

1.2 Briefing Questionnaire

Please answer the following questions. This will take you about 5 minutes. Dur-
ing the analysis of the data, the data will be anonymized – your name and
Matr.-Nr. (enrollment no.) will be removed.

Subject-ID <the ID will be inserted by the evaluators>

Name:

Matr-Nr:

Questions on University Education

<B1> Education

<B1.1> Name of study (e.g., “Angewandte Informatik”)

<B1.2> Major Subject (i.e., “Hauptfach/Vertiefung”):

<B1.3> Minor Subject (i.e., “Nebenfach/Wahlfach”):
(if more than one, please mention all)

<B1.4> Which lectures regarding “Software Engineering” (e.g., “SE 1-
3”, “GSE”, …) have you completed?

<B1.5> Number of terms (Fachsemester) completed (including the cur-
rent one):

<B1.6> In how many practical courses (i.e., SE-oriented “Praktika”) have
you participated?

Questions on Practical Software Engineering Experience

<B2> Practical Software Engineering Experience Yes No

<B2.1> Have you ever a written software system with more than 5 classes or 1000 lines of
code?

<B2.2> Have you ever written software outside of university programs (e.g., private, commer-
cial, OSS)?

<B2.3> Have you developed software in a large team (>4 persons) with distributed roles?

<B2.4> Have you developed software in a project with long duration (>6 months)?

Copyright © Fraunhofer IESE 2009 9

Questions on Experience with Programming & Java

<B3> Questions on Experience with Programming & Java

<B3.1> How many years of computer programming experience do you have, if any?

<B3.2> How many different applications have you programmed?

<B3.3> How many different applications have you programmed in Java?

<B3.4> How many years were you involved in maintaining & improving a software system?

<B4> What is your experience with … High

Experience

No
Experience

<B4.1> Java APIs (java.util, java.io, java.net, etc.)

<B4.2> Java GUIs (AWT, Swing, SWT, etc.)

<B4.3> Creating Java programs from scratch

<B4.4> Debugging large Java programs

<B4.5> The eclipse IDE (as a user, not plugin-developer)

<B4.6> Other IDE such as Netbeans, Visual Studio, jBuilder, etc. (as a user,
not plugin-developer)

Questions on Experience with Refactoring & Code Smells

<B5> General Questions

<B5.0> Have you heard of refactoring before?

<B5.1> How many years of experience do you have with refactoring?

<B5.2> How many different applications have you refactored? (all programming languages)

<B5.3> How many different applications have you refactored in Java?

<B6> What is your practical experience with … High

Experience

No
Experience

<B6.1> Identifying code smells, anti-patterns, pitfalls, design flaws, etc.

<B6.2> Applying Refactorings manually

<B6.3> Applying Refactorings such as “Extract Method” built into an IDE
(except the “rename” refactoring)

<B6.4> Working with design patterns, design heuristics, design principles,
etc.

Copyright © Fraunhofer IESE 2009 10

Questions on Experience with Software Quality Assurance & Maintenance

<B7> What is your practical experience with … High
Experience

 No
 Experi-
ence

<B7.1> Quality models (such as ISO 9126, FURPS, Dromey, Boehm, …)

<B7.2> Testing a software system?

<B7.3> Inspecting a software system regarding quality issues?

<B7.4> Software measurement (Metrics)?

<B7.5> Code checking tools such as PMD, checkstyle, etc.?

<B8> What is your practical experience with … High

Experience

No Experi-
ence

<B8.1> Maintaining a software system? (e.g., managing defects, applying
changes, etc.)

<B8.2> Porting a software system to another platform? (e.g., Java 1.2 to
5.0, Java to C#, etc.)

<B8.3> Improving a software system regarding efficiency (time behavior,
resource behavior)?

<B8.4> Improving a software system regarding reliability? (i.e., “Zuverlässig-
keit”)

<B8.5> Improving a software system regarding usability?

<B8.6> Improving a software system regarding functionality (suitability,
interoperability, security)

Questions on Learning Style

<B9> What is your most preferred learning style? (select one option)

<B9.1> Reading textbooks (with exercises)

<B9.2> Classroom lectures (with exercises)

<B9.3> Group work (interaction with peers and teacher / including exercises)

<B9.4> Web-based training modules (with computer interaction / including examples and exercises)

<B9.5> Trial and error approach (e.g., program, debug, repeat)

Thanks for filling out the questionnaire!

Copyright © Fraunhofer IESE 2009 11

1.3 Pre- & Post-Questionnaires

This questionnaire serves to assess your competencies in the domain of refac-
toring and code smells. Please fill out the questionnaire as accurately as you
can.

When you don’t know the answer, please put your checkmark in the
field “?” (Germ. Damit ist gemeint, dass Ihr nicht raten solltet – das
würde die Ergebnisse verfälschen)

Before the data is processed, the data will be anonymized.

The results of the questionnaire have no impact on your grade (Germ. Note) of
this practicum!

Subject-ID <this will be filled out by the evaluators>

Name:

Matr-Nr:

General Understanding of Refactoring

<P1> What is refactoring about? Yes No ?

<P1.1> Refactoring transforms software in a way that it remains functionally
identical

x

<P1.2> Refactoring is the art of safely removing the bad design decisions of
existing code

x

<P1.3> Refactoring is rewriting code from scratch x

<P1.4> Refactoring is dependent on eXtreme Programming (XP) methods x

<P1.5> Refactoring is about a safe design-to-source transformation x

<P1.6> Refactoring is about a safe source-to-source transformation x

<P2> What should be affected by refactoring? Yes No ?

<P2.1> The software’s complexity x

<P2.2> The software’s flexibility x

<P2.3> The software’s understandability x

<P2.4> The software’s functionality x

<P2.5> The behavior of the methods, classes, and components x

<P2.6> The observable behavior of the software from the perspective of the user x

<P2.7> The program’s syntax x

<P2.8> The software’s performance x

<P2.9> The program’s semantics (meaning of methods, classes, etc.) x

<P2.10> The program’s size x

Copyright © Fraunhofer IESE 2009 12

<P3> When and how should a refactoring be considered? Yes No ?

<P3.1> When a design choice is not explicitly addressed in one place in a system x

<P3.2> When a code smell has been detected x

<P3.3> When a system failure has been detected (e.g., by testing) x

<P3.4> When the system design has a weakness x

<P3.5> Refactoring is done on a periodical basis x

<P3.6> Before implementing a new feature and if the design does not fit this change x

<P3.7> Refactorings are always performed in small steps with compilation and test in-
between

x

<P3.8> Refactorings are implemented completely. Afterwards, compilations and test
are done because only completed refactorings result in a running system

 x

<P3.9> Refactoring can be applied when the unit and acceptance tests haved failed;
refactoring can help to solve the detected failures.

 x

<P3.10> Refactoring should only be applied when the required automated unit or
acceptance tests have been conducted successfully.

x

<P4> What are code smells? Yes No ?

<P4.1> Code Smells are weaknesses in the requirements x

<P4.2> Code Smells are failures observed by the user x

<P4.3> Code Smells are defects observed by the tester x

<P4.4> Code Smells are defects observed by the developer x

<P4.5> Code Smells are weaknesses in the design x

<P4.6> All Code Smells can be easily determined by using appropriate measures x

<P4.7> Determining what is and is not a Code Smell is often a subjective judgment x
1

Assigment of Refactoring Methods to Code Smells

<P5> What refactorings are used to remove the following code smells?

<place checkmarks in the columns for each code smell>
<for those refactorings where you don’t know which code smells they are suitable for,
choose “?” >

 ?

C
om

m
en

t

Lo
ng

 M
et

ho
d

Ty
pe

 E
m

be
dd

ed
 in

N

am
e

U
nc

om
m

un
ic

at
iv

e
N

am
e

Lo
ng

 P
ar

am
et

er
 L

is
t

La
zy

 C
la

ss

D
at

a
C

la
ss

<P5.1> AddParameter x

<P5.2> DecomposeConditional x

<P5.3> EncapsulateCollection x

<P5.4> EncapsulateField x

<P5.5> ExtractMethod x x

<P5.6> HideMethod

<P5.7> IntroduceAssertion x

<P5.8> IntroduceParameterObject x x

<P5.9> MoveMethod x

Copyright © Fraunhofer IESE 2009 13

<P5.10> PreserveWholeObject x x

<P5.11> RemoveParameter

<P5.12> RemoveSettingMethod

<P5.13> RenameMethod x x x

<P5.14> ReplaceMethodwithMethodObject x

<P5.15> ReplaceParameterwithMethod x

<P5.16> ReplaceTempwithQuery x

Questions related to the code smell Long Method

<C2> Questions related to the code smell Long Method

<C2.1> Explain in your own words what a Long Method code smell is?
What are the problems it brings to the code?

?

 <Your answer:>

<C2.2> Mark the blocks in the following method that you would extract in order to make the method
shorter (with your text marker)

 //example from Wakes p. 23
import java.util.*;
import java.io.*;

public class Report {
 public static void report(Writer out, List machines, Robot
robot)
 throws IOException {
 out.write("FACTORY REPORT\n");
 out.write("This list includes information on
"+machines.size()+ " machines")
 Iterator line = machines.iterator);
 while (line.hasNext() {
 Machine machine = (Machine) line.next();
 out.write("Machine " + machine.name());
 if (machine.status() != null)
 out.write(" status=" + ma-
chine.status());
 out.write("\n");
 }
 out.write("\n");

 out.write("Robot ");
 if (robot.location() != null)
 out.write("location=" + ro-
bot.location().name()):
 if(robot.status() != null)
 out.write("status=" + robot.status());

 out.write("\n");
 out.write("=========\n")
 }
}

Copyright © Fraunhofer IESE 2009 14

C2.3> Rewrite the report(…) method, as you have done the extract method for each block.
(don’t describe the new methods – only the new report() with the call of the extracted
methods

?

 <Your answer:>
public static void report (
Printstream out, L i s t machines. Robot robot) {
 reportHeader(out);
 reportMachines(out, machines);
 reportRobot(out, robot);
 reportFooter(out);
}

<C2.4> What refactorings are suitable for the code smell Long Method in general? Name them
all.

?

 <Your answer:>

ExtractMethod
IntroduceParameterObject
PreserveWholeObject
ReplaceTempWithQuery
ReplaceMethodWithMethodObject

<C2.5> In what order should the previously listed refactorings be applied? <put “no sequence” if
the sequence is not important>

?

 <Your answer:>

1. ExtractMethod

2. IntroduceParameterObject,

3. PreserveWholeObject,

4. ReplaceTempWithQuery

5. ReplaceMethodWithMethodObject

Copyright © Fraunhofer IESE 2009 15

<C2.6> What refactoring would you apply for this Long Method code smell example first? Please
mark the code smell and explain why you apply this refactoring.

?

 class Customer ...
 public String statement() (
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() +
"\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 //add frequent renter points
 frequentRenterPoints ++;

 //add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() ==
Movie.NEW_RELEASE)
 && each.getDaysRented() > 1) {

 frequentRenterPoints ++;
 }
 //show figures far this rental
 result += "\t" + each.getMovie().getTitle()+
"\t" +
 String.valueOf(each.getCharge()) + "\n";
 totalAmount += each.getCharge();
 }

 //add footer lines
 result += "Amount owed is " +
Strinq,valueOf(totalAmount) + "\n";
 result += "You earned " +
String.valueOf(frequentRenterPoint) + "frequent renter points";
 return result;
}

 <Your answer:>

Use Extract Method

Questions related to the code smell Type Embedded in Name

<C3> Questions related to the code smell Type Embedded in Name

<C3.1> Explain in your own words what a Type Embedded in Name code smell is?
What are the problems it brings to the code?

?

 <Your answer:>

The following problems are related to the code smell Type Embedded in Name.
• Method names are compound words, consisting of a word plus the type

of the argument(s).For example, a method addCourse(Course c).

• Names are in Hungarian notation, where the type of an object is en-
coded into the name; e.g., icount as an integer member variable.

• Variable names reflect their type rather than their purpose or role.

<C3.2> Which of the following examples included is a Type Embedded in Name code
smell?
<please mark the smell with your pen>

Yes No ?

 public Class getColumnClass(final int columnIndex) { x

Copyright © Fraunhofer IESE 2009 16

 return String.class;
}

 public class Texts {
 private static final String BUNDLE_NAME =
"de.frewert.dndinfo.gui.dndinfo"; //$NON-NLS-1$

 private static final ResourceBundle RESOURCE_BUNDLE =
 ResourceBundle.getBundle(BUNDLE_NAME);

 private Texts()

 public static String getString(String key) {
 try {
 return RESOURCE_BUNDLE.getString(key);
 } catch (MissingResourceException e) {
 return '!' + key + '!';
 }
 }

}

x

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;
 g2.setFont(bgFont);
 g2.setColor(fontColor);

 int dividerPos = getDividerLocation();
 drawCentered(g2, info[0], 0, dividerPos);

drawCentered(g2, info[1], divider-
Pos + getDividerSize(),
getHeight());

 }

 x

 private Observer dndObserver = new Observer() {
 public void update(Observable o, Object arg) {
 if (arg instanceof DataFlavor[]) {

 gui.displayFlavors((DataFlavor[]) arg);

 } else if (arg instanceof String) {

 gui.appendData((String) arg);

 } else if (arg instanceof int[]) {

 int [] action = (int[]) arg;
 gui.setSourceActions(action[0]);
 gui.setUserAction(action[1]);
 }
 }

}

x

 private ActionListener quitListener = new ActionLis-
tener() {
 public void actionPerformed(ActionEvent e) {
 Main.this.quit();
}

 x

<C3.3> Give another simple example of a code smell Type Embedded in Name ?

 <Your answer:>

Copyright © Fraunhofer IESE 2009 17

<C3.4> Please name the refactoring applied to the following Type Embedded in Name
code smell:

?

 <your answer:> RenameMethod

 public void storeTask (Task t) {
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;

}

is transformed to:

public void store (Task t) {
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;

}

<C3.5> List the refactorings that are suitable for the code smell Type Embedded in
Name in general

?

 <Your answer:>

RenameMethod

<C3.6> In what order should the previously listed refactorings be applied? <put “no
sequence” if the sequence is not important>

?

 <Your answer:>

RenameMethod

<C3.7> What refactoring would you apply for this Type Embedded in Name code smell
example? Please mark each code smell with your text marker and explain why

you apply this refactoring.

?

 public void addDropTargetListener(DropTargetListener
dtl) {
 /*
 * Using the GlassPane as only DropTarget would be more
 * elegant, but Drag&Drop doesn't work with a
 * GlassPane in Java <= 1.4.0. (See Java bug #4435403)
 */

// Use the following block if JRE 1.3 compatibility
// isn't neccessary any longer.

// Component c = SwingUtilities.getRoot(this);
// if ((c != null) && (c instanceof JFrame)) {
// JFrame f = (JFrame) c;
// Component glassPane = f.getGlassPane();
// glassPane.setVisible(true);
// DropTarget dropTarget = new DropTarget(glassPane,
dtl);
// }

 new DropTarget(flavorArea, dtl);
 new DropTarget(dataArea, dtl);

}

Copyright © Fraunhofer IESE 2009 18

 <Your answer:>
addDropTargetListener(DropTargetListener is a type em-
bedded in name code smell. The variable type is embed-
ded in the method name. When the type changes, the
method also needs to be renamed.

Questions related to the code smell Comments

<C4> Questions related to the code smell Comments

<C4.1> Explain in your own words what a Comments code smell is?
What are the problems if brings to the code?

?

 <Your answer:>

Comments should be used to give overviews of code and provide additional
information that is not readily available in the code itself. Comments should contain
only information that is relevant to reading and understanding the program and
should be added when the author realizes that something isn't as clear as it could be
and adds a comment. In addition, the frequency of comments sometimes reflects
poor quality of code. A lot of comments can be reflected just as well in the code
itself.

<C4.2> Which of the following examples includes at least one Comments code smell?
<please mark the smell(s) with your text marker>

Yes No ?

 private JScrollPane getFlavorScrollPane(final Map map,
 String header1,
 String header2) {
 JTable table = new JTable(new FlavorTableModel(map,
 header1,
 header2));
 final int viewportHeight = 12 * table.getRowHeight();
 table.setPreferredScrollableViewportSize(new Dimension(450,
viewportHeight));

 // table.getColumn(header1).setPreferredWidth(header1.);

 JScrollPane scrollPane = new JScrollPane(table);
 scroll-
Pane.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLB
AR_ALWAYS);

 return scrollPane;
}

x

 public class AboutDialog extends JDialog {
 private static final long serialVersionUID =
3257853194578048567L;

 /**
 * Create a new AboutDialog.
 * @param parent the parent frame.
 * @param title the title of the dialog
 * @param version the version of the application
 */
 public AboutDialog(Frame parent, String title, String ver-
sion) {
 super(parent,
 Texts.getString("AboutDialog.title.prefix") + title);

x

Copyright © Fraunhofer IESE 2009 19

//$NON-NLS-1$
 createGui(title, version);
 pack();
 setResizable(false);

 }

 /**
 * Liest die Refaktorierungen eines Diagnose-Plug-Ins aus
der Extension-
 * Beschreibung aus.
 *
 * @param extensionID
 * ID der Extension, die den Extension-Point <co-
de>Diagnosis</code>
 * implementiert
 * @return Refaktorierungen als Komma-separierte Liste in
einem String
 */
 public String getRefactorings(String extensionID) {
 return getAttributeValue(extensionID,
EP_DIAGNOSIS,
 "refactorings", ELE-
MENT_FRONTEND);
 }

 x

 private ActionListener buttonListener = new ActionListener()
{
 public void actionPerformed(ActionEvent e) {
 // Don't dispose, dialog is reused in Main class
 FlavorDialog.this.hide();
 }

 };

x

 // Constructor where the Id is set
 public TaskList(int taskListId){
 this.taskListId =taskListId;
 state=false;
 tasks=new HashSet<Task>();
 }

x

<C4.3> Give another simple example of a code smell Comment ?

 <Your answer:>

<C4.4> Please name the refactoring applied to the following Comments code smell: ?

 <your answer:>
IntroduceAssertion

 /**
 * @param clipLimit has to be larger than zero
 * @param delta has to have a positive value
 */
public boolean match(int[] expected, int[] actual, int
clipLimit, int delta)
 {
 // Clip " too- large" values
 for (int i = 0; i < actual.length; i++)
 if (actual [i] > clipLimit)
 actual [i] = clipLimit;
 // Check for length differences
 if (actual.length != expected.length)
 return false;

Copyright © Fraunhofer IESE 2009 20

 // Check that each entry within expected +/-
delta
 for (int i = 0; i < actual.length; i++)
 if (Math.abs(expected[i] - actual[i]
> delta)
 return false;

 return true;

 }

is transformed to:

public boolean match(int[] expected, int[] actual, int
clipLimit, int delta)
 {
 assert expected != null;
 assert actual != null;
 assert clipLimit >= 0;
 assert delta >= 0;

 // Clip " too- large" values
 for (int i = 0; i < actual.length; i++)
 if (actual [i] > clipLimit)
 actual [i] = clipLimit;
 // Check for length differences
 if (actual.length != expected.length)
 return false;
 // Check that each entry within expected +/-
delta
 for (int i = 0; i < actual.length; i++)
 if (Math.abs(expected[i] - actual[i]
> delta)
 return false;

 return true;
 }

<C4.5> List the refactorings that are suitable for the code smell Comments in general ?

 <Your answer:>

ExtractMethod
IntroduceAssertion
RenameMethod

<C4.6> In what order should the previously listed refactorings be applied? <put “no
sequence” if the sequence is not important>

?

 <Your answer:>

doesn’t matter, depends on the type of the comments code smell.

<C4.7> What refactoring(s) would you apply for this(these) Comments code smell
example(s)? Mark each code smell with your text marker and explain why you apply
this refactoring.

?

 /** Simulation of a Tic-Tac-Toe game (does not do strategy).
*/
public class TicTacToe {
 protected static final int X = 1, O = -1; // players
 protected static final int EMPTY = 0; //
empty cell
 protected int board[][] = new int[3][3]; // game board
 protected int player; // current
player
 /** Constructor */

Copyright © Fraunhofer IESE 2009 21

 public TicTacToe() { clearBoard(); }
 /** Clears the board */
 public void clearBoard() {
 for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 board[i][j] = EMPTY; // every cell should be empty
 player = X; // the first player is
'X'
 }
 /** Puts an X or O mark at position i,j */
 public void putMark(int i, int j) throws IllegalArgumentEx-
ception {
 if ((i < 0) { (i > 2) { (j < 0) { (j > 2))
 throw new IllegalArgumentException("Invalid board posi-
tion");
 if (board[i][j] != EMPTY)
 throw new IllegalArgumentException("Board position occu-
pied");
 board[i][j] = player; // place the mark for the
current player
 player = - player; // switch players (uses fact
that O = - X)
 }
 /** Checks whether the board configuration is a win for the
given player */
 public boolean isWin(int mark) {
 return ((board[0][0] + board[0][1] + board[0][2] == mark*3)
// row 0
 { (board[1][0] + board[1][1] + board[1][2] ==
mark*3) // row 1
 { (board[2][0] + board[2][1] + board[2][2] ==
mark*3) // row 2
 { (board[0][0] + board[1][0] + board[2][0] ==
mark*3) // column 0
 { (board[0][1] + board[1][1] + board[2][1] ==
mark*3) // column 1
 { (board[0][2] + board[1][2] + board[2][2] ==
mark*3) // column 2
 { (board[0][0] + board[1][1] + board[2][2] ==
mark*3) // diagonal
 { (board[2][0] + board[1][1] + board[0][2] ==
mark*3)); // diagonal
 }
 /** Returns the winning player or 0 to indicate a tie */
 public int winner() {
 if (isWin(X))
 return(X);
 else if (isWin(O))
 return(O);
 else
 return(0);
 }

 <Your answer:>

It is clear that the constructor is the constructor!

The name of the method clearBoard tells the reader what the method does. The
comment is redundant. The same is true for the methods putMark and isWin.

Questions related to the code smell Uncommunicative Name

Copyright © Fraunhofer IESE 2009 22

<C4> Questions related to the code smell Uncommunicative Name

<C4.1> Explain in your own words what a Uncommunicative Name code smell is?
What are the problems it brings to the code?

?

 <Your answer:>

A name doesn't communicate its intent of a method, variable, classes, etc. well
enough
- One- or two-character names
- Names with vowels omitted
- Numbered variables (e.g., panel, pane2, and so on)
- Odd abbreviations
- Misleading names

<C4.2> Which of the following examples includes at least one Uncommunicative Name
code smell? <please mark the smell(s) with your text marker>

Yes No ?

 public Class getColumnClass(final int columnIndex) {
 return String.class;

 }

 x

 public void addDropTargetListener(DropTargetListener dtl)
{
 new DropTarget(flavorArea, dtl);
 new DropTarget(dataArea, dtl);

 }

x

 public String getColumnName(final int column) {
 String name = (column >= columnHeader.length)
 ? ""
 : columnHeader[column];
 return (name == null) ? "" : name;
 }

 x

 public void insertUpdate(DocumentEvent e) {
 /* using invokeLater seems neccessary */
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 scrollbar.setValue(scrollbar.getMaximum());
 }
 });

}

x

 public void paintComponent(Graphics g) {
 super.paintComponent(g);

 Graphics2D g2 = (Graphics2D) g;
 g2.setFont(bgFont);
 g2.setColor(fontColor);

 int dividerPos = getDividerLocation();
 drawCentered(g2, info[0], 0, dividerPos);
 drawCentered(g2, info[1],
 dividerPos + getDividerSize(), getHeight());
}

x

 public Object getValueAt(final int arg0, final int arg1)
{
 return data[arg0][arg1];
 }

x

Copyright © Fraunhofer IESE 2009 23

<C4.3> Give another simple example of a Uncommunicative Name code smell ?

 <Your answer:>

<C4.4> Please name the refactoring applied to the following Uncommunicative Name
code smell:

?

 <your answer:> RenameMethod (or RenameVariable)

 //data contains the colortable

public Object getValueAt(final int arg0, final int arg1)
{
 return data[arg0][arg1];

}

is transformed to:

public Object getValueAt(final int x, final int y) {
 return data[x][y];
}

<C4.5> List the refactorings that are suitable for the code smell Uncommunicative Name
in general

?

 <Your answer:>

RenameMethod (or RenameVariable)

<C4.6> In what order should the previously listed refactorings be applied? <put “no
sequence” if the sequence is not important>

?

 <Your answer:>

RenameMethod (or RenameVariable)

<C4.7> What refactoring would you apply for this(these) Uncommunicative Name code
smell example(s)? Mark the code smell with your text marker and explain why
you apply this refactoring.

?

 private Observer dndObserver = new Observer() {
 public void update(Observable o, Object arg) {
 if (arg instanceof DataFlavor[]) {

 gui.displayFlavors((DataFlavor[]) arg);

 } else if (arg instanceof String) {

 gui.appendData((String) arg);

 } else if (arg instanceof int[]) {

 int [] action = (int[]) arg;
 gui.setSourceActions(action[0]);
 gui.setUserAction(action[1]);
 }
 }

 };

 <Your answer:>

o is a one-character variable

Copyright © Fraunhofer IESE 2009 24

arg is a variable name with no meaning

1.4 Experience Packages for Experimentation

This section illustrates first the template for experience packages and after-
wards the experience packages used in the controlled experiment.

1.4.1 Experience Package Template

Titel of EP Type Experience

Action (A)

 Abstract:

 Problem:

 Solution:

Benefit (B)

 Effect:

Context (C)

 Product:

 Process:

 Project:

 Knowledge:

 Organization:

 People:

 Group:

Description (D)

 Explanation:

 Example:

Evidence (E) Analysis
Technique:

 Hypothesis:

Administrative

 Author: Date:

 Version: Relation EPs:

 Status:

Remark

Copyright © Fraunhofer IESE 2009 25

1.4.2 Experience Package: Code Smell Long Method

Titel of EP Code Smell Long Method Type Experience

Action (A)

 Abstract: Large methods consist of a large number of lines. You should be
suspicious when a method has more than 5 to 10 lines. The refactorings
ExtractMethod, ReplaceTempwithQuery,
ReplaceMethodwithMethodObject,
DecomposeConditional can be used to reduce this kind of code smell.
They will improve the class structure and abstraction levels.

 Problem: A method starts down a path and, rather than break the flow or identify
the helper classes, the author adds more and more. Code is often easier to
write than it is to read, so there's a temptation to write blocks that are too
big, which means that they get difficult to maintain, understand, etc.

 Solution: The refactoring ExtractMethod could be used to break up the method into
smaller parts. Look for comments or white space delineating interesting
blocks. You want to extract methods that are semantically meaningful,
not just introduce a function call every seven lines.

In addition, the following three methods can be used, too:
- ReplaceTempwithQuery: Temporary variables are used to hold the result
of an expression. This expression should be replaced with a method.
Extract the expression into a method.
- ReplaceMethodwithMethodObject: The difficulty in decomposing a
method lies in local variables. If they are rampant (Germ. üppig),
decomposition can be difficult. Applying it turns all the local variables into
fields on the method object and ExtractMethod can be applied on this
new object afterwards.
- DecomposeConditional: Methods named after the intention of that block
of code replace the parts of the conditional part and each of the
alternatives. This way you highlight the condition and make it clear what
you are branching on.

Benefit (B)

 Effect: lmproves communication. May expose duplication. Often helps to get new
classes and abstractions

Context (C)

 Product: Java Code

 Process: ExtractMethod, ReplaceTempwithQuery,
ReplaceMethodwithMethodObject,
DecomposeConditional

 Project: OO projects

 Knowledge: Code Smell Long Method

 Organization: Fraunhofer IESE

 Individual: Eric Ras

 Group: SOP-Dev

Evidence (E) Analysis
Technique:

- Hypothesis -

Administrative

 Author: Martin Fowler Date: 1999

 Version: Relation EPs:

 Status:

Copyright © Fraunhofer IESE 2009 26

remark Exercise W. Exercise 4 23ff

1.4.3 Experience Package: Code Smell Type Embedded in Name

Titel of EP Code Smell Type Embedded in Name Type Experience

Action (A)

 Abstract: When types are embedded in names, it's not only
redundant, but it forces you to change the name if the
type changes. This often results. Therefore, the
refactoring RenameMethod is applied to avoid this
kind of code smell, which is called Type Embedded in
Name.
Avoid placing types in method names!

 Problem: The embedded name can create unnecessary troubles
because later changes of the parameter (i.e., type) will
lead to a renaming of the method and the related
calls.

 Solution: The refactoring RenameMethod (the same is done for
fields or constants) should be applied, which leads to a
new name that communicates the intent of the
method without being so much tied to a type.

Benefit (B)

 Effect: Improves communication. May make it easier to spot
duplication.

Context (C)

 Product: Java code

 Process: RenameMethod

 Project: OO projects

 Knowledge: Code Smell Type Embedded in Name

 Organization: Fraunhofer IESE

 Individual: Eric Ras

 Group: Sop-Dev

Evidence (E) Analysis
Technique:

 Hypothesis

Administrative

 Author: Wakes Date:

 Version: 1.0 Relation EPs:

 Status: stable

remark exercise no one in W.

1.4.4 Experience Package: Code Smell Comments

Titel of EP Code Smell Comments Type Experience

Action (A)

 Abstract: Comments serve for a better communication and explanation of code.
It's surprising how often the code is badly commented and that the
comments are there because the code is bad. Hence, comments can be
substituted by refactoring methods.

Copyright © Fraunhofer IESE 2009 27

 Problem: Comments are often used to explain bad code. Programmers must add
a lot of comment to explain their classes and methods because their
naming does not give a hint what they itend to do.

 Solution: The first action in refactoring is to remove the bad code smells. When
this is done many comments get superfluous. In fact, the goal of a
routine can often be communicated as well through the routine's name
as it can through a comment.
The following refactorings should be used to reduce the comments and
to improve the code:
- When a comment explains a block of code, you can often use the
refactoring ExtractMethod to pull the block out into a separate method.
The comment will often suggest a name for the new method.
- When a comment explains what a method does (better than the
methods name), use the refactoring RenameMethod using the
comment as the basis of the new name.
- When a comment explains preconditions, consider using the
refactoring IntroduceAssertion to replace the comment with code.

Benefit (B)

 Effect: Improves communication. May expose duplication

Context (C)

 Product: Java Code

 Process: ExtractMethod, IntroduceAssertion, RenameMethod

 Project: OO projects

 Knowledge: Code Smell Comment

 Organization: Fraunhofer IESE

 People: Eric Ras

 Group: SOP-Dev

Evidence (E) Analyse
Technique:

NA Hypothesis NA

Administrative

 Author: Martin Fowler (p 87) Date: 1999

 Version: 1.0 Relation EPs:

 Status: stable

Remark Exercise Wakes s19-20

1.4.5 Experience Package: Code Smell Uncommunicative Name

Titel of EP Code Smell Uncommunicative Name Type Experience

Action (A)

 Abstract: The name does not explain the intent of a method. This makes
understanding a time consuming activity. The refactoring RenameMethod
should be applied to remove uncommunicative names.

 Problem: A name doesn't communicate its intent of a method well enough.

 Solution: Use RenameMethod (or held, constant, etc.) to give it a better name.

Copyright © Fraunhofer IESE 2009 28

Benefit (B)

 Effect: Improves communication

 Product: Java Code

 Process: RenameMethod

 Project: OO projects

 Knowledge: Code Smell Uncommunicative Name

 Organization: Fraunhofer IESE

 People: Eric Ras

 Group: Sop-Dev

Description (D)

 Explanation:

 Example:

 Exceptions

Evidence (E) Analyse
Technique:

 Hypothesis

Administrative

 Author: Date:

 Version: Relation EPs:

 Status:

remark

1.4.6 Experience Package: Code Smell Long Parameter List

Titel of EP Code Smell Long Parameter List Type Experience

Action (A)

 Abstract: A method that has more than 2 parameters. Long parameter list are
difficult to understand. Apply the refactorings
ReplaceParameterwithMethod, IntroduceParameterObject,
PreserveWholeObject to remove this problem.

 Problem: Long parameter lists are hard to understand, because they become
inconsistent and difficult to use, and because you are forever changing
them as you need more data.
Reasons for long parameter list are often routines that provide a general
algorithm, which need to have a lot of parameters in order to cover all the
needed variations.

 Solution: Most problems are removed by passing objects instead of using a lot of
parameters because you are much more likely to make only a couple of
requests to get at a new piece of data.
You pass only the minimum so that the method can get everything it
needs.
The following refactoring can be used for reducing parameter lists:

- Use ReplaceParameterwithMethod when you can get the data
in one parameter by making a request of an object you already
know about. This object might be a field or it might be another
parameter.

- If the parameter comes from a single object use
PreserveWholeObject and replace it with the object itself.

Copyright © Fraunhofer IESE 2009 29

- If you have several data items from different logical objects, use
IntroduceParameterObject to group the parameters.

Benefit (B)

 Effect: Improves communication. May expose duplication. Often reduces size

Context (C)

 Product: Java Code

 Process: ReplaceParameterwithMethod, IntroduceParameterObject,
PreserveWholeObject

 Project: OO projects

 Knowledge: Code Smell Long Parameter List

 Organization: Fraunhofer IESE

 People: Eric Ras

 Group: Sop-Dev

Evidence (E) Analyse
Technique:

 Hypothesis

Administrative

 Author: Date:

 Version: Relation EPs:

 Status:

remark exercise W. 31

1.4.7 Experience Package: Code Smell Lazy Class

Titel of EP Code Smell Lazy Class Type Experience

Action (A)

 Abstract: A class that isn’t doing enoug to pay for itself should be removed for
reasons of code size, code simplicity, and understandability. The
refactorings such as CollapseHierarchy and InlineClass help in this
situation.

 Problem: A class isn't doing much – its parents, children, or callers seem to be
doing all the associated work, and there isn't enough behavior left in the
class to justify its continued existence. They have a negative impact on
size, simplicity, and understandability of the code.

 Solution: If parents or children of the class seem like the right place for the class’s
behavior, fold it into one of them via the refactoring CollapseHierarchy.
Otherwise, fold its behavior into its caller via the refactoring InlineClass.

Copyright © Fraunhofer IESE 2009 30

Benefit (B)

 Effect: Reduces size. Improves communication. Improves simplicity.

Context (C)

 Product: Java Code

 Process: CollapseHierarchy, InlineClass,

 Project: OO projects

 Knowledge: Code Smell Lazy Class

 Organization: Fraunhofer IESE

 People: Eric Ras

 Group: Sop-Dev

Evidence (E) Analyse
Technique:

 Hypothesis

Administrative

 Author: Date:

 Version: Relation EPs:

 Status:

remark exercise W. 91

1.4.8 Experience Package: Code Smell Data Class

Titel of EP Code Smell Data Class Type Experience

Action (A)

 Abstract: These are classes that have fields, getting and setting methods for the
fields, and nothing else. Such classes are dumb data holders and are being
manipulated too much by other classes. Bad understanding and
communcication is the consequence. Appropriate refactorings such as
EncapsulateCollection, RemoveSettingMethod, or EncapsulateField solve
the problem of data classes.

 Problem: The existence of these kind of data classes is bad for understanding and
communcication. The way how they happen is because it's common for
classes to begin like this: You realize that some data is part of an
independent object, so you extract it. But objects are about the
commonality of behavior; and these objects
aren't developed enough as yet to have much behavior.
Bad understanding and communcication is the consequence.

 Solution: 1. If classes have public fields. If so, you should immediately apply
EncapsulateField to block direct access to the fields (allowing access only
through getters and setters).

2. If you have collection fields, check to see whether they are properly
encapsulated and apply EncapsulateCollection if they aren't, use
RemoveSettingMethod on any field that should not be changed.

3. You'll find clients accessing the fields and manipulating the results
when the class could do it for them. Use ExtractMethod on the client to
pull out the class-related code, then MoveMethod to put it over on the
data class. If you can't move a whole method, use ExtractMethod to
create a method that can be moved.

Copyright © Fraunhofer IESE 2009 31

4. After-doing this awhile, you may find that you have several similar
methods on the class. Use refactorings such as RenameMethod,
ExtractMethod, AddParameter, or RemoveParameter to harmonize
signatures and remove duplication.

5. Most access to the fields shouldn't be needed anymore because the
moved methods cover the real use. So use HideMethod to eliminate
access to the getters and setters.

Benefit (B)

 Effect:

Context (C)

 Product: Java Code

 Process: EncapsulateField, EncapsulateCollection, RemoveSettingMethod,
ExtractMethod, MoveMethod,
RenameMethod, AddParameter, RemoveParameter, HideMethod

 Project: OO Project

 Knowledge: Code Smell Data Class

 Organization: Fraunhofer IESE

 People: Eric Ras

 Group: Sop-Dev

Evidence (E) Analyse
Technique:

 Hypothesis

Administrative

 Author: Date:

 Version: Relation EPs:

 Status:

remark exercise W. 31

1.5 Learning Spaces for Experimentation

This section describes the learning elements of the different learning spaces.
The learning elements have been created in the software organization platform
by using the learning element authoring tool.

1.5.1 Learning Space: Code Smell Comments

Learnin
g
Space
Page

0 Experience
Package -

Code Smell
Comment

Exerience
A+B

 Ontology Type of Learning Content

Copyright © Fraunhofer IESE 2009 32

Instance
(Ontology
Main
Class)

Learning
Element

1 Refactoring
-

Introductio
n

Refactoring
(Process)

Definition Refactoring is the process of changing a software ystem in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. [Fowler]
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some
non-functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are cleaner ways of
expressing the same statement. Refactoring implies equivalence; the beginning and
end products must be functionally identical. You can view refactoring as a special
case of reworking.
Refactoring is a powerful technique for improving existing software. Having source
code that is understandable helps ensure a system is maintainable and extensible.
Originally conceived in the Smalltalk community, it has now become a mainstream
development technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all
considered as refactoring

• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring
(Process)

Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on
or from XP.

2 Code Smell
-

Introductio
n

Code Smell
(Knowledge

)

Definition In the domain of programming, code smell is any symptom that indicates something
may be wrong. It generally indicates that the code should be refactored or the overall
design should be reexamined.

 Code Smell
(Knowledge

)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once
Principle has been disregarded: each design choice shall be expressed exactly in one
place in the system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the
term increased after it was featured in the book “Refactoring. Improving the Design
of Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses
relation between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real smells that can keep you busy.

Copyright © Fraunhofer IESE 2009 33

3

Refactoring
- Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps. So refactoring doesn't preclude
changing functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is

there a problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What

are the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which

code transformation(s) will move the code towards the desired state?
Select a refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this
case, in a first step refactoring must be used to rearrange the design to fit
the new feature, followed by the developers’ incorporation of it in the
software.
– During debugging
– If it is difficult to trace an error, refactor to make the code more
comprehensible

• After a new feature has been implemented, the developers notice that the
design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design
until it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Overview

Code
Smells
within
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Code
Smells

between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactoring
- Overview

Refactoring
(Process)

Overview Classification of Martin Fowler:
1. Composing Methods: These refactorings serve restructurings on the method-level.
Examples of refactorings from this group are: ExtractMethod, InlineTemp or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of
methods and fields between classes. Among them, refactorings like MoveMethod,
ExtractClass or RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples
are: SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.

Copyright © Fraunhofer IESE 2009 34

6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactoring
- Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least
one of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term
• To facilitate future changes

• Improve the software design until it meets the required functional range.

7 Experience
Package -

Code Smell
Comment

Repeat
Experience

(AB)

8 Comment
-

Introductio
n

Comment
(Knowledge

)

Description Comments should be used to give overviews of code and provide additional
information that is not readily available in the code itself. Comments should contain
only information that is relevant to reading and understanding the program and
should be added when the author realizes that something isn't as clear as it could be
and adds a comment.
Discussion of nontrivial or nonobvious design decisions is appropriate, but avoid
duplicating information that is present in (and clear from) the code. It is too easy for
redundant comments to get out of date. In general, avoid any comments that are
likely to get out of date as the code evolves.

In addition, the frequency of comments sometimes reflects poor quality of code.
When you feel compelled to add a comment, consider rewriting the code to make it
clearer.

Some comments are particularly helpful:
- Those that tell why something is done a particular way (or why it wasn't)
- Those that cite algorithms that are not obvious (where a simpler algorithm won't
do)

Other comments can be reflected just as well in the code itself!

The refactorings ExtractMethod, IntroduceAssertion, RenameMethod should be used
to remove this kind of code smells.

9 ExtractMet
hod

ExtractMeth
od (process)

Description The refactoring ExtractMethod could be used to break up the method into smaller
parts. Look for comments or white space delineating interesting blocks. You want to
extract methods that are semantically meaningful, not just introduce a function call
every seven lines.
ExtractMethod is one of the most common refactorings. Look at a method that is too
long or look at code that needs a comment to understand its purpose. Then turn that
fragment of code into its own method whose name explains the purpose of the
method. Short, well-named methods should be preferred for several reasons:

• First, it increases the chances that other methods can use a method when
the method is finely grained.

Copyright © Fraunhofer IESE 2009 35

• Second, it allows the higher-level methods to read more like a series of
comments. Overriding also is easier when the methods are finely grained.

Small methods really work only when you have good names, so you need to pay
attention to naming.

What is the optimal length for a method? In fact, length is not the issue. The key is
the semantic distance between the method name and the method body. If extracting
improves clarity, do it, even if the name is longer than the code you have extracted.

 Process • Create a new method, and name it after the intention of the method
(name it by what it does, not by how it does it).

o If the code you want to extract is very simple, such as a simple
message or function call, you should extract it if the name of
the new method will reveal the intention of the code in a better
way. If you can't come up with a more meaningful name, don’t
extract the code.

• Copy the extracted code from the source method into the new target
method.

• Scan the extracted code for references to any variables that are local in
scope to the source method. These are local variables and parameters to
the method.

• See whether any temporary variables are used only within this extracted
code. If so, declare them in the target method as temporary variables.

• Look to see whether any of these local-scope variables are modified by the
extracted code. If one variable is modified, see whether you can treat the
extracted code as a query and assign the result to the variable concerned.
If this is awkward, or if there is more than one such variable, you can't
extract the method as it stands. You may need to use
SplitTemporaryVariable (128) and try again. You can eliminate temporary
variables with ReplaceTempwithQuery (see the discussion in the examples).

• Pass into the target method as parameters local-scope variables that are
rad from the extracted code.

• Compile when you have dealt with all the locally-scoped variables.
• Replace the extracted code in the source method with a call to the target

method.
o If you have moved any temporary variables over to the target

method, look to see whether they were declared outside of the
extracted code. If so, you can now remove the declaration.

• Compile and test.

 ExtractMeth
od (process)

Example void printOwing() {
 printBanner();

 //print details
 System.out.println ("name: " + _name);
 System.out.println ("amount: " + amount);
}

It is easy to extract the code that prints the banner. You just cut, paste, and put in a
call:

void printOwing(dounble amount) {
 printBanner();
 printDetails(amount);
}

void printDetails (double amount) {
 System.out.println ("name:" + _name);
 System.out.println ("amount: " + amount);
}

10 IntroduceA IntroduceAs Description Often sections of code work only if certain conditions are true. This may be as simple

Copyright © Fraunhofer IESE 2009 36

ssertion sertion
(process)

as a square root calculation’s working only on a positive input value.
With an object it may be assumed that at least one of a group of fields has a value in
it.
Such assumptions often are not stated but can only be decoded by looking through
an algorithm. Sometimes the assumptions are stated with a comment.
A better technique is to make the assumptions explicit by writing an assertion.
An assertion is a conditional statement that is assumed to be always true. Failure of
an assertion indicates programmer error. As such, assertion failures should always
result in unchecked exceptions. Assertions should never be used by other parts of the
system. Indeed assertions usually are removed for production
code. It is therefore important to signal something is an assertion.
Assertions act as communication and debugging aids. In communcication they help
the reader understand the assumption the code is making. In debugging, assertions
can help catch bugs closer to their origin. It has been noticed the
debugging help is less important when write self-testing code is writing, but the
value of assertions is still appreciated in communciation.

 IntroduceAs
sertion

(process)

Process Because assertions should not affect the running of a system, adding one is always
behavior preserving.

• When you see that a condition is assumed to be true, add an assertion to
state it.

o Have an assert class that you can use for assertion behavior
Beware of overusing assertions. Don't use assertions to check everything that you
think is true for a section of code. Use assertions only to check things that need to be
true. Overusing assertions can lead to duplicate logic that is awkward to maintain.
Logic that covers an assumption is good because it forces you to rethink the section
of the code. If the code works without the assertion, the assertion is confusing rather
than helpful and may hinder modification in the future.
Always ask whether the code still works if an assertion fails. If the code does work,
remove the assertion.
Beware of duplicate code in assertions. Duplicate code smells just as bad in assertion
checks as it does anywhere else.
Use Extract Method liberally to get rid of the duplication.

 IntroduceAs
sertion

(process)

Example Here's a simple tale of expense limits. Employees can be given an individual expense
limit. If they are assigned a primary project, they can use the expense limit of that
primary project. They don't have to have an expense limit or a primary project, but
they must have one or the other. This assumption is taken for granted in the code
that uses expense limits:

class Employee …
private static final double NULL-EXPENSE = -1.0;
private double -expenseLimit = NULL-EXPENSE;
private Project -primaryProject;

double getExpenseLimit() {
 // should have either expense limit or a primary project
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }
This code contains an implicit assumption that the employee has either a project or a
personal expense limit. Such an assertion should be clearly stated in the code:

 double getExpenseLimit() {
 Assert.isTrue (_expenseLimit != NULL_EXPENSE ||
_primaryProject != null);
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

This assertion does not change any aspect of the behavior of the program. Either

Copyright © Fraunhofer IESE 2009 37

way, if the condition is not true, you get a runtime exception: either a null pointer
exception in withinLimit or a runtime exception inside Assert.isTrue. In some
circumstances the assertion helps find the bug, because it is closer to where things
went wrong. Mostly, however, the assertion helps to communicate how the code
works and what it assumes.

11 RenameMe
thod

RenameMet
hod

(process)

Description If the name of a method does not reveal its purpose, you should change the name of
this method.
An important part of the code style Fowler is advocating is small methods to factor
complex processes. Done badly, this can lead you on a merry dance to find out what
all the little methods do. The key to avoiding this merry dance is naming the
methods.

Methods should be named in a way that communicates their intention. A good way
to do this is to think what the comment for the method would be and turn that
comment into the name of the method.
If you see a badly named method, it is imperative that you change it. Remember your
code is for a human first and a computer second. Humans need good names. Take
note of when you have spent ages trying to do something that would have been
easier if a couple of methods had been better named. Good naming is a skill that
requires practice; improving this skill is the key to being a truly skillful programmer.

Remark: The same applies to other aspects of the signature.

If reordering parameters clarifies matters, do it (see Add Parameter (275) and
RemoveParameter [277]).

 RenameMet
hod

(process)

Process • Check to see whether the method signature is implemented by a
superclass or subclass. If it is, perform these steps for each
implementation.

• Declare a new method with the new name. Copy the old body of code
over to the new name and make any alterations to fit.

• Compile.
• Change the body of the old method so that it calls the new one.

o If you have only a few references, you can reasonable sklp thls
step.

• Compile and test.
• Find all references to the old method name and change them to refer to

the new one. Compile and test after each change.
• Remove the old method.

o If the old method is part of the rnterface and you cannot
remove it, leave leave it in place and mark it as deprecated.

• Complle and test.

 RenameMet
hod

(process)

Example

 RenameMet

hod
(process)

Example You have a method to get a person's telephone number:

public String getTelephoneNumber() {
return ("(" + _0fficeAreaCode + ") " + _officeNumber);
}

You want to rename the method to get0fficeTelephoneNumber. You begin by
creating the new method and copying the body over to the new method. The old
method now changes to call the new one:

class Person. . .

public String getTelephoneNumber(){
return getOfficeTelephoneNumber() ;

}

Copyright © Fraunhofer IESE 2009 38

public String getOfficeTelephoneNumber() {
return ("(" + _officeAreaCode t ") " + _officeNumber);

}

Now find the callers of the old method, and switch them to call the new one. When
you have switched them all, you can remove the old method.
The procedure is the same if you need to add or remove a parameter.
If there aren't many callers, you change the callers to call the new method without
sing the old method as a delegating method. If your tests throw a problem, you back
out and make the changes the slow way.

1.5.2 Learning Space: Code Smell Long Method

Learnin
g
Space
Page

0 Experienc
e

Package -
Code
Smell
Long

Method

Exerience
A+B

 Ontology
Instance
(Ontology
Main Class)

Type of
Learning
Element

Learning Content

1 Refactori
ng -

Introducti
on

Refactoring
(Process)

Definition Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. Fowler []
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some
non-functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are cleaner ways of
expressing the same statement. Refactoring implies equivalence; the beginning and
end products must be functionally identical. You can view refactoring as a special
case of reworking.
Refactoring is a powerful technique for improving existing software. Having source
code that is understandable helps ensure a system is maintainable and extensible.
Originally conceived in the Smalltalk community, it has now become a mainstream
development technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all
considered as refactoring

• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on

Copyright © Fraunhofer IESE 2009 39

(Process) or from XP.

2 Code
Smell -

Introducti
on

Code Smell
(Knowledge)

Definition In the domain of programming, code smell is any symptom that indicates something
may be wrong. It generally indicates that the code should be refactored or the overall
design should be reexamined.

 Code Smell
(Knowledge)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once
Principle has been disregarded: each design choice shall be expressed exactly in one
place in the system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the
term increased after it was featured in the book “Refactoring. Improving the Design
of Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses
relation between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real srnells that can keep you busy.

3

Refactori
ng -

Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps. So refactoring doesn't preclude
changing functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is

there a problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What

are the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which

code transformation(s) will move the code towards the desired state?
Select a refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this
case, in a first step refactoring must be used to rearrange the design to fit
the new feature, followed by the developers’ incorporation of it in the
software.
- During debugging
– If it is difficult to trace an error, refactor to make the

code more comprehensible
• After a new feature has been implemented, the developers notice that the

Copyright © Fraunhofer IESE 2009 40

design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design
until it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Overview

Code Smells
within Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Code Smells
between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactori
ng -

Overview

Refactoring
(Process)

Overview Classification of Martin Fowler:
1. Composing Methods: These refactorings serve restructurings on the method-level.
Examples of refactorings from this group are: ExtractMethod, InlineTemp, or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of
methods and fields between classes. Among them, refactorings like MoveMethod,
ExtractClass or RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples
are: SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.
6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactori
ng -

Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least
one of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term
• To facilitate future changes

• Improve the software design until it meets the required functional range.

7 Experienc
e

Package -
Code
Smell
Long

Method

Repeat
Experience

(AB)

8 Code
Smell
Long

Method

Code Smell
Long Method
(knowledge)

Description The object programs that live best and longest are those with short methods.

Programmers new to OO development often feel that no computation ever takes
place, that object programs are endless sequences of delegation. When you have

Copyright © Fraunhofer IESE 2009 41

lived with such a program for a few years, however, you learn just how valuable all
those little methods are. All of the payoffs of indirection-explanation, sharing, and
choosing-are supported by little methods.
Since the early days of programming people have realized that the longer a
procedure is, the more difficult it is to understand.

In fact, it is a kind the “Columbo syndrome”. Columbo was the detective who always
had "just one more thing."
A method starts down a path and, rather than break the flow or identify the helper
classes, the author adds one more thing. Code is often easier to write than it is to
read, so there's a temptation to write blocks that are too big.

You may find other refactorings (those that clean up straight-line code, conditionals,
and variable usage) helpful before you even begin splitting up the method.

 CounterExa
mple

It may be that a somewhat longer method is just the best way to express something.
(Like almost all smells, the length is a warming sign – not a guarantee – of a
problem.)

 Process Missing (see Fowler p 77)

9 ExtractM
ethod

ExtractMetho
d (process)

Description The refactoring ExtractMethod could be used to break up the method into smaller
parts. Look for comments or white space delineating interesting blocks. You want to
extract methods that are semantically meaningful, not just introduce a function call
every seven lines.
Extract Method is one of the most common refactorings. Look at a method that is
too long or look at code that needs a comment to understand its purpose. Then turn
that fragment of code into its own method whose name explains the purpose of the
method. Short, well-named methods should be preferred for several reasons:

o First, it increases the chances that other methods can use a method when
the method is finely grained.

o Second, it allows the higher-level methods to read more like a series of
comments. Overriding also is easier when the methods are finely grained.

Small methods really work only when you have good names, so you need to pay
attention to naming.

What is the optimal length for a method? In fact, length is not the issue. The key is
the semantic distance between the method name and the method body. If extracting
improves clarity, do it, even if the name is longer than the code you have extracted.

 ExtractMetho
d (process)

Process • Create a new method, and name it after the intention of the method
(name it by what it does, not by how it does it).

o If the code you want to extract is very simple, such as a simple
message or function call, you should extract it if the name of
the new method will reveal the intention of the code in a better
way. If you can't come up with a more meaningful name, don’t
extract the code.

• Copy the extracted code from the source method into the new target
method.

• Scan the extracted code for references to any variables that are local in
scope to the source method. These are local variables and parameters to
the method.

• See whether any temporary variables are used only within this extracted
code. If so, declare them in the target method as temporary variables.

• Look to see whether any of these local-scope variables are modified by the
extracted code. If one variable is modified, see whether you can treat the
extracted code as a query and assign the result to the variable concerned.
If this is awkward, or if there is more than one such variable, you can't
extract the method as it stands. You may need to use
SplitTemporaryVariable (128) and try again. You can eliminate temporary
variables with ReplaceTempwithQuery (120) (see the discussion in the
examples).

Copyright © Fraunhofer IESE 2009 42

• Pass into the target method as parameters local-scope variables that are
rad from the extracted code.

• Compile when you have dealt with all the locally-scoped variables.
• Replace the extracted code in the source method with a call to the target

method.
o If you have moved any temporary variables over to the target

method, look to see whether they were declared outside of the
extracted code. If so, you can now remove the declaration.

• Compile and test.

 ExtractMetho
d (process)

Example void printOwing() {
printBanner();
 //print details
 System.out.println ("name: " + _name);
 System.out.println ("amount " + amount);
}

It is easy to extract the code that prints the banner. Just cut, paste, and put in a call:

void printOwing() {
 printBanner();
 printDetails(getOutstanding());
}

void printDetails (double outstanding) {
 System.out.println ("name: " + _name);
 System.out.println ("amount " + outstanding);
}

10 ReplaceT
empwith

Query

ReplaceTemp
withQuery
(process)

Description Temporary variable are used that to hold the result of an expression.
This expression should be replace with a method. Replace all references to the temp
with the expression. The new method can then be used in other methods.

The problem with temps is that they are temporary and local. Because they can be
seen only in the context of the method in which they are used, temps tend to
encourage longer methods, because that's the only way you can reach the temp. By
replacing the temp with a query method, any method In the class can get at the
informatlon. That helps a lot In coming up with cleaner code for the class.
ReplaceTempwithQuery often is an important step before ExtractMethod. Local
variables make it difficult to extract, so replace as many variables as you can with
queries.
The straightforward cases of this refactoring are those in which temps are assigned
only to once and those in which the expression that generates the assignment is free
of side effects. Other cases are trickier but possible. You may need to use
SplitTemporaryVariable or SeparateQueryfromModifier(279) first to make things
easier. If the temp is used to collect a result (such assumming over a loop), you need
to copy some logic into the query method.

 Process Here is the sample case:

• Look for a temporary variable that is assigned to once.
o If a temp is set more than once consider

SplitTemporaryVariable(128).
• Declare the temp as final.
• Compile.

o This will ensure that the temp is only assigned to once.
• Extract the right-hand side of the assignment into a method.

o Initially mark the method as private. You may find more use for
it later; but you can easily relax the protection later.

o Ensure the extracted method is free of side effects, that is, it
does not modify any object. If it is not free of side effects, use
SeparateQueryfromModifier (279).

Copyright © Fraunhofer IESE 2009 43

• Compile and test.
• Use ReplaceTempwithQuery on the temp

 Example double basePrice = _quantity * _itemPrice;
 if (basePrice > 1000)
 return basePrice * 0.95;
 else
 return basePrice * 0.98;

Is transformed to:

 if (basePrice() > 1000)
 return basePrice() * 0.95;
 else
 return basePrice() * 0.98;
...
double basePrice() {
 return _quantity * _itemPrice;
}

 Example double getPrice() {
int basePrice = _quantity * _itemprice;
double discountFactor;
if (baseprice > 1000) discountFactor = 0.95;
else discountfactor = 0.98;

return basePrice * discountFactor;
}

Don’t replace both temps, replace one at a time. Although it's pretty clear in this
case, you can test that they are assigned only to once by declaring them as final:

double getPrice() {

final int basePrice = _quantity * _itemPrice;
final double discountFactor;
if (baseprice > 1000)

discountFactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountFactor;
}

Compiling will then alert me to any problems. Do this first, because if there is a
problem, you shouldn't be doing this refactoring. Replace the temps one at a time.
First, extract the right-hand side of the assignment:

double getPrice() {

final int basePrice = basePrice();
final double discountFactor;
if (basePrice > 1000)

 discountFactor = 0.95;
else discountFactor = 0.98;
return basePrice * discountFactor;

}

double getPrice() {

final int basePrice = basePrice();
final double discountFactor;
if (basePrice > 1000)

discountfactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountfactor;
}

Compile and test, then begin with ReplaceTempwithQuery. First replace the first

Copyright © Fraunhofer IESE 2009 44

reference to the temp:

double getPrice() {

final int basePrice = basePrice();
final double discountFactor;
if (basePrice() > 1000)

discountfactor = 0.95;
else discountFactor = 0.98;

return basePrice * discountfactor;
}

Compile and test and do the next (sounds like a caller at a line dance). Because it's
the last, remove the temp declaration:

double getPrice() {

final double discountFactor;
if (basePrice() > 1000)

 discountfactor = 0.95;
else discountFactor = 0.98;

return basePrice() * discountfactor;
}

With this done, extract discountFactor in a similar way:

double getPrice() {

final double discountFactor = discountfactor();
return basePrice() * discountfactor;

private double discountfactor() {

if (basePrice() > 1000) return 0.95;
else return 0.98;

}

See how it would have been difficult to extract discountFactor if you had not
replaced basePrice with a query. The getPrice method ends up as follows:

double getPrice() {

return basePrice() * discountfactor();
}

 Counterexa
mple

Paul Haahr pointed out that you can't do this refactoring if the code in between the
the assignment to the temp and the use of the temp changes the value of the
expression that calculates the temp. In these cases the code is using the temp to
snapshot the value of the temp when it's assigned. The name of the temp should
convey this fact (and you should change the name if it doesn't).

11 ReplaceM
ethodwit
hMethod

Object

ReplaceMeth
odwithMetho

dObject
(process)

Description You have a long method that uses local variables in such a way that you cannot apply
ExtractMethod.

Turn the method into its own object so that all the local variables become fields on
that object. You can then decompose the method into other methods on the same
object.

By extracting pieces out of a large method, you make things much more
comprehensible. The difficulty in decomposing a method lies in local variables. If they
are rampant (Germ. üppig), decomposition can be difficult. Using
ReplaceTempwithQuery helps to reduce this burden, but occasionally you may find
you cannot break down a method that needs breaking. In this case you reach deep
into the tool bag and get out your method object [Beck].

Applying ReplaceMethodwithMethodObject turns all these local variables into fields
on the method object. You can then use ExtractMethod on this new object to create
additional methods that break down the original method.

Copyright © Fraunhofer IESE 2009 45

 Process o Create a new class, name it after the method.
o Give the new class a final field for the object that hosted the original

method (the source object) and a field for each temporary variable and
each parameter in the method

o Give the new class a constructor that takes the source object and each
parameter.

o Give the new class a method named "compute."
o Copy the body of the original method Into compute. Use the source object

field for any mvocatlons of methods on the original object.
o Replace the old method with one that creates the new object and calls

compute.
Now comes the fun part. Because all the local variables are now fields, you can freely
decompose the method without having to pass any parameters.

Copyright © Fraunhofer IESE 2009 46

 Example class Order...
 double price() {
 double primaryBasePrice;
 double secondaryBasePrice;
 double tertiaryBasePrice;
 // long computation;
 ...
 }

Is tranformed to

 Example A proper example of this requires a long chapter, so this refactoring is showed for a

method that doesn't need it. (The logic of this method is not important to
understand!)

Class Account

int gamma (int inputVal, int quantity, int yearToDate) {
int importantValue1 = (inputVal * quantity) + delta();
int importantValue2 = (inputVal * yearToDate) + 100;
if ((yearToDate - importantValue1) > 100)
importantValue2 -= 20;
int importantValue3 = importantValue2 * 7;
// and so on.
return importantValue3 - 2 * importantValue1;

}

To turn this into a method object, begin by declaring a new class. Provide a final field
for the original object and a field for each parameter and temporary variable in the
method.

class Gamma. . .

private final Account _account;
private int inputVal ;
private int quantity;
private int yearToDate;
private int importantValue1;
private int importantValue2;
private int importantValue3;

Should should usually use the underscore prefix convention for marking fields. But to
keep small steps leave the names as they are for the moment.
Add a constructor:

Gamma (Account source, int inputValArg, int quantityArg, int yearToDateArg) {

_account = source;
inputVal = inputValArg;
quantity = quantityArg;
yearToDate = yearToDateArg;

Copyright © Fraunhofer IESE 2009 47

}

Now you can move the original method over you need to modify any calls of features
of account to use the _account field
int compute () {

importantValue1 = (inputVal Quantity) + _account.delta();
importantValue2 = (inputVal * yearToDate) + 100;
if ((yearToDate – importantvalue1) > 100)
importantValue2 -= 20;
int importantValue3 = importantValue2 *7;
// and so on.
return importantValue3 - 2 * importantValue1;

}

You then modify the old method to delegate to the method object:

int gamma (int inputVal, int quantity, int yearToDate) {

return new Gamma(this, inputVal, quantity, yearToDate) .compute();
}

That's the essential refactoring. The benefit is that you can now easily use
ExtractMethod on the compute method without ever worrying about the argument's
passing:

int compute () {

importantValue1 = (inputVal "quantity) + _account .delta() ;
importantValue2 = (inputVal * yearToDate) + 100;
importantThing() ;
int importantValue3 = importantValue2 * 7;
// and so on.
return importantValue3 - 2 * importantValue1;

}

void importantThing() {

if ((yearToDate – importantValue1) > 100)
importantValue2 -= 20;

}

12 Decompo
seConditi

onal

DecomposeC
onditional
(process)

Description You have a complicated conditional (if-then-else) statement. Extract methods from
the condition, then part, and else parts.

One of the most common areas of complexity in a program lies in complex
conditional logic. As you write code to test conditions and to do various things
depending on various conditions, you quickly end up with a pretty long method.
Length of a method is in itself a factor that makes it harder to read, but conditions
increase the difficulty. The problem usually lies in the fact that the code, both in the
condition checks and in the actions, tells you what happens but can easily make it
difficult to understand why it happens.
As with any large block of code, you can make your intention clearer by
decomposing it and replacing chunks of code with a method call named after the
intention of that block of code. With conditions you can receive further benefit by
doing this for the conditional part and each of the alternatives. This way you
highlight the condition and make it clearly what you are branching on. You also
highlight the reason for the branching.

 Example
p239

if (date.before (SUMMER_START) | | date.after(SUMMER_END))
 charge = quantity * _winterRate + _winterServiceCharge;
else charge = quantity * _summerRate;

is transformed to:

if (notSummer(date))
 charge = winterCharge(quantity);

Copyright © Fraunhofer IESE 2009 48

else charge = summerCharge (quantity);

private boolean notSummer(Date date) {

return date.before (SUMMER_START) | | date.after(SUMMER_END) ;
}

private double summerCharge(int quantity) {

return quantity * _summerRate;
}

private double winterCharge(int quantity) {

return quantity * _winterRate + _winterServiceCharge;
}

 Process o Extract the condition into its own method.
o Extract the then part and the else part into their own methods.

1.5.3 Learning Space: Code Smell Type Embedded in Name

Learnin
g
Space
Page

0 Experienc
e

Package -
Code
Smell
Type

Embedde
d in

Name

Exerience
A+B

 Ontology
Instance
(Ontology
Main Class)

Type of
Learning
Element

Learning Content

1 Refactori
ng -

Introducti
on

Refactoring
(Process)

Definition Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. Fowler []
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some
non-functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are cleaner ways of
expressing the same statement. Refactoring implies equivalence; the beginning and
end products must be functionally identical. You can view refactoring as a special
case of reworking.
Refactoring is a powerful technique for improving existing software. Having source
code that is understandable helps ensure a system is maintainable and extensible.
Originally conceived in the Smalltalk community, it has now become a mainstream
development technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all

Copyright © Fraunhofer IESE 2009 49

considered as refactoring
• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring
(Process)

Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on
or from XP.

2 Code
Smell -

Introducti
on

Code Smell
(Knowledge)

Definition In the domain of programming, code smell is any symptom that indicates something
may be wrong. It generally indicates that the code should be refactored or the overall
design should be reexamined.

 Code Smell
(Knowledge)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once
Principle has been disregarded: each design choice shall be expressed exactly in one
place in the system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the
term increased after it was featured in the book “Refactoring. Improving the Design
of Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses
relation between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real srnells that can keep you busy.

3

Refactori
ng -

Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps. So refactoring doesn't preclude
changing functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is

there a problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What

are the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which

code transformation(s) will move the code towards the desired state?
Select a refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this

Copyright © Fraunhofer IESE 2009 50

case, in a first step refactoring must be used to rearrange the design to fit
the new feature, followed by the developers’ incorporation of it in the
software.
- During debugging
– If it is difficult to trace an error, refactor to make the

code more comprehensible
• After a new feature has been implemented, the developers notice that the

design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design
until it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Overview

Code Smells
within Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Code Smells
between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactori
ng -

Overview

Refactoring
(Process)

Overview Classification of Martin Fowler:
1. Composing Methods: These refactorings serve restructurings on the method-level.
Examples of refactorings from this group are: ExtractMethod, InlineTemp or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of
methods and fields between classes. Among them, refactorings like MoveMethod,
ExtractClass or RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples
are: SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.
6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactori
ng -

Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least
one of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term
• To facilitate future changes

• Improve the software design until it meets the required functional range.

7 Experienc
e

Package -
Code
Smell

Repeat
Experience

(AB)

Copyright © Fraunhofer IESE 2009 51

Type
Embedde

d in
Name

8 Code
Smell
Type

Embedde
d in

Name

Code Smell
Type

Embedded in
Name

Description The following problems are related to the code smell Type Embedded in Name.
o Method names are compound words, consisting of a word plus the type of

the argument(s).For example, a method addCourse(Course c).
o Names are in Hungarian notation, where the type of an object is encoded

into the name; e.g., icount as an integer member variable.
o Variable names reflect their type rather than their purpose or role.

Explanation of the problems:
The type may be added in the name of communication. For example,
schedule.addCourse(course) might be regarded as more readable than
schedule.add(course).
The embedded type name represents duplication: Both the argument and the name
mention the same type. The embedded name can create unnecessary troubles later
on. For example, suppose we introduce a parent class for Course to cover both
courses and series or courses. Now, all the places that refer to addcourse() have a
name that's not quite appropriate. We either change the name at every call site or
live with a poor name. Finally, by naming things for the operation alone, we make it
easier to see duplication and recognize new abstractions.

Hungarian notation is often introduced as part of a coding standard. In pointer-based
languages (like C), it was useful to know that **ppc is in fact a character, but in
object-oriented languages it overcouples a name to its type.

Some programmers or teams use a convention where a prefix indicates that
something is a member variable (_count or in-count) or that something is a constant
(ALL-UPPER-CASE). Again, this adds friction as we change whether something is a
local variable, a member, and so on. Aren't there times when we need to know
which is which? Sure-and if it's not easy to tell, then it may be a sign that a class is
too big.

The solution for these type of code smells is to apply the refactoring RenameMethod.

 Counter
Example

Rarely, you might have a class that wants to do the same sort of
operation to two different but related types. For example, we
might have a Graph class with addPoint() and addlink() methods.
If the abstract behavior for the two cases is tlie same, it may be appropriate to
overload the method name (add()). Sometimes you're using a coding standard that
uses typographical conventions to distinguish different classes of variables. You may
then value the team's readability of code above the flexibility of untyped names, and
follow those conventions.

11 Rename
Method

RenameMeth
od (process)

Description The name of a method does not reveal its purpose.
Change the name of the method.
An important part of the code style Martin Fowler advocating is small methods to
factor complex processes. Done badly, this can lead you on a merry dance to find out
what all the little methods do. The key to avoiding this merry dance is naming the
methods.

Methods should be named in a way that communicates their intention. A good way
to do this is to think what the comment for the method would be and turn that
comment into the name of the method.
If you see a badly named method, it is imperative that you change it. Remember your
code is for a human first and a computer second. Humans need good names. Take
note of when you have spent ages trying to do something that would have been
easier if a couple of methods had been better named. Good naming is a skill that
requires practice; improving this skill is the key to being a truly skillful programmer.

Remark: The same applies to other aspects of the signature.

Copyright © Fraunhofer IESE 2009 52

If reordering parameters clarifies matters, do it (see Add Parameter (275) and
RemoveParameter [277]).

 RenameMeth
od (process)

Process • Check to see whether the method signature is implemented by a
superclass or subclass. If it is, perform these steps for each
implementation.

• Declare a new method with the new name. Copy the old body of code
over to the new name and make any alterations to fit.

• Compile.
• Change the body of the old method so that it calls the new one.

o If you have only a few references, you can reasonable sklp thls
step.

• Compile and test.
• Find all references to the old method name and change them to refer to

the new one. Compile and test after each change.
• Remove the old method.

o If the old method is part of the rnterface and you cannot
remove it, leave leave it in place and mark it as deprecated.

• Complle and test.

 RenameMeth
od (process)

Example

 RenameMeth

od (process)
Example You have a method to get a person's telephone number:

public String getTelephoneNumber() {
return ("(" + _0fficeAreaCode + ") " + _officeNumber);
}

You want to rename the method to get0fficeTelephoneNumber. You begin by
creating the new method and copying the body over to the new method. The old
method now changes to call the new one:

class Person. . .
public String getTelephoneNumber(){
return getOfficeTelephoneNumber() ;
}

public String getOfficeTelephoneNumber() {
return ("(" + _officeAreaCode + ") " + _officeNumber);
}

Now you find the callers of the old method, and switch them to call the new one.
When you have switched them all, you can remove the old method.
The procedure is the same if you need to add or remove a parameter.
If there aren't many callers, you change the callers to call the new method without
sing the old method as a delegating method. If your tests throw a problem, you back
out and make the changes the slow way.

Copyright © Fraunhofer IESE 2009 53

1.5.4 Learning Space: Code Smell Uncommunicative Name

0 Experienc
e

Package -
Code
Smell

Uncomm
unicative

Name

Exerience
A+B

 Ontology
Instance
(Ontology
Main Class)

Type of
Learning
Element

Learning Content

1 Refactori
ng -

Introducti
on

Refactoring
(Process)

Definition Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. Fowler []
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some
non-functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are cleaner ways of
expressing the same statement. Refactoring implies equivalence; the beginning and
end products must be functionally identical. You can view refactoring as a special
case of reworking.
Refactoring is a powerful technique for improving existing software. Having source
code that is understandable helps ensure a system is maintainable and extensible.
Originally conceived in the Smalltalk community, it has now become a mainstream
development technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all
considered as refactoring

• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring
(Process)

Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on
or from XP.

2 Code
Smell -

Introducti
on

Code Smell
(Knowledge)

Definition In the domain of programming, code smell is any symptom that indicates something
may be wrong. It generally indicates that the code should be refactored or the overall
design should be reexamined.

 Code Smell
(Knowledge)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once
Principle has been disregarded: each design choice shall be expressed exactly in one
place in the system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the

Copyright © Fraunhofer IESE 2009 54

term increased after it was featured in the book “Refactoring. Improving the Design
of Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses
relation between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real srnells that can keep you busy.

3

Refactori
ng -

Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps. So refactoring doesn't preclude
changing functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is

there a problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What

are the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which

code transformation(s) will move the code towards the desired state?
Select a refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this
case, in a first step refactoring must be used to rearrange the design to fit
the new feature, followed by the developers’ incorporation of it in the
software.
- During debugging
– If it is difficult to trace an error, refactor to make the

code more comprehensible
• After a new feature has been implemented, the developers notice that the

design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design
until it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Overview

Code Smells
within Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Code Smells
between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactori Refactoring Overview Classification of Martin Fowler:

Copyright © Fraunhofer IESE 2009 55

ng -
Overview

(Process) 1. Composing Methods: These refactorings serve restructurings on the method-level.
Examples of refactorings from this group are: ExtractMethod, InlineTemp or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of
methods and fields between classes. Among them, refactorings like MoveMethod,
ExtractClass or RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples
are: SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.
6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactori
ng -

Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least
one of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term
• To facilitate future changes

• Improve the software design until it meets the required functional range.

7 Experienc
e

Package -
Code
Smell

Uncomm
unicative

Name

Repeat
Experience

(AB)

8 Code
Smell

Uncomm
unicative

Name

Code Smell
Uncommunic
ative Name

Description A name doesn't communicate its intent of a method, variable, classes, etc. well
enough
- One- or two-character names
- Names with vowels omitted.
- Numbered variables (e.g., panel, pane2, and so on)
- Odd abbreviations
- Misleading names
When you first implement something, you have to name things somehow. You give
the best name you can think of at the time and move on. Later, you may have an
insight that lets you pick a better name.

 Counter
Example

Some teams use i/j/k for loop indexes or c for characters; these aren’t too confusing if
the scope is reasonably short. Similarly, you may occassionally find that numbered
variables communicates better.

9 Rename
Method

RenameMeth
od (process)

Description If the name of a method does not reveal its purpose, you should change the name of
this method.

Copyright © Fraunhofer IESE 2009 56

An important part of the code style Fowler is advocating is small methods to factor
complex processes. Done badly, this can lead you on a merry dance to find out what
all the little methods do. The key to avoiding this merry dance is naming the
methods.

Methods should be named in a way that communicates their intention. A good way
to do this is to think what the comment for the method would be and turn that
comment into the name of the method.
If you see a badly named method, it is imperative that you change it. Remember your
code is for a human first and a computer second. Humans need good names. Take
note of when you have spent ages trying to do something that would have been
easier if a couple of methods had been better named. Good naming is a skill that
requires practice; improving this skill is the key to being a truly skillful programmer.

Remark: The same applies to other aspects of the signature, i.e., variables, class
names, etc.

If reordering parameters clarifies matters, do it (see Add Parameter (275) and
RemoveParameter [277]).

 RenameMeth
od (process)

Process • Check to see whether the method signature is implemented by a
superclass or subclass. If it is, perform these steps for each
implementation.

• Declare a new method with the new name. Copy the old body of code
over to the new name and make any alterations to fit.

• Compile.
• Change the body of the old method so that it calls the new one.

o If you have only a few references, you can reasonable sklp thls
step.

• Compile and test.
• Find all references to the old method name and change them to refer to

the new one. Compile and test after each change.
• Remove the old method.

o If the old method is part of the rnterface and you cannot
remove it, leave leave it in place and mark it as deprecated.

• Complle and test.

 RenameMeth
od (process)

Example

 RenameMeth

od (process)
Example You have a method to get a person's telephone number:

public String getTelephoneNumber() {
return ("(" + _0fficeAreaCode + ") " + _officeNumber);
}

You want to rename the method to get0fficeTelephoneNumber. You begin by
creating the new method and copying the body over to the new method. The old
method now changes to call the new one:

class Person. . .
public String getTelephoneNumber(){
return getOfficeTelephoneNumber() ;
}

public String getOfficeTelephoneNumber() {
return ("(" + _officeAreaCode + ") " + _officeNumber);
}

Now you find the callers of the old method, and switch them to call the new one.
When you have switched them all, you can remove the old method.

Copyright © Fraunhofer IESE 2009 57

The procedure is the same if you need to add or remove a parameter.
If there aren't many callers, you change the callers to call the new method without
sing the old method as a delegating method. If your tests throw a problem, you back
out and make the changes the slow way.

1.5.5 Learning Space: Code Smell Long Parameter List

Learni
ng
Space
Page

0 Experie
nce

Package
- Code
Smell

Uncom
municat

ive
Name

Exerience
A+B

 Ontology
Instance
(Ontology
Main Class)

Type of
Learning
Element

Learning Content

1 Refactor
ing -

Introduc
tion

Refactoring
(Process)

Definition Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure. Fowler []
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some non-
functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when you
factor an expression into an equivalence - the factors are cleaner ways of expressing the
same statement. Refactoring implies equivalence; the beginning and end products must
be functionally identical. You can view refactoring as a special case of reworking.
Refactoring is a powerful technique for improving existing software. Having source code
that is understandable helps ensure a system is maintainable and extensible. Originally
conceived in the Smalltalk community, it has now become a mainstream development
technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all considered
as refactoring

• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring
(Process)

Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on or
from XP.

2 Code
Smell -

Introduc
tion

Code Smell
(Knowledge)

Definition In the domain of programming, code smell is any symptom that indicates something may
be wrong. It generally indicates that the code should be refactored or the overall design
should be reexamined.

Copyright © Fraunhofer IESE 2009 58

 Code Smell
(Knowledge)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once Principle
has been disregarded: each design choice shall be expressed exactly in one place in the
system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the term
increased after it was featured in the book “Refactoring. Improving the Design of
Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses relation
between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real srnells that can keep you busy.

3

Refactor
ing -

Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug fixes
and feature additions between these steps. So refactoring doesn't preclude changing
functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is there a

problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What are

the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which code

transformation(s) will move the code towards the desired state? Select a
refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this case,
in a first step refactoring must be used to rearrange the design to fit the new
feature, followed by the developers’ incorporation of it in the software.
- During debugging
– If it is difficult to trace an error, refactor to make the

code more comprehensible
• After a new feature has been implemented, the developers notice that the

design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design until
it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Code Smells
within

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

Copyright © Fraunhofer IESE 2009 59

Overvie
w

Classes

 Code Smells
between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactor
ing -

Overvie
w

Refactoring
(Process)

Overview Classification of Martin Fowler:
1. Composing Methods: These refactorings serve restructurings on the method-level.
Examples of refactorings from this group are: ExtractMethod, InlineTemp or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of methods
and fields between classes. Among them, refactorings like MoveMethod, ExtractClass or
RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples are:
SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.
6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactor
ing -

Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least one
of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term
• To facilitate future changes

• Improve the software design until it meets the required functional range.

7 Experie
nce

Package
- Code
Smell
Long

Paramet
er List

Repeat
Experience

(AB)

8 Code
Smell
Long

Paramet
er List

Code Smell
Long

Parameter
List

Description Long parameter lists are hard to understand, because they become inconsistent and
difficult to use, and because you are forever changing them as you need more data.
The cause for this is that in the early programming days we were taught to pass in as
parameters everything needed by a routine. This was understandable because the
alternative was global data, and global data is evil and usually painful.
Objects change this situation because if you don't have something you need, you can
always ask another object to get it for you. Thus with objects you don't pass in
everything the method needs; instead you pass enough so that the method can get to
everything it needs. A lot of what a method needs is available on the method's host

Copyright © Fraunhofer IESE 2009 60

class. In object-oriented programs parameter lists tend to be much smaller than in
traditional programs.
Hence most problems can be removed by passing objects because you are much more
likely to make only a couple of requests to get at a new piece of data.

This smell is easy to identify. However, be aware they are not necessarily the easiest to
fix.

 Counter
Example

There is one important exception when the refactoring should not be applied. This is
when you explicitly do not want to create a dependency from the called object to the
larger object. In those cases unpacking data and sending it along as parameters is
seasonable, but pay attention to the possible upcoming problems. If the parameter list is
too long or changes too often, you need to rethink your dependency structure.

Or, the parameters have no meaningful grouping – they don’t go together.

10 Replace
Paramet
erwith

Method

ReplacePara
meterwithMe

thod
(process)

Description Long parameter lists are difficult to understand, and we should reduce them as much as
possible.
For example an object invokes a method, then passes the result as a parameter for a
method. The receiver can also invoke this method.
Remove the parameter and let the receiver invoke the method!

Hence,use ReplaceParameterwithMethod when you can get the data in one parameter
by making a request of an object you already know about. This object might be a field or
it might be another parameter.

So, look to see whether the receiving method can make the same calculation. If an
object is calling a method on itself, and the calculation for the parameter does not
reference any of the parameters of the calling method, you should be able to remove the
parameter by turning the calculation into its own method. This is also true if you are
calling a method on a different object that has a reference to the calling object.
You can't remove the parameter if the calculation relies on a parameter of the calling
method, because that parameter may change with each call (unless, of course, that
parameter can be replaced with a method). You also can't remove the parameter if the
receiver does not have a reference to the sender, and you don't want to give it one.

In some cases the parameter may be there for a future parameterization of the method.
In this case you should still remove it.

 Counter
Example

You should make an exception to this rule only when the resulting change in the
interface would have painful consequences around the whole program, such as a long
build or changing of a lot of embedded code. If this worries you, look into how painful
such a change would really be. You should also look to see whether you can reduce the
dependencies that cause the change to be so painful. Stable interfaces are good, but
freezing a poor interface is a problem.

 Process - If necessary, extract the calculation of the parameter into a method.
- Replace references to the parameter in method bodies with references to the

method.
- Compile and test after each replacement.
- Use RemoveParameter on the parameter.

 Example int basePrice = _quantity * _itemPrice;
discountLevel = getDiscountLevel();
double finalPrice = discountedPrice (basePrice, discountLevel);

Is transformed to:

int basePrice = _quantity * _itemPrice;
double finalPrice = discountedPrice (basePrice);

 Example public double getPrice0 {
int basePrice = _quantity * _itemPrice;
int discountlevel;
if (_quantity > 100) discountLevel = 2;
else discountLevel = 1;

Copyright © Fraunhofer IESE 2009 61

double finalPrice = discountedPrice (basePrice, discountLevel) ;
return finalPrice;

}

private double discountedPrice (int basePrice, int discountLevel) {
if (discountLevel == 2) return basePrice * 0.1;
else return basePrice * 0.05;
}

You can begin by extracting the calculation of the discount level:

public double getPrice() {

int basePrice = _quantity * _itemprice;
int discountLevel = getDiscountLevel();
double finalPrice = discountedPrice (basePrice, discountLevel) ;
return finalPrice;

}
private int getDiscountLevel() {

if (_quantity > 100) return 2;
else return 1;

}

You then replace references to the parameter in discountedPrice:

private double discountedPrice (int basePrice, int discountLevel) {

if (getDiscountLevel() == 2) return basePrice * 0.1;
else return basePrice * 0.05;

}

Then you can use the refactoring RemoveParameter:

public double getPrice() {

int basePrice = _quantity * _itemprice;
int discountLevel = getDiscountLevel() ;
double finalPrice = discountedPrice (basePrice) ;
return finalPrice;

}
private double discountedPrice (int basePrice) {

if (getDiscountLevel() == 2) return basePrice * 0.1;
else return basePrice * 0.05;

}

You can now remove the temp:

public double getPrice() {

int basePrice = _quantity * _itemPrice;
double finalPrice = discountedPrice (basePrice) ;
return finalPrice;

}

Then it's time to remove the other parameter and its temp.

public double getPrice() {

return discountedPrice();
}

private double discountedPrice() {

if (getDiscountLevel() == 2) return getBasePrice() * 0.1;
else return getBasePrice() * 0.05;

}

private double getBasePrice() {

Copyright © Fraunhofer IESE 2009 62

return _quantity * _itemPrice;
}

so you might as well use the refactoring InlineMethod on discountedPrice:

private double getPrice () {

if (getDiscountLevel() == 2) return getBasePrice() *0.1;
else return getBasePrice() * 0.05;

}

11 Introduc
eParam
eterObj

ect

IntroducePar
ameterObject

(process)

Description If you have several data items with no logical object, use IntroduceParameterObject to
group the parameters. So, if you have a group of parameters that naturally go together,
replace them with an object.

Often you see a particular group of parameters that tend to be passed together. Several
methods may use this group, either on one class or in several classes. Such a group of
classes is a data clump and can be replaced with an object that carries all of this data. It
is worthwhile to turn these parameter into objects just to group the data together. This
refactoring is useful because it reduces the size of the parameter lists, and long
parameter lists are hard to understand. The defined accessors on the new object also
make the code more consistent, which again makes it easier to understand and modify.
You get a deeper benefit, however, because once you have clumped together the
parameters, you soon see behavior that you can also move into the new class. Often the
bodies of the methods have common manipulations of the parameter values. By moving
this behavior into the new object, you can remove a lot of duplicated code.

 Process • Create a new class to represent the group of parameters you are replacing.
• Compile
• Use AddParameter for the new data clump. Use a null for this parameter in all

the callers.
- If you have many callers, you can retain the old signature and let it call

the new method. Apply the refactoring or the old method first. You can
then move the callers over one by one and remove the old method when
you're done.

• For each parameter in the data clump, remove the parameter from the
signature.Modify the callers and method body to use the parameter object for
that value.

• Compile and test after you remove each parameter.
• When you have removed the parameters, look for behavior that you can move

into the parameter object with MoveMethod.
o This may be a whole method or part of a method. If it is part of a

method, use ExtractMethod first and then move the new method
over

 Example The example begins with an account and entries. The entries are simple data holders.

class Entry ..

Entry (double value, Date chargeDate) {
_value = value;
_chargeDate = chargeDate;

}
Date getDate(){

return _chargeDate;
}
double getvalue() {
return -value;
}
private Date _chargeDate;
private double _value;

The focus is on the account, which holds a collection of entries and has a method for
determining the flow of the account between two dates:

Copyright © Fraunhofer IESE 2009 63

class Account ..
double getFlowBetween (Date start, Date end) {

double result = 0;
Enumeration e = _entries.elements();

while (e.hasMoreElements()) {
Entry each = (Entry) e.nextElement();
i f (each.getDate() .equals(start) I I
each.getDate() .equals(end) I I (each.getDate().after(start)
&& each.getDate().before(end)))
{
result+= each.getValue();
}

}
return result ;

}
private Vector _entries = new Vector();

client code ..

double flow = anAccount.getFlowBetween(startDate, endDate);

You should always try to use ranges instead of pairs of values that show a range. The
first step is to declare a simple data holder for the range:

class DateRange {

DateRange (Date start, Date end) {
_start = start;
_end = end;

}
Date getstart() {

return _start;
}
Date getEnd() {

return _end;
}
private final Date _start;
private final Date _end;

}

You have made the date range class immutable; that is, all the values for the date range
are final and set in the constructor, hence there are no methods for modifying the
values. This is a wise move to avoid aliasing bugs. Because Java has pass-by-value
parameters, making the class immutable mimics the way Java's parameters work, so this
is the right assumption for this refactoring.
Next you add the date range into the parameter list for the getFlowBetween method:

class Account ..

double getFlowBetween (Date start, Date end, DateRange range) {
double result = 0;
Enumeration e = _entries.elements() ;
while (e. hasMoreElements()) {

Entry each = (Entry) e.nextElement();
if (each.getDate().equals(start) I I
each.getDate().equal(end) | | (each.getDate().after(start)
&& each.getDate().before(end)))
{
result += each.getValue();
}

}
return result;

}
client code.

double flow = anAccount.getFlowBetween(startDate, endDate, null);

Copyright © Fraunhofer IESE 2009 64

At this point you only need to compile, because you haven't altered any behavior yet.
The next step is to remove one of the parameters and use the new object instead. To do
this you delete the start parameter and modify the method and its callers to use the new
object instead:

class Account..

double getFlowBetween (Date end, DateRange range) {
double result = 0;
Enumeration e = _entries.elements();

while (e. hasMoreElements()) {
Entry each = (Entry) e.nextElement();

if (each.getDate().equals(range.getStart()) I l
each.getDate().equals(end) I I
(each.getDate().after(range.getStart()) &&
each.getDate().before(end)))

{
result += each.getValue();
}

}
return result;

}
client code..

double flow = anAccount.getFlowBetween(endDate, new DateRange
(startDate, null));

You then remove the end date:

class Account..

double getFlowBetween (DateRange range) {
double result = 0;
Enumeration e = _entries.elements();

while (e. hasMoreElements()) {
Entry each = (Entry) e.nextElement();

if (each.getDate().equals(range.getStart()) I l
each.getDate().equals(range.getEnd()) I I
(each.getDate().after(range.getStart()) &&
each.getDate().before(range.getEnd())))

{
result += each.getValue();
}

}
return result;

}
client code..

double flow = anAccount.getFlowBetween(new DateRange (startDate,
endDate));

You have introduced the parameter object; however, you can get more value from this
refactoring by moving behavior from other methods to the new object. In this case you
can take the code in the condition and use ExtractMethod and Move Method to get

class Account..

double getFlowBetween (DateRange range) {
double result = 0;
Enumeration e = _entries.elements();

while (e. hasMoreElements()) {
Entry each = (Entry) e.nextElement();
if (range.includes(each.getDate())) {

result += each.getValue();
}

}

Copyright © Fraunhofer IESE 2009 65

return result;
}

class DateRange..

boolean includes (Date arg) {
return (arg.equals(_start) | |

arg.equals(_end) | |
(arg.after(_start) && arg.before(_end))) ;

}

You usually should do simple extracts and moves such as this in one step. If you run into
a bug, you can back out and take the two smaller steps.

 Counter
Example

Ralph Johnson pointed out to me that a common case isn't clear in the Refactoring book.
This case is when you have a bunch of methods that call each other, all of which have a
clump of parameters that need this refactoring. In this case you don't want to apply
Introduce Parameter Object because it would lead to lots of new objects when you only
want to have one object that's passed around.

12 Preserve
WholeO

bject

PreserveWhol
eObject
(process)

Description This type of situation arises when an object passes several data values from a single
object as parameters in a method call. The problem with this is that if the called object
needs new data values later, you have to find and change all the calls to this method.
You can avoid this by passing in the whole object from which the data came. The called
object then can ask for whatever it wants from the whole object.
In addition to making the parameter list more robust to changes, PreserveWholeObject
often makes the code more readable. Long parameter lists can be hard to work with
because both caller and callee have to remember which values were there. They also
encourage duplicate code because the called object can't take advantage of any other
methods on the whole object to calculate intermediate values.

That a called method uses lots of values from another object is a signal that the called
method should really be defined on the object from which the values come. When you
are considering PreserveWholeObject, consider the refactoring MoveMethod as an
alternative.
You may not already have the whole object defined. In this case you need the refactoring
IntroduceParameterObject.
A common case is that a calling object passes several of its own data values as
parameters. In this case you can make the call and pass in this instead of these values, if
you have the appropriate getting methods and you don't mind the dependency.

 Process - Create a new pxameter for the whole oblect from which the data comes.
- Compile and test.
- Determine which parameters should be obtained from the whole object.
- Take one parameter and replace references to it within the method body by

invoking an appropriate method on the whole object parameter.
- Delete the parameter.
- Compile and test.
- Repeat for each parameter that can be got from the whole object.
- Remove the code in the calling method that obtains the deleted parameters.

o Unless, of course, the code is using these parameters somewhere
else.

- Compile and test.

 Example int low = daysTempRange().getLow();
int high = daysTempRange().getHigh();
withinPlan = plan.withinRange(low, high);

Is transformed to:

withinPlan = plan.withinRange(daysTempRange());

 Counter
Example

Passing objects to methods has also a down side. When you pass in values, the called
object has a dependency on the values, but there isn't any dependency to the object
from which the values were extracted. Passing in the required object causes a
dependency between the required object and the called object. If this is going to mess

Copyright © Fraunhofer IESE 2009 66

up our dependency structure, don't use PreserueWholeObject.

 Counter
Example

A reason not to use PreserveWholeObject is that when a calling object need only one
value from the required object, it is better to pass in the value than to pass in the whole
object. You don't subscribe to that view. One value and one object amount to the same
thing when you pass them in, at least for clarity's sake (there may be a performance cost
with pass by value parameters). The driving force is the dependency issue.

 Example Consider a room object that records high and low temperatures during a day. It needs to
compare its range in a predefined plan:

class Room …

boolean withinPlan(HeatingPlan plan) {
i nt low = daysTempRange() .getlow();
i nt high = daysTempRang() .getHigh();
return plan.withinRange(low, high);

}

class HeatingPlan..
boolean withinRange (int low, int high) {

return (low >= _range.getLow() && high <= _range.getHigh());
}
private TempRange _range;

Rather than unpack the range informtation when pass you it, you can pass the whole
range object. In this simple case you can do this in one step. When more parameters are
involved, you can do it in smaller steps. First, you add the whole object to the parameter
list.

class HeatinqPlan..

boolean withinRange (TempRange roomRange, int low, int high) {
return (low >= -range.getLow() && high <= _range.getHigh());

}

class Room. . .
boolean withinPlan(HeatingPlan plan) {

i nt low = daysTenlpRange() .getlow();
i nt high = daysTempRange().getHigh();
return plan.withinRange(daysTempRange() , low, high);

}

Then you use the mehthod on the whole object instead of one of the parameters:

class HeatingPlan ..

boolean withinRange (TempRange roomRange, int high) {
return (roomRange.getLow() >= _range.getLow() && high <=
_range.getHigh()) ;

}
class Room ..

boolean withinPlan(HeatingPlan plan) {
int low = daysTempRange() .getlow();
i nt high = daysTempRange() .getHigh() ;
return plan.withinRange(daysTempRange(), high);

}

You continue until you habe changes all you need:

class HeatingPlan..

boolean withinRange (TempRange roomRange) {
return (roomRange.getLow() >= _range.getLow() &&
roomRange.getHigh() <= _range.getHigh()) ;

}
class Room..

Copyright © Fraunhofer IESE 2009 67

boolean withinPlan(HeatingPlan plan) {
int low = daysTempRange().getLow();
int high = daysTempRange() .getHigh() ;
return plan.withinRange(daysTempRange()) ;

}

Now you don’t need the temps anymore:
class Room..

boolean withinPlan(HeatingPlan plan) {
int low = daysTempRange().getLow();
int high = daysTempRange() .getHigh() ;
return plan.withinRange(daysTempRange()) ;

}

Using whole objects this way soon leads you to realize that you can usefully move
behavior into the whole object to make it easier to work with.

class HeatingPlan..

boolean withinRange (TempRange roomRange) {
return (_range.includes(roomRange)) ;

}
class TempRange . . .

boolean includes (TempRange arg) {
return arg.getLow() >= this.getLow() && arg.getHigh() <=
this.getHigh();

}

1.5.6 Learning Space: Code Smell Lazy Class

Learnin
g Space
Page

0 Experienc
e

Package -
Code
Smell
Lazy
Class

Exerience
A+B

 Ontology
Instance
(Ontology
Main Class)

Type of
Learning
Element

Learning Content

1 Refactori
ng -

Introducti
on

Refactoring
(Process)

Definition Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. Fowler []
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some non-
functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are cleaner ways of
expressing the same statement. Refactoring implies equivalence; the beginning and end
products must be functionally identical. You can view refactoring as a special case of

Copyright © Fraunhofer IESE 2009 68

reworking.
Refactoring is a powerful technique for improving existing software. Having source
code that is understandable helps ensure a system is maintainable and extensible.
Originally conceived in the Smalltalk community, it has now become a mainstream
development technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all
considered as refactoring

• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring
(Process)

Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on or
from XP.

2 Code
Smell -

Introducti
on

Code Smell
(Knowledge)

Definition In the domain of programming, code smell is any symptom that indicates something
may be wrong. It generally indicates that the code should be refactored or the overall
design should be reexamined.

 Code Smell
(Knowledge)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once Principle
has been disregarded: each design choice shall be expressed exactly in one place in the
system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the term
increased after it was featured in the book “Refactoring. Improving the Design of
Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses
relation between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real srnells that can keep you busy.

3

Refactori
ng -

Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps. So refactoring doesn't preclude
changing functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is there

a problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What

are the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which

code transformation(s) will move the code towards the desired state? Select
a refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

Copyright © Fraunhofer IESE 2009 69

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this case,
in a first step refactoring must be used to rearrange the design to fit the new
feature, followed by the developers’ incorporation of it in the software.
- During debugging
– If it is difficult to trace an error, refactor to make the

code more comprehensible
• After a new feature has been implemented, the developers notice that the

design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design
until it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Overview

Code Smells
within Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Code Smells
between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactori
ng -

Overview

Refactoring
(Process)

Overview Classification of Martin Fowler:
1. Composing Methods: These refactorings serve restructurings on the method-level.
Examples of refactorings from this group are: ExtractMethod, InlineTemp or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of
methods and fields between classes. Among them, refactorings like MoveMethod,
ExtractClass or RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples are:
SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.
6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactori
ng -

Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least one
of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term

Copyright © Fraunhofer IESE 2009 70

• To facilitate future changes
• Improve the software design until it meets the required functional range.

7 Experienc
e

Package -
Code
Smell
Lazy
Class

Repeat
Experience

(AB)

8 Code
Smell
Lazy
Class

Code Smell
Lazy Class

Description Data class is a code smell between classes.

Each class you create costs money to maintain and understand. A class that isn't doing
enough to pay for itself should be eliminated. Often this might be a class that is used to
pay its way but has been downsized with refactoring. Or it might be a class that was
added because of changes that were planned but not made. Either way, you let the
class die with dignity. If you have subclasses that aren't doing enough, try to use
CollapseHierarchy. Nearly useless components should be subjected to InlineClass.

 Counter
Example

Sometimes a lazy class is present to communicate intent. You may have to balance
communication cersion simplicity.

9 Collapse
Hierarchy

CollapseHiera
rchy (process)

Description If you have been working for a while with a class hierarchy, it can easily become too
tangled for its own good. Refactoring the hierarchy often involves pushing methods
and fields up and down the hierarchy. After you've done this you can well find you
have a subclass that isn't adding any value, so you need to merge the classes together.
So, if a superclass and subclass are not very different, the refactoring CollapseHierarchy
merges them together.

 Example

 Process • Choose which class is going to be removed: the superclass or the subclasses.

• Use the refactorings PullUpField and PullUpMethod or PushDownMethod
and PushDownField to move all the behavior and data of the removed class
to the class with which it is being merged.

• Compile and test with each move.
• Adjust references to the class that will be removed to use the merged class.

This will affect variable declarations, parameter types, and constructors.
• Remove the empty class.
• Compile and test.

10 InlineClas
s

InlineClass
(process)

Description The refactoring InlineClass move all features of a class that isn’t doing very much into
another class and delete it afterwards.

 Example

 Process • Declare the public protocol of the source class onto the absorbing class.

Copyright © Fraunhofer IESE 2009 71

Delegate all these methods to the source class
o If a separate interface makes sense for the source class methods,

use ExtractInterface before inlining
• Change all references from the source class to the absorbing class.

o Declare the source class private to remove out-of-package
references. Also change the name of the source class so the
compiler catches any dangling references to the source class.

• Compile and test
• Use MoveMethod and MoveField to move features from the source class to

the absorbing class until there is nothing left.
• Died!

 Example We start with separate classes:

class Person..

public String getName() {
return _name;
}
public String getTelephoneNumber(){

return _officeTelephone.getTelephoneNumber() ;
}
TelephoneNumber getOfficeTelephone() {
return _officeTelephone;
}
private String _name;
private TelephoneNumber _0fficeTelephone = new TelephoneNumber();

class TelephoneNumber..
public String getTelephoneNumber() {

return ("(" + _areacode + ") " + _number);
}
String getAreaCode() {

return _areacode;
}
void setAreaCode(Stri ng arg) {

_areacode = arg;
}
String getNumber() {

return _number;
}
void setNumber(5tring arg) {
_number = arg;
}
private string _number;
private string _areacode;

You begin by declaring all the visible methods on telephone number on person:

class Person..

String getAreaCode() {
return _officeTelephone.getAreaCode() ;

}
void setAreaCode(String arg) {

_officeTelephone.setAreaCode(arg1;
}
String getNumber() {

return _officeTelephone.getNumber();
}
void setNumber(String arg) {
_officeTelephone.setNumber(arg) ;
}

Copyright © Fraunhofer IESE 2009 72

Now you find clients of telephone number and switch them to use the person's
interface. So

Person martin = new Person();
martin.getOfficeTelephone().setAreaCode ("781");

becomes

Person martin = new Person();
martin.setAreaCode ("781");

Now I can use MoveMethod and MoveField until the telephone class is no more.

10 MoveMet
hod

MoveMethod
(process)

Description When a method is, or will be, using or used by more features of another class than the
class on which it is defined, then you should create a new method with a similar body
in the class it uses most. Either turn the old method into a simple delegation, or remove
it altogether.

Moving methods is the bread and butter of refactoring. You should move methods
when classes have too much behavior or when classes are collaborating too much and
are too highly coupled. By moving methods around, you can make the classes simpler
and they end up being a more crisp implementation of a set of responsibilities.
You should look through the methods on a class to find a method that seems to
reference another object more than the object it lives on.
It's not always an easy decision to make. If I am not sure whether to move a method,
you should go on to look at other methods. Moving other methods often makes the
decision easier. Sometimes the decision still is hard to make.

 Example

 Process • Examine all features used by the source method that are defined on the
source class. Consider whether they also should be moved.

o If a feature is used only by the method you are about to move,
you might as well move it, too. If the feature is used by other
methods, consider moving them as well. Sometimes it is easier to
move a set of methods than to move them one at a time.

• Check the sub- and superclasses of the source class for other declarations of
the method.

o If there are any other declarations, you may not be able to make
the move, unless the polymorphism can also be expressed on the
target.

• Declare the method in the target class.
o You may choose to use a different name, one that makes more

sense in the target class.
• Copy the code from the source method to the target. Adjust the method to

make it work in its new home.
• If the method uses its source, you need to determine how to reference the

source object from the target method. If there is no mechanism in the target
class, pass the source object reference to the new method as a parameter,

• If the method includes exception handlers handlers, decide which class
should logically handle the exception. If the source class should be
responslble, leave the handlers behind.

Copyright © Fraunhofer IESE 2009 73

• Compile the target class.
• Determine how to reference the correct target object from the source.

o There may be an existing field or method that wdl give you the
target. If not, see whether you can easily create a method that will
do so. Failing that, you need to create a new field in the source
that can store the target. This may be a permanent change, but
you can also make it temporarily until you have refactored enough
to remove it.

• Turn the source method into a delegating method.
• Compile and test.
• Decide whether to remove the source method or retain it as a delegating

method.
• Leaving the source as a delegating method is easier if you have many

references.
• If you remove the source method, replace all the eferences with references

to the target method.
o You can compile and test after changing each reference, although

it is usually easier to change all references with one search and
replace.

• Compile and test.

 Example • F p.144

12 PullUpMe
thod
(322)

PullUpMetho
d (process)

Description This refactoring is applied when you have methods with identical results on subclasses.
Then move them to the superclass.
Eliminating duplicate behaviour is important. Although two duplicate methods work
fine as they are, they are nothing more than a breeding ground for bugs in the future.
Whenever there is dupllcation, you face the risk that an alteration to one will not be
made to the other. Usually it is difficult to find the duplicates.
The easiest case of using PullUpMethod occurs when the methods have the same body,
implying there's been a copy and paste. Of course it's not always as obvious as that.
You could just do the refactoring and see if the test fails, but that puts a lot of reliance
on your tests.So, look for the differences; often they show up behavior that youI forgot
to test for.
Often PullUpMethod comes after other steps. You see two methods in different classes
that can be parameterized In such a way that they end up as essentially the same
method. In that case the smallest step is to parameterize each method separately and
then generalize them.
A special case of the need for Pull Up Method occurs when you have a subclass
method that overrides a superclass method yet does the same thing.
The most awkward element of PullUpMethod is that the body of the methods may
refer to features that are on the subclass but not on the superclass. If the feature is a
method, you can either generalize the other method or create an abstract method in
the superclass. You may need to change a method's signature or create a delegating
method to get this to work.
(If you have two methods that are similar hut not the same, you may be able to use
FormTemplateMethod.)

This refactoring is often used in the scope of lazy class code smell in combination with
the refactorings PullUpField or PushDownMethod and PushDownField to move all the
behavior and data of the removed class to the class with which it is being merged.

 Example

 Process • Inspect the methode to ensure they are identical.

o If the methods look like they do the same thing but are not

Copyright © Fraunhofer IESE 2009 74

identical, use SubstituteAlgorithm on one of them to make them
identical.

• If the methods have different signatures, change the signatures to the one
you want to use in the superclass.

• Create a new method in the superclass, copy the body of one of the
methods to it, adjust, and compile.

o If you are in a strongly typed language and the method calls
another method that is present on both subclasses but not on the
superclass, declare an abstract methodon the superclass.

o If the method uses a subclass field, use PullUpField and declare
and use an abstract getting method.

• Delete one subclass method.
• Compile and test.
• Keep deleting subclass methods and testing until only the superclass method

remains.
• Take a look at the callers of this method to see whether you can change a

required type to the superclass.

 Example Consider a customer with two subclasses: regular customer- and preferred customer.

The createBill method is identical for each class:

void createBill (date Date) {

double chargeAmount = charge (IastBillDate, date);
addBill (date, charge);

}

You can't move the method up into the superclass, because chargeFor is different on
each subclass. First you have to declare it on the superclass as abstract:

class Customer.. .

abstract double chargeFor(date start, date end)

Then you can copy createBill from one of the subclasses. You compile with that in place
and then remove the createBill method from one of the subclasses, compile, and test. I
then remove it from the other, compile, and test:

Copyright © Fraunhofer IESE 2009 75

13 PushDow

nMethod
(328)

(process) Description If the behavior on a superclass is relevant only for some of its subclasses then you
should apply this refactoring and move it to those subclasses.
PullDownMethod is the opposite of PullUpMethod. You use it when you need to move
behavior from a superclass to a specific subclass, usually because it makes sense only
there.
This refactoring is often used in the scope of lazy class code smell in combination with
the refactorings PullUpField and PullUpMethod or PushDownField to move all the
behavior and data of the removed class to the class with which it is being merged.

 Example

 Process • Declare a method in all subclasses and copy the body into each subclass.

o You may need to declare fields as protected for the method to
access them. Usually you do this if you intend to push down the
field later Otherwise use an accessor on the superclass. If the
accessor is not public, you need to declare it as protected.

• Remove method from superclass.
o You may have to change callers to use the subclass in variable and

parameter declarations
o If it makes sense to access the method through a superclass

variable, you don't intend to remove the method from any
subclasses, and the superclass is abstract, you can declare the
method as abstract, in the superclass.

• Compile and test.
• Remove the method from each subclass that does not need it.
• Compile and test.

14 PushDow
nField

PushDownFiel
d (process)

Description When a field is used only by some subclasses use the refactoring PushDownField and
move the field to those subclasses.
PushDownField is the opposite of PullUpField. Use it when you don't need a field in the
superclass but only in a subclass.

This refactoring is often used in the scope of lazy class code smell in combination with
the refactorings PullUpField and PullUpMethod or PushDownMethod to move all the
behavior and data of the removed class to the class with which it is being merged.

Copyright © Fraunhofer IESE 2009 76

 Example

 Process • Declare the field in all subclasses.

• Remove the field from the superclass.
• Compile and test.
• Remove the field from all subclasses that don't need it.
• Compile and test.

15 Substitut
eAlgorith

m 139

SubstituteAlg
orithm

(process)

Description This refactoring is applied when you want to replace an algorithm with one that is
clearer. Then you must replace the body of the method with the new algorithm.
Refactoring can break down something complex into simpler pieces, but sometimes
you just reach the point at which you have to remove the whole algorithm and replace
it with something simpler, This occurs as you learn more about the problem and realize
that there's an easier way to do it. It also happens if you start using a library that
supplies features that duplicate your code.
Sometimes when you want to change the algorithm to do something slightly different,
it is easier to substitute the algorithm first into something easier for the change you
need to make.
When you have to take this step, make sure you have decomposed the method as
much as you can. Substituting a large, complex algorithm is very difficult; only by
making it simple can you make the substitution tractable.

 Example String foundPerson(String people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 return "Don";
 }
 if (people[i].equals ("John")){
 return "John";
 }
 if (people[i].equals ("Kent")){
 return "Kent";
 } }
 return "";
}

is transformed to:
String foundPerson(String[] people){
 List candidates = Arrays.asList(new String[] {"Don", "John", "Kent"});
 for (int i=0; i<people.length; i++)
 if (candidates.contains(people[i]))
 return people[i];
 return "";
}

 Process • Prepare your alternative algorithm. Get it so that it compiles.
• Run the new algorithm against your tests. If the results are the same, you are

finished.
• If the results aren't the same, use the old algorithm for comparison in testing

and debugging.
o Run each test case with old and new algorithms and watch both

results. That will help you see which test cases are causing trouble,
and how.

Copyright © Fraunhofer IESE 2009 77

1.5.7 Learning Space: Code Smell Data Class

Learnin
 Space
age

0 Experienc
e

Package -
Code
Smell
Data
Class

Exerience
A+B

 Ontology
Instance
(Ontology
Main Class)

Type of
Learning
Element

Learning Content

1 Refactori
ng -

Introducti
on

Refactoring
(Process)

Definition Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure. Fowler []
--
[Fowler1999] a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour

 Refactoring
(Process)

Definition A change to the system that leaves its behaviour unchanged, but enhances some non-
functional quality - simplicity, flexibility, understandability, ... [Beck1999]

 Refactoring
(Process)

Definition A behaviour-preserving source-to-source program transformation [Roberts1998]

 Refactoring
(Process)

Description Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are cleaner ways of
expressing the same statement. Refactoring implies equivalence; the beginning and end
products must be functionally identical. You can view refactoring as a special case of
reworking.
Refactoring is a powerful technique for improving existing software. Having source
code that is understandable helps ensure a system is maintainable and extensible.
Originally conceived in the Smalltalk community, it has now become a mainstream
development technique.

• Refactoring is the art of safely removing the design of existing code
• Refactoring does not include just any changes in a system. Changes that

represent design improvements or add new functionality are not all
considered as refactoring

• Refactoring is not rewriting from scratch
• Refactoring is not just any restructuring intended to improve the code.

Refactorings strive to be safe transformations. Even big refactorings that
change large amounts of code are divided into smaller, safe refactorings

 Refactoring
(Process)

Description ExtremeProgramming is dependent on refactoring. Refactoring is not dependent on or
from XP.

2 Code
Smell -

Introducti
on

Code Smell
(Knowledge)

Definition In the domain of programming, code smell is any symptom that indicates something
may be wrong. It generally indicates that the code should be refactored or the overall
design should be reexamined.

 Code Smell
(Knowledge)

Description Refactorings are no end in itself, but always aim at eliminating a weakness in design.
Weaknesses are present when the existing system structure hampers or even prevents
modifications. Such weaknesses are also referred to as bad smelling code – so-called
code smells. Bad smells often emerge when the so-called Once and Only Once Principle
has been disregarded: each design choice shall be expressed exactly in one place in the
system.
The term appears to have been coined by Kent Beck on WardsWiki. Usage of the term

Copyright © Fraunhofer IESE 2009 78

increased after it was featured in the book “Refactoring. Improving the Design of
Existing Code” by Martin Fowler.

Determining what is and is not a code smell is often a subjective judgment, and will
often vary by language, developer and development methodology.
A code smell can either be a long and complex method in a class, a cyclical uses
relation between two classes, or a parallel inheritance hierarchy.
Often developers will encounter code smells during their daily
work – more specifically whenever the system refuses to accept a modification. Most
code smells can be cured with the appropriate refactoring.
Finally, rememher that a smell is an indication of a potential
problem, not a guarantee of an actual problem. You will occasionally
find false-positives – things that smell to you, but are actually better than the
alternatives. But most code has plenty of real srnells that can keep you busy.

3

Refactori
ng -

Process

Refactoring
(Process)

Process Refactoring is typically done in small steps. After each small step, you're left with a
working system that's functionally unchanged. Practitioners typically interleave bug
fixes and feature additions between these steps. So refactoring doesn't preclude
changing functionality, it just says that it's a different activity from rearranging code.

 Refactoring
(Process)

Process The general refactoring cycle has four steps:
• Detect a problem: Choose a working program where smells remain. Is there

a problem? What is the problem?
• Characterise the problem: Why is it necessary to change something? What

are the benefits? Are there any risks? Choose the worst smell
• Design a solution: What should be the "goal state" of the code? Which

code transformation(s) will move the code towards the desired state? Select
a refactoring that will address the smell

• Apply the refactoring: Modify the code: Steps that will carry out the code
transformation(s) that leave the code functioning the same way as it did
before.

In addition, when should a refactoring be applied?

• When you think it is necessary
– Not on a periodical basis

• Apply the rule of three
– first time: implement solution from scratch
– second time: implement something similar by duplicating code
– third time: do not reimplement or duplicate, but refactor!

• Consolidation before adding new functionality
– Before implementing a new feature, the developers analyze the code and
debate how this new feature can be realized. It is possible that the new
feature will integrate badly with the existing design, or not at all. In this case,
in a first step refactoring must be used to rearrange the design to fit the new
feature, followed by the developers’ incorporation of it in the software.
- During debugging
– If it is difficult to trace an error, refactor to make the

code more comprehensible
• After a new feature has been implemented, the developers notice that the

design does no longer meet the software’s requirements. Using suitable
refactorings, the developers can continue to improve the software design
until it meets the required functional range.

• During formal code inspections (code reviews)

4 Code
Smells -

Overview

Code Smells
within Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

 Code Smells
between
Classes

Overview http://wiki.java.net/bin/view/People/SmellsToRefactorings

5 Refactori
ng -

Refactoring
(Process)

Overview Classification of Martin Fowler:
1. Composing Methods: These refactorings serve restructurings on the method-level.

Copyright © Fraunhofer IESE 2009 79

Overview Examples of refactorings from this group are: ExtractMethod, InlineTemp or
ReplaceTempwithQuery.
2. Moving Features Between Objects: These refactorings support the moving of
methods and fields between classes. Among them, refactorings like MoveMethod,
ExtractClass or RemoveMiddleMan can be found.
3. Organizing Data: These refactorings restructure the data organization. Examples are:
SelfEncapsulateField, ReplaceTypeCodewithClass, or ReplaceArraywithObject.
4. Simplifying Conditional Expressions: These refactorings simplify conditional
expressions, such as Introduce NullObject or DecomposeConditional.
5. Making Method Calls Simpler: These refactorings simplify
method calls, such as RenameMethod, AddParameter, or
ReplaceErrorCodewithException.
6. Dealing with Generalization: These refactorings help to organize inheritance
hierarchies, such as PullUpField, ExtractInterface, or FormTemplateMethod.

6 Refactori
ng -

Benefits

Refactoring
(Process)

Effort Most refactorings tend to take from a minute to an hour to apply. The average is
probably five to ten minutes.

 Refactoring
(Process)

Benefit Kent Beck states that refactoring adds to the value of any program that has at least one
of the following shortcomings:

• Programs that are hard to read are hard to modify.
• Programs that have duplicate logic are hard to modify
• Programs that require additional behaviour that requires you to change

running code are hard to modify.
• Programs with complex conditional logic are hard to modify

 Refactoring
(Process)

Benefit To improve the software design
• To reduce
 – software decay / software aging
 – software complexity
 – software maintenance costs
• To increase
 – software understandibility e.g., by introducing design patterns
 – software productivity
 • at long term, not at short term
• To facilitate future changes

• Improve the software design until it meets the required functional range.

7 Experienc
e

Package -
Code
Smell
Data
Class

Repeat
Experience

(AB)

8 Code
Smell
Data
Class

Code Smell
Data Class

Description Data class is a code smell between classes.

1. In early stages these classes may have public fields. If so, you should immediately
apply EncapsulateField before anyone notices. Use the refactoring EncapsulateField to
block direct access to the fields (allowing access only through getters and setters).

2. If you have collection fields, check to see whether they are properly encapsulated
and apply EncapsulateCollection if they aren't, use RemoveSettingMethod on any field
that should not be changed.

3. Look at each client of the object. Almost invariably, you'll find clients accessing the
fields and manipulating the results when the class could do it for them. (This is often a
source of duplication, because many callers will tend to do the same things with the
data.) Use ExtractMethod on the client to pull out the class-related code, then
MoveMethod to put it over on the data class. If you can't move a whole method, use
ExtractMethod to create a method that can be moved.

4. After-doing this awhile, you may find that you have several similar methods on the

Copyright © Fraunhofer IESE 2009 80

class. Use refactorings such as RenameMethod, ExtractMethod, AddParameter, or
RemoveParameter to harmonize signatures and remove duplication.

5. Most access to the fields shouldn't be needed anymore because the moved methods
cover the real use. So use HideMethod to eliminate access to the getters and setters.
(You may decide to keep them with private access and have all internal access go
through them.)

9 Encapsul
ateField

EncapsulateFi
eld (process)

Description One of the principal tenets of object orientation is encapsulation, or data hiding. This
says that you should never make your data public. When you make data public, other
objects can change and access data values without the owning object's knowing about
it. This separates data from behavior. This is seen as a bad thing because it reduces the
modularity of the program. When the data and behavior that uses it are clustered
together, it is easier to change the code, because the changed code is in one place
rather than scattered
all over the program.
If a class has a public field, it can be solved by making it private and providing
accessors. EncapsulateField begins the process by hiding the data and adding accessors.
But this is only the first step. A class with only accessors is a dumb class that doesn't
really take advantage of the opportunities of objects, and an object is terrible thing to
waste.

Once you have done EncapsulateField you look for methods that are used by more
features of another class than the class on which it is defined. If you find one you use
the refactoring MoveMethod to move the method to the class.

 Example public String _name

is transformed to.

private String _name;
public String getName() {return _name;}
public void setName(String arg) {_name = arg;}

 Process • Create getting and setting methods for the field.
• Find all clients outside the class that reference the field. If the client uses the

value, replace the reference with a call to the getting method. If the client
changes the value, replace the reference with a call to the setting method.

o If the field is an object and the client invokes modifier on the
object, that is a use. Only use the setting method to replace an
assignment.

• Compile and test after each change.
• Once all clients are changed, declare the field as private.
• Compile and test.

10 MoveMet
hod

MoveMethod
(process)

Description When a method is, or will be, using or used by more features of another class than the
class on which it is defined, then you should create a new method with a similar body
in the class it uses most. Either turn the old method into a simple delegation, or remove
it altogether.

Moving methods is the bread and butter of refactoring. You should move methods
when classes have too much behavior or when classes are collaborating too much and
are too highly coupled. By moving methods around, you can make the classes simpler
and they end up being a more crisp implementation of a set of responsibilities.
You should look through the methods on a class to find a method that seems to
reference another object more than the object it lives on.
It's not always an easy decision to make. If I am not sure whether to move a method,
you should go on to look at other methods. Moving other methods often makes the
decision easier. Sometimes the decision still is hard to make.

Copyright © Fraunhofer IESE 2009 81

 Example

 Process • Examine all features used by the source method that are defined on the
source class. Consider whether they also should be moved.

o If a feature is used only by the method you are about to move,
you might as well move it, too. If the feature is used by other
methods, consider moving them as well. Sometimes it is easier to
move a set of methods than to move them one at a time.

• Check the sub- and superclasses of the source class for other declarations of
the method.

o If there are any other declarations, you may not be able to make
the move, unless the polymorphism can also be expressed on the
target.

• Declare the method in the target class.
o You may choose to use a different name, one that makes more

sense in the target class.
• Copy the code from the source method to the target. Adjust the method to

make it work in its new home.
• If the method uses its source, you need to determine how to reference the

source object from the target method. If there is no mechanism in the target
class, pass the source object reference to the new method as a parameter,

• If the method includes exception handlers handlers, decide which class
should logically handle the exception. If the source class should be
responslble, leave the handlers behind.

• Compile the target class.
• Determine how to reference the correct target object from the source.

o There may be an existing field or method that wdl give you the
target. If not, see whether you can easily create a method that will
do so. Failing that, you need to create a new field in the source
that can store the target. This may be a permanent change, but
you can also make it temporarily until you have refactored enough
to remove it.

• Turn the source method into a delegating method.
• Compile and test.
• Decide whether to remove the source method or retain it as a delegating

method.
• Leaving the source as a delegating method is easier if you have many

references.
• If you remove the source method, replace all the eferences with references

to the target method.
o You can compile and test after changing each reference, although

it is usually easier to change all references with one search and
replace.

• Compile and test.

 Example • F p.144

11 Encapsul
ateCollec

tion

EncapsulateC
ollection
(process)

Description Often a class contains a collection of instances. This collection might be an array, list,
set, or vector. Such cases often have the usual getter and setter for the collection.
However, collections should use a protocol slightly different from that for other kinds
of data. The getter should not return the collection object itself, because that allows
clients to manipulate the contents of the collection without the owning class's knowing

Copyright © Fraunhofer IESE 2009 82

what is going on. It also reveals too much to clients about the object's internal data
structures. A getter for a multivalued attribute should return something that prevents
manipulation of the collection and hides unnecessary details about its structure. How
you do this varies depending on the version of Java you are using.
In addition there should not be a setter for collection: rather there should be operations
to add and remove elements. This gives the owning object control over adding and
removing elements from the collection.
With this protocol the collection is properly encapsulated, which reduces the coupling
of the owning class to its clients.

 Example

 Process • Add an add and remove method for the collection.

• Initialize the field to an empty collection.
• Compile.
• Find callers of the setting method. Either modify the setting method to use

the add and remove operations or have the clients call those operations
instead.

o Setters are used in two cases: when the collection is empty and
when the setter is replacing a non-empty collection.

o You may wish to use RenameMethod to rename the setter.
Change it from set to initialize or replace.

• Compile and test.
• Find all users of the getter that modify the collection. Change them to use

the add and remove methods. Compile and test after each change.
• When all uses of the getter that modify have been changed, modify the

getter to return a read-only view of the collection.
o In Java 2, thrs rs the appropriate unmodifiable collection view
o In Java 1.1, you should return a copy of the collection

• Compile and test.
• Find the users of the getter. Look for code that should be on the host object.

Use ExtractMethod and MoveMethod to move the code to the host object.
• For Java 2, you are done with that. For Java 1.1, however, clients may prefer

to use an enumeration. To provide the enumeration:
• Change the name of the current getter and add a new getter to return an

enumeration. Find users of the old getter and change them to use one of the
new methods.

o If this is a to bog change , use RenameMethod on the old getter;
create a new method that returns an enumeration, and change
callers to use the new method.

• Compile and test.

12 RemoveS
ettingMe

thod

RemoveSettin
gMethod
(process)

Description A field should be set at creation time and never altered. There, you should remove any
setting method for that field.

Providing a setting method indicates that a field may be changed. If you don't want
that field to change once the object is created, then don't provide a setting method
(and make the field final). That way your intention is clear and you often remove the
very possibility that the field will change.
This situation often occurs when programmers blindly use direct variable access. Such
programmers then use setters even in a constructor.

 Example

 Process o If the field isn't final, make it so.

o Compile and test.

Copyright © Fraunhofer IESE 2009 83

o Check that the setting method is called only in the constructor, or in a
method called by the constructor.

o Modify the constructor to access the variables directly.
o You cannot do this if you have a subclass setting the private fields

of a superclass. In this case you should try to provide a protected
superclass method (ideally a constructor) to set these values.
Whatever you do, don't give the superclass method a name that
will confuse it with a setting method.

o Compile and test.
o Remove the setting method.
o Compile.

 Process A simple example is as follows:
class Account {

private String _id;
Account (String id) {
setId(id) ;
}
void setId (String arg) {
_id = arg;

}

which can be replaced with

class Account {

private final String _id;
Account (String id) {
_id = id;

}

 Example The problems come in some variations. First is the case in which you are doing
computation on the argument:

class Account {

private String _id;
Account (String id) {
setId(id) ;
}
void setId (String arg) {
_id = "ZZ" + arg;

}
If the change is simple (as here) and there is only one constructor, you can make the
change in the constructor. If the change is complex or you need to call it from separate
methods, you need to provide a method. In that case you need to name the method to
make its intention clear:

class Account {

private final String _id;
Account (String i d) {
initializeId (id);
}
void initializeId (String arg) {
_id = "ZZ" + arg;

}

 Example An awkward case lies with subclasses that initialize private superclass variables:

class InterestAccount extends Account..

private double _interestRate;
InterestAccount (String id , double rate) {
setId(id);
_interestRate = rate;

}

Copyright © Fraunhofer IESE 2009 84

The problem is that you cannot access id directly to set it. The best solution is to use a
superclass constructor:

class InterestAccount..

InterestAccount (String id , double rate) {
super(id) ;
_interestRate = rate;

}

If that is not possible, a well-named method is the best thing to use:

class InterestAccount..

InterestAccount (String id , double rate) {
initializeId(id);
_interestRate = rate;

}

 Example Another case to consider is setting the value of a collection:

class Person {

Vector getCourses0 {
return _courses;

}
void setCourses(Vector arg) {

_courses = arg;
}
private Vector _courses;

Here I want to replace the setter with add and remove operations. This can be done by
using the refactoring EncapsulateCollection.

13 ExtractM
ethod

see other EP

14 AddPara
meter

AddParamete
r (process)

Description AddParameter is a very common refactoring, one that you almost certainly have already
done. The motivation is simple. You have to change a method, and the change requires
information that wasn't passed in before, so you add a parameter.
Actually most of what i have to say is motivation against doing this refactoring.
Often you have other alternatives to adding a parameter. If available, these
alternatives are better because they don't lead to increasing the length of parameter
lists. Long parameter lists smell bad because they are hard to remember
and often involve data clumps.
Look at the existing parameters. Can you ask one of those objects for the information
you need? If not, would it make sense to give them a method to provide that
information? What are you using the information for? Should that behavior be on
another object, the one that has the information? Look at the existing parameters and
think about them with the new parameter. Perhaps you should consider Introduce
Parameter Object (295).
I'm not saying that you should never add parameters; I do it frequently, but
you need to be aware of the alternatives.

 Process The mechanics of AddParameter are very similar to those of RenameMethod:
• Check to see whether this method signature is implemented by a superclass

or subclass. If it is, carry out these steps for each implementation.
• Declare a new method with the added parameter. Copy the old body of
• code over to the new method.

o If you need to add more than one paranzeter, it is easier to add
them at the same time.

• Compile.
• Change the body of the old method so that it calls the new one.

o If you only have a few references, you can reasonably skip this
step.

o You can supply any value for the parameter, but usually you use

Copyright © Fraunhofer IESE 2009 85

null for object parameter and clearly odd value for built-in types.
It's a good idea to use something other than zero for numbers so
you can spot this case more easily.

• Compile and test.
• Find all references to the old method and change them to refer to the new

one.
• Compile and test after each change.
• Remove the old method.

o If the old method is part of the interface and you cannot remove
it, leave it in place and mark it as deprecated.

• Compile and test.

 Example

15 RemoveP

arameter
RemoveParam
eter (procees)

Description Programmers often add parameters but are reluctant to remove them. After all,
a spurious parameter doesn't cause any problems, and you might need it again
later.
This is bad! A parameter indicates information that is needed; different values make a
difference. Your caller has to worry about what values to pass. By not removing the
parameter you are making further work for everyone who uses the method.
That's not a good trade-off, especially because removing parameters is an easy
refactoring.
The case to be wary of here is a polymorphic method. In this case you may
well find that other implementations of the method do use the parameter. In this
case you shouldn't remove the parameter. You might choose to add a separate
method that can be used in those cases, but you need to examine how your callers
use the method to see whether it is worth doing that. If some callers already
know they are dealing with a certain subclass and doing extra work to find the
parameter or are using Itnowledge of the class hierarchy to know they can get
away with a null, add an extra method without the parameter. If they do not
need to know about which class has which method, the callers should be left in
blissful ignorance.

 Process The mechanics of RemoveParameter are very similar to those of RenameMethod and
AddParameter.

• Check to see whether this method signature is implemented by a superclass
or subclass. Check to see whether the class or superclass uses the parameter.
If it does, don't do this refactoring.

• Declare a new method without the parameter. Copy the old body of code to
the new method.

o If you need to remove more than one parameter, it is easier to
remove them together.

• Compile.
• Change the body of the old method so that it calls the new one.

o If you only have a few references, you can reasotzably skip this
step.

• Compile and test.
• Find all references to the old method and change them to refer to the new

one. Compile and test after each change.
• Remove the old method.

o If the old method 1s part of the rnterface and you cannot remove
it, leave it in place and mark it as deprecated.

• Compile and test.
Because I'm pretty comfortable with adding and removing parameters, I often do a
batch in one go.

 Figure

Copyright © Fraunhofer IESE 2009 86

16 HideMet
hod

HideMethod
(process)

Description If a method is not used by any other class, then you should make it private.

Refactoring often causes you to change decisions about the visibility of methods. It is
easy to spot cases in which you need to make a method more visible: another class
needs it and you thus relax the visibility. It is somewhat more difficult to tell when a
method is too visible. Ideally a tool should check all methods to see whether they can
be hidden. If it doesn't, you should make this check at regular intervals.
A particularly common case is hiding getting and setting methods as you work up a
richer interface that provides more behavior. This case is most common when you are
starting with a class that is little more than an encapsulated data holder. As more
behavior is built into the class, you may find that many of the getting and setting
methods are no longer needed publicly, in which case they can be hidden. If you make
a getting or setting method private and you are using direct variable access, you can
remove the method.

 Example

 Process o Check regularly for opportunities to make a method more private.

o Make each method as private as you can.
o Compile after doing a group of hidings.

1.6 Assignments

In the following, all the assignments used during the controlled experiment are
provided. Five different developer teams were involved during the experiment.
The code used for the assignments was code produced by the corresponding
teams themselves, i.e., the assignments contain their own code. Therefore, 20
different assignments were produced for the two periods of the experiment.

The first page of the assignment provides instructions for solving the assign-
ment and asks the subject to enter the time when he starts to solve the as-
signment (see Section 1.6.1 until Section 1.6.4). After that, two exercises with
Java code were given to the subjects (see Section 1.7 and Section 1.8). It was
up to the students to decide whether they completely read the provided infor-
mation first (i.e., information of an experience package or a learning space) or
directly started to solve the exercises. The sheet for describing the solutions
used by the subjects is provided in Section 1.6.5 (example) and Appendix 1.6.6
(empty sheet).

1.6.1 Assignment Information and Related Exercises (Mo-Mo-G1):
(Group:_________________)

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Goal of the experiment:
The goal of the experiment is to apply the knowledge from an experience package to your
own context (in this case DCGA project). Information about the experience package will be

Copyright © Fraunhofer IESE 2009 87

provided in a Wiki. Further, additional information in a so-called learning space will help you
to understand and apply the experience package. In order to apply the experience packages
an exercise should be solved.

Selected Experience Packages
This sheet explains in which order you should work through the experience packages. Two
experience packages have been assigned to you. Please access them in the following sequence
as assigned in the parentheses. When you have read the information in the Wiki and when
you think you are ready to solve the exercise, please put the actual time behind the corre-
sponding experience package when you start to access the experience package in the Wiki.

- Experience Package Code Smell Comments (___)
starting time [___ : ___]

- Experience Package Code Smell Long Method (___) starting time [___ :
___]

- Experience Package Code Smell Type Embedded in Name (___) starting time
[___ : ___]

- Experience Package Code Smell Uncommunicative Name (___) starting time
[___ : ___]

- Experience Package Code Smell Long Parameter List (___) starting time [___ :
___]

- Experience Package Code Smell Lazy Class (___)
 starting time [___ : ___]

- Experience Package Code Smell Data Class (___)
 starting time [___ : ___]

Please access the Wiki by using your web browser:

 http://watt.informatik.uni-kl.de/gseprojekt1/index.php/Spezial:Experiences (use
gseprojekt “1” !)

Login: experiment
Passwd: geiermeier

The exercises are provided in the following.

1.6.2 Assignment Information and Related Exercises (Mo-Aft-G2):
(Group:_________________)

Your Name: _______________________

Copyright © Fraunhofer IESE 2009 88

Your Subject-ID: _____<your ID will be filled out by evaluators>

Goal of the experiment:
The goal of the experiment is to apply the knowledge from an experience package to your
own context (in this case DCGA project). Information about the experience package will be
provided in a Wiki.

Selected Experience Packages
This sheet explains in which order you should work through the experience packages. Two
experience packages have been assigned to you. Please access them in the following sequence
as assigned in the parentheses. When you have read the information in the Wiki and when
you think you are ready to solve the exercise, please put the actual time behind the corre-
sponding experience package when you start to access the experience package in the Wiki.

- Experience Package Code Smell Comments (___)
starting time [___ : ___]

- Experience Package Code Smell Long Method (___) starting time [___ :
___]

- Experience Package Code Smell Type Embedded in Name (___) starting time
[___ : ___]

- Experience Package Code Smell Uncommunicative Name (___) starting time
[___ : ___]

- Experience Package Code Smell Long Parameter List (___) starting time [___ :
___]

- Experience Package Code Smell Lazy Class (___)
 starting time [___ : ___]

- Experience Package Code Smell Data Class (___)
 starting time [___ : ___]

To each of the experience package an exercise should be solved when you have read the in-
formation in the Wiki and when you think you are ready to solve the exercise.
Please access the Wiki by using your web browser:

 http://watt.informatik.uni-kl.de/gseprojekt3/index.php/Spezial:Experiences (use
gseprojekt “3” !)

Login: experiment
Passwd: auawaua

The exercises are provided in the following.

Copyright © Fraunhofer IESE 2009 89

1.6.3 Assignment Information and Related Exercises (Tu-Mo-G2):
(Group:_________________)

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Goal of the experiment:
The goal of the experiment is to apply the knowledge from an experience package to your
own context (in this case DCGA project). Information about the experience package will be
provided in a Wiki. Further, additional information in a so-called learning space will help you
to understand and apply the experience package. In order to apply the experience packages
an exercise should be solved.

Selected Experience Packages
This sheet explains in which order you should work through the experience packages. Two
experience packages have been assigned to you. Please access them in the following sequence
as assigned in the parentheses. When you have read the information in the Wiki and when
you think you are ready to solve the exercise, please put the actual time behind the corre-
sponding experience package when you start to access the experience package in the Wiki.

- Experience Package Code Smell Comments (___)
starting time [___ : ___]

- Experience Package Code Smell Long Method (___) starting time [___ :
___]

- Experience Package Code Smell Type Embedded in Name (___) starting time
[___ : ___]

- Experience Package Code Smell Uncommunicative Name (___) starting time
[___ : ___]

- Experience Package Code Smell Long Parameter List (___) starting time [___ :
___]

- Experience Package Code Smell Lazy Class (___)
 starting time [___ : ___]

- Experience Package Code Smell Data Class (___)
 starting time [___ : ___]

To each of the experience package an exercise should be solved when you have read the in-
formation in the Wiki and when you think you are ready to solve the exercise.
Please access the Wiki by using your web browser:

Copyright © Fraunhofer IESE 2009 90

 http://watt.informatik.uni-kl.de/gseprojekt1/index.php/Spezial:Experiences (use
gseprojekt “1” !)

Login: experiment
Passwd: eierweier

The exercises are provided in the following.

Copyright © Fraunhofer IESE 2009 91

1.6.4 Assignment Information and Related Exercises (Tu-Aft-G1):
(Group:_________________)

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Goal of the experiment:
The goal of the experiment is to apply the knowledge from an experience package to your
own context (in this case DCGA project). Information about the experience package will be
provided in a Wiki.

Selected Experience Packages
This sheet explains in which order you should work through the experience packages. Two
experience packages have been assigned to you. Please access them in the following sequence
as assigned in the parentheses. When you have read the information in the Wiki and when
you think you are ready to solve the exercise, please put the actual time behind the corre-
sponding experience package when you start to access the experience package in the Wiki.

- Experience Package Code Smell Comments (___)
starting time [___ : ___]

- Experience Package Code Smell Long Method (___) starting time [___ :
___]

- Experience Package Code Smell Type Embedded in Name (___) starting time
[___ : ___]

- Experience Package Code Smell Uncommunicative Name (___) starting time
[___ : ___]

- Experience Package Code Smell Long Parameter List (___) starting time [___ :
___]

- Experience Package Code Smell Lazy Class (___)
 starting time [___ : ___]

- Experience Package Code Smell Data Class (___)
 starting time [___ : ___]

To each of the experience package an exercise should be solved when you have read the in-
formation in the Wiki and when you think you are ready to solve the exercise.
Please access the Wiki by using your web browser:

 http://watt.informatik.uni-kl.de/gseprojekt3/index.php/Spezial:Experiences
(use gseprojekt “3” !)

Copyright © Fraunhofer IESE 2009 92

Login: experiment; Passwd: balabala

The exercises are provided in the following.

Copyright © Fraunhofer IESE 2009 93

1.6.5 Answer Sheet for Exercises (example)

This is an example at how to mark a code smell and how to describe it in the Answer Sheet for
Exercises.
Code example:
void printOwing() {
 printBanner();

 //print details
 System.out.println ("name: " + _name);
 System.out.println ("amount " + amount);
}
Your explanation can be provided in different ways:

Number Explanation of your descision

1

I would use the Extract Method refactoring. This is a solution:
void printOwing() {
 printBanner();
 printDetails(getOutstanding());
}

void printDetails (double outstanding) {
 System.out.println ("name: " + _name);
 System.out.println ("amount " + outstanding);
}

or describe it in this way

1

I would use the Extract Method refactoring.
The first step is to extract both system.out.println statements into a
separate method (e.g., method printDetails(double outstanding) with
the double variable oustanding). This method call to this new method
will replace the println statements in the printOwning method.
That’s it.

It is not necessary to state the compile and test steps !

Copyright © Fraunhofer IESE 2009 94

1.6.6 Answer Sheet for Assignments

The answer can also be stated in German if this is more appropriate for you.

Number Explanation of your decision

Copyright © Fraunhofer IESE 2009 95

1.7 Exercises of the Assignments (Monday)

1.7.1 Exercise to Experience Package for Amica Interaction Group: Long Method

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long Method

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Amica_Interaction:match.java
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.belami.dcga.amica_interaction.Situation;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

/* Data structure containing the information of one "match" element
from the XML mapping file.
 */
public class Match {
 /**
* Fact ID that has to be matched with the Situation object
 */
 private String factName = null;
 /**
 * Comparator method for the fact ID from the mapping-file

Copyright © Fraunhofer IESE 2009 96

 */
 private String factNameComparator = null;

 /**
 * Start date that has to be matched with the Situation object
 */
 private Date startDate = null;
 /**
 * Comparator method for the start date from the mapping-file
 */
 private String startDateComparator = null;

 /**
 * End date that has to be matched with the Situation object
 */
 private Date endDate = null;
 /**
 * Comparator method for the end date from the mapping-file
 */

private String endDateComparator = null;

 /**
 * Description that has to be matched with the Situation object
 */
 private String description = null;
 /**
 * Comparator method for the description from the mapping-file
 */
 private String descriptionComparator = null;

 /**
 * Source that has to be matched with the Situation object
 */
 private String source = null;
 /**
 * Comparator method for the source identifier from the mapping-
file
 */
 private String sourceComparator = null;

 /**
 * Location that has to be matched with the Situation object
 */
 private String location = null;
 /**
 * Comparator method for the location identifier from the map-
ping-file
 */

Copyright © Fraunhofer IESE 2009 97

 private String locationComparator = null;

 /**
 * NodeList used to map a matching Situation to an Information.
Might be null if not applicable.
 */
 public NodeList mapInformationNodes = null;
 /**
 * NodeList used to map a matching Situation to a Task. Might be
null if not applicable.
 */
 public NodeList mapTaskNodes = null;
 /**
 * Boolean value that specifies if a matching Situation is mapped
a TaskEvent.
 */
 public boolean mapTaskEvent = false;

 private DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-
dd");

 private static DateFormat dateTimeFormat = new SimpleDateFor-
mat("yyyy-MM-dd k:m:s");

 /**
 * Creates a new instance of Match
 * @param matchNode DOM Node from the XML mapping document
 */
 public Match(Node matchNode) {
 NodeList childNodes = matchNode.getChildNodes();
 for(int i=0, l=childNodes.getLength(); i<l; i++) {
 Node currentNode = childNodes.item(i);
 String nodeName = currentNode.getNodeName();

 if(nodeName.equals("factName")) {
 Node comparator = currentNode.getFirstChild();
 factNameComparator = comparator.getNodeName();
 factName = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("startDate")) {
 Node comparator = currentNode.getFirstChild();
 startDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 startDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }

Copyright © Fraunhofer IESE 2009 98

 }
 } else if(nodeName.equals("endDate")) {
 Node comparator = currentNode.getFirstChild();
 endDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 endDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("description")) {
 Node comparator = currentNode.getFirstChild();
 descriptionComparator = comparator.getNodeName();
 description = compara-
tor.getFirstChild().getNodeValue();
 } else if(nodeName.equals("source")) {
 Node comparator = currentNode.getFirstChild();
 sourceComparator = comparator.getNodeName();
 source = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("location")) {
 Node comparator = currentNode.getFirstChild();
 locationComparator = comparator.getNodeName();
 location = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("map")) {
 NodeList mapNodes = currentNode.getChildNodes();
 for (int j=0, k=mapNodes.getLength(); j<k; j++) {
 Node node = mapNodes.item(j);
 if(node.getNodeName().equals("task")) {
 mapTaskNodes = node.getChildNodes();
 } else if(node.getNodeName().equals("taskEvent"))
{
 mapTaskEvent = true;
 } else
if(node.getNodeName().equals("information")) {
 mapInformationNodes = node.getChildNodes();
 }
 }
 }
 }
 }

 /**
 * Returns true if the given situation is matched.
 * @param situation A Situation
 * @return True if the given situation is matched.
 */
 public boolean matches(Situation situation) {

Copyright © Fraunhofer IESE 2009 99

 if(factNameComparator != null) {
 if(!compare(situation.getFactName(), factName, factName-
Comparator)) {
 return false;
 }
 }
 if(startDateComparator != null) {
 if(!compare(situation.getStartDate(), startDate, start-
DateComparator)) {
 return false;
 }
 }
 if(endDateComparator != null) {
 if(!compare(situation.getEndDate(), endDate, endDateCom-
parator)) {
 return false;
 }
 }
 if(descriptionComparator != null) {
 if(!compare(situation.getDescription(), description, de-
scriptionComparator)) {
 return false;
 }
 }
 if(sourceComparator != null) {
 if(!compare(situation.getSource(), source, sourceCompara-
tor)) {
 return false;
 }
 }
 if(locationComparator != null) {
 if(!compare(situation.getLocation()+"", location, loca-
tionComparator)) {
 return false;
 }
 }

 return true;
 }

 /**
 * Returns true if the given situation can be mapped to an Infor-
mation.
 * @param situation A Situation
 * @return True if the given situation can be mapped to an Infor-
mation.
 */
 public boolean mapsInformation(Situation situation) {

Copyright © Fraunhofer IESE 2009 100

 return mapInformationNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a Task.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a Task.
 */
 public boolean mapsTask(Situation situation) {
 return mapTaskNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a
TaskEvent.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a
TaskEvent.
 */
 public boolean mapsTaskEvent(Situation situation) {
 return mapTaskEvent;
 }

 /**
 * Map the given Situation to an Information object.
 * @param situation A Situation
 * @return Mapped Information object
 */
 public Information mapInformation(Situation situation) {
 Information information = new Information();
 for(int i=0, l=mapInformationNodes.getLength(); i<l; i++) {
 Node node = mapInformationNodes.item(i);
 if (node.getNodeName().equals("location")) {
 informa-
tion.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {
 informa-
tion.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 }
 }

 return information;
 }

 /**
 * Map the given Situation to a Task object.
 * @param situation A Situation

Copyright © Fraunhofer IESE 2009 101

 * @return Mapped Task object
 */
 public Task mapTask(Situation situation) {
 Task task = new Task();
 for(int i=0, l=mapTaskNodes.getLength(); i<l; i++) {
 Node node = mapTaskNodes.item(i);
 if(node.getNodeName().equals("priority")) {

task.setPriority(Integer.parseInt(prepareString(node.getFirstChild().
getNodeValue(), situation)));
 } else if (node.getNodeName().equals("location")) {

task.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

task.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 } else if (node.getNodeName().equals("autoMarkable")) {
 TaskEvent taskEvent = new
TaskEvent(situation.getSource(), situation.getLocation(), situa-
tion.getFactName());
 ArrayList<TaskEvent> taskEventCollection = new Array-
List<TaskEvent>();
 taskEventCollection.add(taskEvent);

 task.setAutoMarkable(true);
 task.addTaskEvents(taskEventCollection);
 }
 }

 return task;
 }

 /**
 * Map the given Situation to a TaskEvent object.
 * @param situation A Situation
 * @return Mapped TaskEvent object
 */
 public TaskEvent mapTaskEvent(Situation situation) {
 TaskEvent taskEvent = new TaskEvent(situation.getSource(),
situation.getLocation(), situation.getFactName());
 return taskEvent;
 }

 /**
 * Compare two String objects using the comparison method given
by the "comparator" String.
 * @param a Original object

Copyright © Fraunhofer IESE 2009 102

 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "startsWith",
"endsWith", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(String a, String b, String com-
parator) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if (b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("startsWith")) {
 if(a.startsWith(b)) return true;
 else return false;
 } else if(comparator.equals("endsWith")) {
 if(a.endsWith(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Compare two Date objects using the comparison method given by
the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "before", "af-
ter", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(Date a, Date b, String compara-
tor) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if(b == null || a == null) {
 return false;

Copyright © Fraunhofer IESE 2009 103

 } else {
 if(comparator.equals("before")) {
 if(a.before(b)) return true;
 else return false;
 } else if(comparator.equals("after")) {
 if(a.after(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Replaces keywords in a String using data from the given Situa-
tion object
 * @param text Untreated input String
 * @param situation A Situation
 * @return Treated Text
 */
 protected static String prepareString(String text, Situation
situation) {
 text = text.replaceAll("\\{\\{priority\\}\\}", situa-
tion.getPriority()+"");
 if (situation.getDescription()!= null) {
 text = text.replaceAll("\\{\\{description\\}\\}", situa-
tion.getDescription());
 }
 if (situation.getLocation()!= null) {
 text = text.replaceAll("\\{\\{location\\}\\}", situa-
tion.getLocation()+"");
 }
 text = text.replaceAll("\\{\\{startDate\\}\\}", dateTimeFor-
mat.format(situation.getStartDate()));
 if (situation.getEndDate()!= null) {
 text = text.replaceAll("\\{\\{endDate\\}\\}", dateTimeFor-
mat.format(situation.getEndDate()));
 }
 text = text.replaceAll("\\{\\{source\\}\\}", situa-
tion.getSource());
 text = text.replaceAll("\\{\\{factName\\}\\}", situa-
tion.getFactName());

 return text;
 }
}

Copyright © Fraunhofer IESE 2009 104

1.7.2 Exercise to Experience Package for Amica Interaction Group: Type Embedded in
Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type embedded in
name

2. For each identified code smell state the refactoring you would apply into the code and
give a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in
order to relate your answer to the identified code smell. Then explain your decision (i.e.,
your stepwise solution in your own words or why you wouldn’t remove the code smell).

Amica_Interaction:match.java
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.belami.dcga.amica_interaction.Situation;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

/* Data structure containing the information of one "match" element
from the XML mapping file.
 *
 */
public class Match {
 /**
* Fact ID that has to be matched with the Situation object
 */
 private String factName = null;
 /**

Copyright © Fraunhofer IESE 2009 105

 * Comparator method for the fact ID from the mapping-file
 */
 private String factNameComparator = null;

 /**
 * Start date that has to be matched with the Situation object
 */
 private Date startDate = null;
 /**
 * Comparator method for the start date from the mapping-file
 */
 private String startDateComparator = null;

 /**
 * End date that has to be matched with the Situation object
 */
 private Date endDate = null;
 /**
 * Comparator method for the end date from the mapping-file
 */

 private String endDateComparator = null;

 /**
 * Description that has to be matched with the Situation object
 */
 private String description = null;
 /**
 * Comparator method for the description from the mapping-file
 */
 private String descriptionComparator = null;

 /**
 * Source that has to be matched with the Situation object
 */
 private String source = null;
 /**
 * Comparator method for the source identifier from the mapping-
file
 */
 private String sourceComparator = null;

 /**
 * Location that has to be matched with the Situation object
 */
 private String location = null;
 /**
 * Comparator method for the location identifier from the map-
ping-file

Copyright © Fraunhofer IESE 2009 106

 */
 private String locationComparator = null;

 /**
 * NodeList used to map a matching Situation to an Information.
Might be null if not applicable.
 */
 public NodeList mapInformationNodes = null;
 /**
 * NodeList used to map a matching Situation to a Task. Might be
null if not applicable.
 */
 public NodeList mapTaskNodes = null;
 /**
 * Boolean value that specifies if a matching Situation is mapped
a TaskEvent.
 */
 public boolean mapTaskEvent = false;

 private DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-
dd");

 private static DateFormat dateTimeFormat = new SimpleDateFor-
mat("yyyy-MM-dd k:m:s");

 /**
 * Creates a new instance of Match
 * @param matchNode DOM Node from the XML mapping document
 */
 public Match(Node matchNode) {
 NodeList childNodes = matchNode.getChildNodes();
 for(int i=0, l=childNodes.getLength(); i<l; i++) {
 Node currentNode = childNodes.item(i);
 String nodeName = currentNode.getNodeName();

 if(nodeName.equals("factName")) {
 Node comparator = currentNode.getFirstChild();
 factNameComparator = comparator.getNodeName();
 factName = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("startDate")) {
 Node comparator = currentNode.getFirstChild();
 startDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 startDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();

Copyright © Fraunhofer IESE 2009 107

 }
 }
 } else if(nodeName.equals("endDate")) {
 Node comparator = currentNode.getFirstChild();
 endDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 endDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("description")) {
 Node comparator = currentNode.getFirstChild();
 descriptionComparator = comparator.getNodeName();
 description = compara-
tor.getFirstChild().getNodeValue();
 } else if(nodeName.equals("source")) {
 Node comparator = currentNode.getFirstChild();
 sourceComparator = comparator.getNodeName();
 source = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("location")) {
 Node comparator = currentNode.getFirstChild();
 locationComparator = comparator.getNodeName();
 location = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("map")) {
 NodeList mapNodes = currentNode.getChildNodes();
 for (int j=0, k=mapNodes.getLength(); j<k; j++) {
 Node node = mapNodes.item(j);
 if(node.getNodeName().equals("task")) {
 mapTaskNodes = node.getChildNodes();
 } else if(node.getNodeName().equals("taskEvent"))
{
 mapTaskEvent = true;
 } else
if(node.getNodeName().equals("information")) {
 mapInformationNodes = node.getChildNodes();
 }
 }
 }
 }
 }

 /**
 * Returns true if the given situation is matched.
 * @param situation A Situation
 * @return True if the given situation is matched.
 */

Copyright © Fraunhofer IESE 2009 108

 public boolean matches(Situation situation) {
 if(factNameComparator != null) {
 if(!compare(situation.getFactName(), factName, factName-
Comparator)) {
 return false;
 }
 }
 if(startDateComparator != null) {
 if(!compare(situation.getStartDate(), startDate, start-
DateComparator)) {
 return false;
 }
 }
 if(endDateComparator != null) {
 if(!compare(situation.getEndDate(), endDate, endDateCom-
parator)) {
 return false;
 }
 }
 if(descriptionComparator != null) {
 if(!compare(situation.getDescription(), description, de-
scriptionComparator)) {
 return false;
 }
 }
 if(sourceComparator != null) {
 if(!compare(situation.getSource(), source, sourceCompara-
tor)) {
 return false;
 }
 }
 if(locationComparator != null) {
 if(!compare(situation.getLocation()+"", location, loca-
tionComparator)) {
 return false;
 }
 }

 return true;
 }

 /**
 * Returns true if the given situation can be mapped to an Infor-
mation.
 * @param situation A Situation
 * @return True if the given situation can be mapped to an Infor-
mation.
 */

Copyright © Fraunhofer IESE 2009 109

 public boolean mapsInformation(Situation situation) {
 return mapInformationNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a Task.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a Task.
 */
 public boolean mapsTask(Situation situation) {
 return mapTaskNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a
TaskEvent.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a
TaskEvent.
 */
 public boolean mapsTaskEvent(Situation situation) {
 return mapTaskEvent;
 }

 /**
 * Map the given Situation to an Information object.
 * @param situation A Situation
 * @return Mapped Information object
 */
 public Information mapInformation(Situation situation) {
 Information information = new Information();
 for(int i=0, l=mapInformationNodes.getLength(); i<l; i++) {
 Node node = mapInformationNodes.item(i);
 if (node.getNodeName().equals("location")) {
 informa-
tion.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {
 informa-
tion.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 }
 }

 return information;
 }

 /**
 * Map the given Situation to a Task object.

Copyright © Fraunhofer IESE 2009 110

 * @param situation A Situation
 * @return Mapped Task object
 */
 public Task mapTask(Situation situation) {
 Task task = new Task();
 for(int i=0, l=mapTaskNodes.getLength(); i<l; i++) {
 Node node = mapTaskNodes.item(i);
 if(node.getNodeName().equals("priority")) {

task.setPriority(Integer.parseInt(prepareString(node.getFirstChild().
getNodeValue(), situation)));
 } else if (node.getNodeName().equals("location")) {

task.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

task.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 } else if (node.getNodeName().equals("autoMarkable")) {
 TaskEvent taskEvent = new
TaskEvent(situation.getSource(), situation.getLocation(), situa-
tion.getFactName());
 ArrayList<TaskEvent> taskEventCollection = new Array-
List<TaskEvent>();
 taskEventCollection.add(taskEvent);

 task.setAutoMarkable(true);
 task.addTaskEvents(taskEventCollection);
 }
 }

 return task;
 }

 /**
 * Map the given Situation to a TaskEvent object.
 * @param situation A Situation
 * @return Mapped TaskEvent object
 */
 public TaskEvent mapTaskEvent(Situation situation) {
 TaskEvent taskEvent = new TaskEvent(situation.getSource(),
situation.getLocation(), situation.getFactName());
 return taskEvent;
 }

 /**
 * Compare two String objects using the comparison method given
by the "comparator" String.

Copyright © Fraunhofer IESE 2009 111

 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "startsWith",
"endsWith", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(String a, String b, String com-
parator) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if (b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("startsWith")) {
 if(a.startsWith(b)) return true;
 else return false;
 } else if(comparator.equals("endsWith")) {
 if(a.endsWith(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Compare two Date objects using the comparison method given by
the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "before", "af-
ter", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(Date a, Date b, String compara-
tor) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if(b == null || a == null) {

Copyright © Fraunhofer IESE 2009 112

 return false;
 } else {
 if(comparator.equals("before")) {
 if(a.before(b)) return true;
 else return false;
 } else if(comparator.equals("after")) {
 if(a.after(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Replaces keywords in a String using data from the given Situa-
tion object
 * @param text Untreated input String
 * @param situation A Situation
 * @return Treated Text
 */
 protected static String prepareString(String text, Situation
situation) {
 text = text.replaceAll("\\{\\{priority\\}\\}", situa-
tion.getPriority()+"");
 if (situation.getDescription()!= null) {
 text = text.replaceAll("\\{\\{description\\}\\}", situa-
tion.getDescription());
 }
 if (situation.getLocation()!= null) {
 text = text.replaceAll("\\{\\{location\\}\\}", situa-
tion.getLocation()+"");
 }
 text = text.replaceAll("\\{\\{startDate\\}\\}", dateTimeFor-
mat.format(situation.getStartDate()));
 if (situation.getEndDate()!= null) {
 text = text.replaceAll("\\{\\{endDate\\}\\}", dateTimeFor-
mat.format(situation.getEndDate()));
 }
 text = text.replaceAll("\\{\\{source\\}\\}", situa-
tion.getSource());
 text = text.replaceAll("\\{\\{factName\\}\\}", situa-
tion.getFactName());

 return text;
 }
}

Copyright © Fraunhofer IESE 2009 113

1.7.3 Exercise to Experience Package for Computation: Long Method

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long Method

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Amica_Interaction:match.java in your code code smells of long method couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;

… code removed …

 /**
 * Creates a new instance of Match
 * @param matchNode DOM Node from the XML mapping document
 */
 public Match(Node matchNode) {
 NodeList childNodes = matchNode.getChildNodes();
 for(int i=0, l=childNodes.getLength(); i<l; i++) {
 Node currentNode = childNodes.item(i);
 String nodeName = currentNode.getNodeName();

 if(nodeName.equals("factName")) {
 Node comparator = currentNode.getFirstChild();
 factNameComparator = comparator.getNodeName();
 factName = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("startDate")) {
 Node comparator = currentNode.getFirstChild();
 startDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {

Copyright © Fraunhofer IESE 2009 114

 startDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("endDate")) {
 Node comparator = currentNode.getFirstChild();
 endDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 endDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("description")) {
 Node comparator = currentNode.getFirstChild();
 descriptionComparator = comparator.getNodeName();
 description = compara-
tor.getFirstChild().getNodeValue();
 } else if(nodeName.equals("source")) {
 Node comparator = currentNode.getFirstChild();
 sourceComparator = comparator.getNodeName();
 source = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("location")) {
 Node comparator = currentNode.getFirstChild();
 locationComparator = comparator.getNodeName();
 location = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("map")) {
 NodeList mapNodes = currentNode.getChildNodes();
 for (int j=0, k=mapNodes.getLength(); j<k; j++) {
 Node node = mapNodes.item(j);
 if(node.getNodeName().equals("task")) {
 mapTaskNodes = node.getChildNodes();
 } else if(node.getNodeName().equals("taskEvent"))
{
 mapTaskEvent = true;
 } else
if(node.getNodeName().equals("information")) {
 mapInformationNodes = node.getChildNodes();
 }
 }
 }
 }
 }

 … code removed …

Copyright © Fraunhofer IESE 2009 115

 /**
 * Returns true if the given situation can be mapped to an Infor-
mation.
 * @param situation A Situation
 * @return True if the given situation can be mapped to an Infor-
mation.
 */
 public boolean mapsInformation(Situation situation) {
 return mapInformationNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a Task.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a Task.
 */
 public boolean mapsTask(Situation situation) {
 return mapTaskNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a
TaskEvent.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a
TaskEvent.
 */
 public boolean mapsTaskEvent(Situation situation) {
 return mapTaskEvent;
 }

 /**
 * Map the given Situation to an Information object.
 * @param situation A Situation
 * @return Mapped Information object
 */
 public Information mapInformation(Situation situation) {
 Information information = new Information();
 for(int i=0, l=mapInformationNodes.getLength(); i<l; i++) {
 Node node = mapInformationNodes.item(i);
 if (node.getNodeName().equals("location")) {
 informa-
tion.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

Copyright © Fraunhofer IESE 2009 116

 informa-
tion.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 }
 }

 return information;
 }

 /**
 * Map the given Situation to a Task object.
 * @param situation A Situation
 * @return Mapped Task object
 */
 public Task mapTask(Situation situation) {
 Task task = new Task();
 for(int i=0, l=mapTaskNodes.getLength(); i<l; i++) {
 Node node = mapTaskNodes.item(i);
 if(node.getNodeName().equals("priority")) {

task.setPriority(Integer.parseInt(prepareString(node.getFirstChild().
getNodeValue(), situation)));
 } else if (node.getNodeName().equals("location")) {

task.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

task.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 } else if (node.getNodeName().equals("autoMarkable")) {
 TaskEvent taskEvent = new
TaskEvent(situation.getSource(), situation.getLocation(), situa-
tion.getFactName());
 ArrayList<TaskEvent> taskEventCollection = new Array-
List<TaskEvent>();
 taskEventCollection.add(taskEvent);

 task.setAutoMarkable(true);
 task.addTaskEvents(taskEventCollection);
 }
 }

 return task;
 }

 /**
 * Compare two String objects using the comparison method given
by the "comparator" String.

Copyright © Fraunhofer IESE 2009 117

 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "startsWith",
"endsWith", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(String a, String b, String com-
parator) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if (b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("startsWith")) {
 if(a.startsWith(b)) return true;
 else return false;
 } else if(comparator.equals("endsWith")) {
 if(a.endsWith(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Compare two Date objects using the comparison method given by
the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "before", "af-
ter", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(Date a, Date b, String compara-
tor) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if(b == null || a == null) {

Copyright © Fraunhofer IESE 2009 118

 return false;
 } else {
 if(comparator.equals("before")) {
 if(a.before(b)) return true;
 else return false;
 } else if(comparator.equals("after")) {
 if(a.after(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 ... code removed …
}

Copyright © Fraunhofer IESE 2009 119

1.7.4 Exercise to Experience Package for Computation Group: Type Embedded in Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type embedded in
name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Computation: taskmanager
package org.belami.dcga.computation.taskmanager;

import java.util.Observer;
import java.util.Vector;

import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;

/**
 * This component is responsible for all task related computations.
 * It stores the task list for the current elderly person and per-
forms
 * the following computations (from initial problem description)so
far:
 * sort task list when new room is entered, auto check tasks for com-
pletion
 * if possible, change task status
 *
 * @author j_koehle
 *
 */
public interface TaskManager {

 public static TaskManager INSTANCE = TaskManager-
Impl.getInstance();

 /**

Copyright © Fraunhofer IESE 2009 120

 * Loads task list for current patient from persistence
 */
 public void initialize();

 /**
 * Checks if care giver was in the rooms demanded for
 * the specified task yet and changes task status to
 * "done by care giver"
 * @param taskID
 * ID of task to change
 * @param override
 * if true, no exception is thrown. Reason: Care Giver can mark
 * task as completed, although isn't marked as visited (in case
 * of defective rfid-system)
 * @throws RoomNotVisitedException
 */
 public void markTaskAsCompletedManually(int taskID, boolean
override)
 throws RoomNotVisitedException;

 /**
 * Changes the state of the task event specified by TaskEvendID
at
 * all tasks waiting for this event as "done" and check whether
 * the task is finished or not. A task is finished when all
 * taskEvents are done.
 * @param event
 * Incoming task event tracked by amiCA
 */
 public void setTaskEventDone(TaskEvent event);

 /**
 * Adds a task from the caller to the current TaskList in Task-
Manager
 * and persistence
 * @param unplannedTask
 * Incoming unplanned Task
 */
 public void addUnplannedTask(Task unplannedTask);

 /**
 * Returns TaskList for the current patient to the caller
 * @return
 * Task list for current elderly person
 */
 public Vector<Task> getTaskList();

 //WER DAS INTERFACE ÄNDERT OHNE MICH ZU FRAGEN WIRD GEKÖPFT :D
 /**

Copyright © Fraunhofer IESE 2009 121

 * Registeres an observer in the observable task list. It's no-
tified
 * every time the list changes.
 * @param taskListObserver
 * Observer to add
 */
 public void addTaskListObserver(Observer taskListObserver);

 /**
 * Deletes an observer from the observable task list.
 * @param taskListObserver
 * Observer to delete
 */
 public void deleteTaskListObserver(Observer taskListObserver);

 /**
 * Registeres an observer that will be notified if a task is
 * in state "undone" when the appartment is left.
 * @param warningObserver
 * Observer to add
 */
 public void addOpenTaskWarningObserver(Observer warningOb-
server);

 /**
 * Deletes an observer for open task warnings
 * @param warningObserver
 * Observer to delete
 */
 public void deleteOpenTaskWarningObserver(Observer warningOb-
server);

 /**
 * If the apartment is left, this function checks, if there are
tasks
 * left undone. If this is the case, oben task warning observers
will
 * be notified.
 */
 public void onApartmentLeft();

 /**
 * sorts the task list according task priority and room the care
giver is
 * currently in
 */
 public void sort();

}

Copyright © Fraunhofer IESE 2009 122

1.7.5 Exercise to Experience Package for Location Manager Group: Long Method

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long Method

2. For each identified code smell state the refactoring you would apply into the code and
give a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in
order to relate your answer to the identified code smell. Then explain your decision (i.e.,
your stepwise solution in your own words or why you wouldn’t remove the code smell).

Amica_Interaction:match.java in your code code smells of long method couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;

… code removed …

 /**
 * Creates a new instance of Match
 * @param matchNode DOM Node from the XML mapping document
 */
 public Match(Node matchNode) {
 NodeList childNodes = matchNode.getChildNodes();
 for(int i=0, l=childNodes.getLength(); i<l; i++) {
 Node currentNode = childNodes.item(i);
 String nodeName = currentNode.getNodeName();

 if(nodeName.equals("factName")) {
 Node comparator = currentNode.getFirstChild();
 factNameComparator = comparator.getNodeName();
 factName = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("startDate")) {
 Node comparator = currentNode.getFirstChild();
 startDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {

Copyright © Fraunhofer IESE 2009 123

 startDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("endDate")) {
 Node comparator = currentNode.getFirstChild();
 endDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 endDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("description")) {
 Node comparator = currentNode.getFirstChild();
 descriptionComparator = comparator.getNodeName();
 description = compara-
tor.getFirstChild().getNodeValue();
 } else if(nodeName.equals("source")) {
 Node comparator = currentNode.getFirstChild();
 sourceComparator = comparator.getNodeName();
 source = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("location")) {
 Node comparator = currentNode.getFirstChild();
 locationComparator = comparator.getNodeName();
 location = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("map")) {
 NodeList mapNodes = currentNode.getChildNodes();
 for (int j=0, k=mapNodes.getLength(); j<k; j++) {
 Node node = mapNodes.item(j);
 if(node.getNodeName().equals("task")) {
 mapTaskNodes = node.getChildNodes();
 } else if(node.getNodeName().equals("taskEvent"))
{
 mapTaskEvent = true;
 } else
if(node.getNodeName().equals("information")) {
 mapInformationNodes = node.getChildNodes();
 }
 }
 }
 }
 }

 … code removed …

Copyright © Fraunhofer IESE 2009 124

 /**
 * Returns true if the given situation can be mapped to an Infor-
mation.
 * @param situation A Situation
 * @return True if the given situation can be mapped to an Infor-
mation.
 */
 public boolean mapsInformation(Situation situation) {
 return mapInformationNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a Task.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a Task.
 */
 public boolean mapsTask(Situation situation) {
 return mapTaskNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a
TaskEvent.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a
TaskEvent.
 */
 public boolean mapsTaskEvent(Situation situation) {
 return mapTaskEvent;
 }

 /**
 * Map the given Situation to an Information object.
 * @param situation A Situation
 * @return Mapped Information object
 */
 public Information mapInformation(Situation situation) {
 Information information = new Information();
 for(int i=0, l=mapInformationNodes.getLength(); i<l; i++) {
 Node node = mapInformationNodes.item(i);
 if (node.getNodeName().equals("location")) {
 informa-
tion.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

Copyright © Fraunhofer IESE 2009 125

 informa-
tion.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 }
 }

 return information;
 }

 /**
 * Map the given Situation to a Task object.
 * @param situation A Situation
 * @return Mapped Task object
 */
 public Task mapTask(Situation situation) {
 Task task = new Task();
 for(int i=0, l=mapTaskNodes.getLength(); i<l; i++) {
 Node node = mapTaskNodes.item(i);
 if(node.getNodeName().equals("priority")) {

task.setPriority(Integer.parseInt(prepareString(node.getFirstChild().
getNodeValue(), situation)));
 } else if (node.getNodeName().equals("location")) {

task.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

task.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 } else if (node.getNodeName().equals("autoMarkable")) {
 TaskEvent taskEvent = new
TaskEvent(situation.getSource(), situation.getLocation(), situa-
tion.getFactName());
 ArrayList<TaskEvent> taskEventCollection = new Array-
List<TaskEvent>();
 taskEventCollection.add(taskEvent);

 task.setAutoMarkable(true);
 task.addTaskEvents(taskEventCollection);
 }
 }

 return task;
 }

 /**
 * Compare two String objects using the comparison method given
by the "comparator" String.

Copyright © Fraunhofer IESE 2009 126

 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "startsWith",
"endsWith", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(String a, String b, String com-
parator) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if (b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("startsWith")) {
 if(a.startsWith(b)) return true;
 else return false;
 } else if(comparator.equals("endsWith")) {
 if(a.endsWith(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Compare two Date objects using the comparison method given by
the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "before", "af-
ter", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(Date a, Date b, String compara-
tor) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if(b == null || a == null) {

Copyright © Fraunhofer IESE 2009 127

 return false;
 } else {
 if(comparator.equals("before")) {
 if(a.before(b)) return true;
 else return false;
 } else if(comparator.equals("after")) {
 if(a.after(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 ... code removed …
}

Copyright © Fraunhofer IESE 2009 128

1.7.6 Exercise to Experience Package for Location Manager Group: Type Embedded in
Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type embedded in
name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Locationmanager: locationmanagerImpl.java
package org.belami.dcga.location_manager;

import org.belami.dcga.common_datastructures.PositionData;
import org.belami.dcga.computation.Computation;

class LocationManagerImpl implements LocationManager {
 private RFIDConnector rfidConnector = new RFIDConnector();

 private RoomMapping roomMapping = new RoomMapping();

 private VisitedRoomList visitedRoomList = new VisitedRoomList();

 private int currentRoomId = noRoom;

 static final int noRoom = -1;

 /**
 * initilize the connection between System and RFID, Persis-
tence, clear
 * Visited roomlist
 *
 * @return True if connections are initilized, false otherwise.
 */
 public boolean initialize(int apartmentId) {
 if (!roomMapping.loadRoomMapping(apartmentId)
 || !rfidConnector.initialize())

Copyright © Fraunhofer IESE 2009 129

 return false;

 visitedRoomList.clear();
 currentRoomId = noRoom;

 return true;
 }

 /**
 * when new RFID coordination entered 1. Coordination will be in
RoomId
 * translated 2. is this RoomId a NEW roomID? 3. if the roomId
is new, call
 * Computation.INSTANCE.onNewRoomEntered(newRoom)
 *
 */
 public void onRefresh(PositionData newPos) {
 int newRoom = roomMapping.convertToRoom(newPos);
 if (currentRoomId != newRoom && newRoom != noRoom) {
 currentRoomId = newRoom;
 visitedRoomList.add(newRoom);
 Computation.INSTANCE.onNewRoomEntered(newRoom);
 }
 }

 /**
 * stop the connection to RFID.
 */
 public void stop() {
 rfidConnector.stop();
 }

 /**
 * call the method visitedRoomList.wasRoomEntered(roomId);.
 */
 public boolean wasRoomEntered(int roomId) {
 return visitedRoomList.wasRoomEntered(roomId);
 }
}

Copyright © Fraunhofer IESE 2009 130

1.7.7 Exercise to Experience Package for Persistence Group: Long Method

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long Method

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Persistence:persistenceImpl.java
package org.belami.dcga.persistence;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.*;

import org.belami.dcga.common_datastructures.*;

class PersistenceImpl implements Persistence{
/**Overview
 *Project: DCGA, Summer semester 2007, GSE-Project, Technische Uni-
versität Kaiserslautern
 *Subsystem: Persistence
 *Desing version: Persistence.doc (Date: --/06/2007)
 *Last modification: 21.06.2007
 **/

/** Atributes:
 * int n: Number of elderly persons that are stored (number of pa-
tients).
 * ElderlyPerson curentPatient: Temporary copy of the elderly per-
son selected by the care giver.
 * TaskList currentTaskList: First uncompleted Task List associated
the selected elderly person.
 * int numberTasks: number of tasks of the current Task List.

Copyright © Fraunhofer IESE 2009 131

 * int numberInformations: number of informations associated to the
selected elderly person.
 * int numberComments: number of comments associated to the se-
lected elderly person.
 * int lastCommentId: Id associated to the last stored comment.
 **/

ElderlyPerson currentPatient = new ElderlyPerson();
int n=0;
TaskList currentTaskList =new TaskList();
int numberTasks=0;
int numberInformations=0;
int numberComments=0;
int lastCommentId=0;

/** Methods:**/

/** Name: getPatientList()
 * Komponent: Persistence
 * Function: getPatientList()
 * Input : -
 * Output:
 * name: epData
 * description: : List of current patients
 * type: Set<ElderlyPersonShortInfo>
 *
 * Description:
 * 1. Reads ElderlyPersonsShortInformation list (epData) from Eld-
erlyPersonMap.text file
 * 2. Sets the number of patients (n)
 * 3. Return List of current patients (epData)
 *
 * Variables:
 * name : eData
 * description: Summarize of the elderly patient information:
id, name, address,
 * type: ElderlyPersonsShortInformation
 *
 * Last modificaction: 21.07.2007
 * Test cases:
 * **/
public Collection getPatientList(){

 Set<ElderlyPersonShortInfo> epData = new HashSet();
 try {
 FileInputStream fis = new FileInput-
Stream("ElderlyPersonsMap.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 epData = (Set<ElderlyPersonShortInfo>)ois.readObject();

Copyright © Fraunhofer IESE 2009 132

 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 n=0;
 ElderlyPersonShortInfo myPatient=new ElderlyPersonShortInfo();

 Iterator myIterator = epData.iterator();
 while (myIterator.hasNext()) {
 myPatient= (ElderlyPersonShortInfo) myIterator.next();
 n++; }

 return epData;
}

/**
* Name: setPatientId()
* Komponent: Persistence
* Function: setPatientId()
* Input:
* name:pId
* description: id of the selected elderly person
* type: int
* Output: -
* Description: Sets the data of the currentPatient
* 1. Reads the data of the selected elderly person from the file
pID.txt
* 2. Updates currentPatient
* 3. Sets numberInformations, numberComments
* 5. Searchs and sets lastCommentId
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void setPatientId(int pId){
 currentPatient=null;
 try{
 FileInputStream fis = new FileInputStream(pId+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 currentPatient = (ElderlyPerson)ois.readObject();
 ois.close();

 numberInformations= currentPatient.getInformations().size();
 numberComments= currentPatient.getComments().size();

 //checks for the highest commentId (if some comment was deleted,
its Id, won´t be used any more)
 lastCommentId= numberComments;

Copyright © Fraunhofer IESE 2009 133

 Comment myComment=new Comment();
 Iterator myIterator = currentPatient.getComments().iterator();
 while (myIterator.hasNext()) {
 myComment = (Comment) myIterator.next();
 if (myComment.getCommentId()>lastCommentId){
 lastCommentId=myComment.getCommentId();
 }
 }
 }catch(Exception e){
 e.printStackTrace();
 }

}

/**
* Name: getPatient()
* Komponent: Persistence
* Function: getPatient()
* Input: -
* Output: currentPatient
* Description: Returns the current patient
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//precondition: setPatient(id) has been called
public ElderlyPerson getPatient(){
 return currentPatient;
}

/**
* Name: getTaskList()
* Komponent: Persistence
* Function: getTaskList()
* Input: -
* Output: currentTaskList
* Description: Sets and returns currentTaskList for the selected Eld-
erlyPerson,
* Assumes the undone task list with lower id as the next task list to
be done.
* 1. Initializes currentTaskList=null;
* 2. For each task list (myTaskList)
* if (first task list) then initializes id
* else if (task list id <id) and (task list state = undone)
then
* sets id=task list id, currentTask-
List=myTaskList; numberTasks
* 3. Return currentTaskList
* Variables:

Copyright © Fraunhofer IESE 2009 134

* name: myTaskList
* description: task list
* type:TaskList
*
* name: erste
* description: first task list
* type:boolean
*
* Last modificaction: 21.07.2007
* Test cases:
* **/
//precondition: setPatient(id) has been called
public TaskList getTaskList(){
 boolean taskListSelected=false;
 currentTaskList=null;

 TaskList myTaskList=new TaskList();
 boolean erste= true;
 int id=0;
 Iterator myIterator = currentPatient.getTaskLists().iterator();
 while (myIterator.hasNext()) {
 myTaskList= (TaskList) myIterator.next();
 //finds the first undone TaskList in the Collection
 if (erste && (myTaskList.getState()==false)){
 id=myTaskList.getTaskListId();
 currentTaskList =myTaskList;
 erste=false;
 taskListSelected=true;
 }
 //looks for undone TaskList with smaller ID
 else{
 if ((myTaskList.getTaskListId()<id) && (myTask-
List.getState()==false)) {
 id=myTaskList.getTaskListId();
 currentTaskList =myTaskList;
 }
 }
 }
 numberTasks= currentTaskList.getTasks().size();

 if(!taskListSelected)
 throw new NoSuchElementException("There are no unodne
TaskLists for the currentPatient");

 return currentTaskList;

}

/**

Copyright © Fraunhofer IESE 2009 135

* Name: storeTask()
* Komponent: Persistence
* Function: storeTask()
* Input: -
* Output: -
* Description: Sets task id and adds it to the current task list
* 1. Sets task id
* 2. Adds task to currentTaskList
* 3. Updates numberTasks
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//preconditions: setPatient(id) and getTaskList() has been called
public void storeTask(Task t){
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;
}

/**
* Name: updateTask()
* Komponent: Persistence
* Function: updateTask()
* Input:
* name:tId
* description: id of the selected task
* type: int
*
* name:newstate
* description: task new state
* type: int

* Output: -
* Description: Updates the selected task state as newstate
* 1. Search selected task (myTask)in the currect tas list (cur-
rentTaskList)
* 2. Updates task state as newstate
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//preconditions: setPatient(id) and getTaskList() has been called

public void updateTask(int tId, int newstate){
 boolean updated=false;
 Task myTask = new Task();
 Iterator myIterator = currentTaskList.getTasks().iterator();
 while (myIterator.hasNext()) {

Copyright © Fraunhofer IESE 2009 136

 myTask= (Task) myIterator.next();
 if (myTask.getTaskId()==tId){
 myTask.setState(newstate);
 updated=true;
 }
 }
 if(!updated)
 throw new NoSuchElementException("Task with taskId=
"+tId+" doesn't exist");

}

/**
* Name: getCommentList()
* Komponent: Persistence
* Function: getCommentList()
* Input: -
* Output:
* name: comm
* description: list of comments
* type: CommentShorInfo
*
* Description: Returns comment list (summary)
* 1. Copy the comments (complete information)in an array (com-
ments)
* 2. For each comment (c) in the array, adds the comment to the
summary list of short
* comment (comm)
* 3. Returns comment list (comm)
*
* Variables: -
* name: comments
* description: copy of the current comment list
* type: Comment[]
*
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Collection<CommentShortInfo> getCommentList(){
 Set<CommentShortInfo> comm = new HashSet();
 Comment[] comments =new Comment[numberComments];
 System.arraycopy((currentPatient.getComments()).toArray(), 0,
comments, 0, numberComments);

 for(int i=0; i<numberComments;i++){
 CommentShortInfo c= new Com-
mentShortInfo(comments[i].getCommentId(),
String.valueOf(comments[i].getLocation())
,comments[i].getDescription(), comments[i].getCommentDate());

Copyright © Fraunhofer IESE 2009 137

 comm.add(c);
 }
 //in case that there are no comments for the currentPatient
stored: returnes empty Collection
 return comm;
}

/**
* Name: getComment()
* Komponent: Persistence
* Function: getComment()
* Input:
* name: comId
* description: selected comment id
* type: int
*
* Output:
* name: myComment
* description: selected comment
* type: Comment
*
* Description: Searchs and returns the selected comment
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Comment getComment(int comId){

 Comment myComment= new Comment();
 Comment c= new Comment();
 Iterator myIterator = currentPatient.getComments().iterator();
 boolean found=false;
 while (myIterator.hasNext()) {
 c= (Comment) myIterator.next();
 if (c.getCommentId()==comId){
 myComment=c;
 found=true;
 }
 }
 if (found){
 return myComment;
 }else {
 throw new NoSuchElementException("Comment with com-
mentId= "+comId+" doesn't exist");
 //return null;
 }
}

Copyright © Fraunhofer IESE 2009 138

/**
* Name: storeComment()
* Komponent: Persistence
* Function: storeComment()
* Input:
* name: com
* description: new comment
* type: Comment
*
* Output: -
* Description: Adds a comment to current list comments.
* 1. Adds a comment (comm)
* 2. Updates numberComments
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void storeComment(Comment com){
 com.setCommentId(lastCommentId+1);
 currentPatient.addComment(com);
 numberComments++;
 lastCommentId++;
}

/** Name: deleteComment()
* Komponent: Persistence
* Function: deleteComment()
* Input:
* name: comId
* description: selected comment id
* type: int
*
* Output: -
* Description: Remove the selected comment
* 1. Removes selected comment
* 2. Updates numberComments
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void deleteComment(int comId){
 boolean deleted=false;
 Comment c= new Comment();
 Iterator myIterator = currentPatient.getComments().iterator();
 while (myIterator.hasNext()) {
 c= (Comment) myIterator.next();
 if (c.getCommentId()==comId){
 myIterator.remove();
 numberComments--;

Copyright © Fraunhofer IESE 2009 139

 deleted=true;
 }
 }
 if(!deleted)
 throw new NoSuchElementException("Comment with commentId=
"+comId+" doesn't exist");
}

/**
* Name: getInformationList()
* Komponent: Persistence
* Function: getInformationList()
* Input: -
* Output: Information List
* Description: Returns Information list
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Collection getInformationList(){
 return currentPatient.getInformations();
}

/**Name: storeInformation()
* Komponent: Persistence
* Function: storeInformation()
* Input:
* name: info
* description: new information
* type: Information
*
* Output: -
* Description: Adds an information to current list comments.
* 1. Adds an Information
* 2. Updates numberInformations
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void storeInformation(Information info){
 info.setInformationId(numberInformations+1);
 currentPatient.addInformation(info);
 numberInformations++;
}

/**Name: storeData
* Komponent: Persistence
* Function: storeData
* Input:

Copyright © Fraunhofer IESE 2009 140

* name: elderlyPersons
* description: list of elderly person, including care tasks, com-
ments and informations
* type: Information
*
* Output: -
* Description: Store the list of elderly person for the current day
* 1. Sets n (number of elderly persons)
* 2. Sets the List ElderlyPersonShortInfo (epData)
* 3. Stores the summary file of elderly persons (ElderlyPer-
sonsMap.txt) based on epData
* 4. Stores each elderly person into patientID.txt;
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void storeData(Collection elderlyPersons){

 n = elderlyPersons.size();

 //Copies an array from the specified source collection
 ElderlyPerson[] ePersons = new ElderlyPerson[n];
 System.arraycopy(elderlyPersons.toArray(), 0, ePersons, 0, n);

 //creates and writes the ElderlyPersonShortInfo - needed for the
getPatientList()
 Set<ElderlyPersonShortInfo> epData = new HashSet();
 ElderlyPersonShortInfo eData=new ElderlyPersonShortInfo();
 for(int i=0;i<n;i++){
 eData= new ElderlyPerson-
ShortInfo(ePersons[i].getPatientId(),ePersons[i].getName(), ePer-
sons[i].getAddress());
 epData.add(eData);
 }

 try{
 FileOutputStream fos = new FileOutput-
Stream("ElderlyPersonsMap.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(epData);
 oos.flush();
 oos.close();
 } catch(Exception e) {
 e.printStackTrace();
 }

 //writes every ElderlyPerson in a separate txt-file
 for(int i=0;i<n;i++){
 try{

Copyright © Fraunhofer IESE 2009 141

 int id= ePersons[i].getPatientId();
 FileOutputStream fos = new FileOutputStream(id
+".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(ePersons[i]);
 oos.flush();
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 }

}

/**Name: loadData
* Komponent: Persistence
* Function: loadData
* Input:
* Output:
* name: elderlyPersons
* description: list of elderly person, including care tasks, com-
ments and informations
* type: Collection
*
* Description: Returns the current list of elderly person
* 1. Reads ElderlyPersonsMap.txt and sets n (number of elderly
persons)
* 2. For each elderly person
* Reads elderly person (patient)from the patientId.txt file
* Adds elderly person to elderly persons set (elderlyPer-
sons)
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Collection loadData(){

 Set<ElderlyPersonShortInfo> epData = new HashSet();
 try {
 FileInputStream fis = new FileInput-
Stream("ElderlyPersonsMap.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 epData = (Set<ElderlyPersonShortInfo>)ois.readObject();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();

Copyright © Fraunhofer IESE 2009 142

 }
 //counts the ElderlyPerson entrys
 n=0;;
 ElderlyPersonShortInfo myPatient=new ElderlyPersonShortInfo();

 Iterator myIterator = epData.iterator();
 while (myIterator.hasNext()) {
 myPatient= (ElderlyPersonShortInfo) myIterator.next();
 n++; }

 //reads all ElderlyPerson
 Set elderlyPersons = new HashSet();
 ElderlyPerson patient =new ElderlyPerson();
 elderlyPersons=null;
 try{
 for(int i=0;i<n;i++){
 FileInputStream fis = new FileInput-
Stream((i+1)+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);

 patient = (ElderlyPerson)ois.readObject();
 elderlyPersons.add(patient);
 ois.close();
 }
 }catch(Exception e){
 e.printStackTrace();
 }

 return elderlyPersons;

 }

/**Name: markTaskListDone()
* Komponent: Persistence
* Function: markTaskListDone()
* Input: -
* Output:
* Description: Stores the elderly person information that has been
added/changed during last visit
* 1. Updates task list state as done
* 2. Updates elderly person file (patientId.txt) based on current-
Patient data
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void markTaskListDone(){

Copyright © Fraunhofer IESE 2009 143

 currentTaskList.setState(true);
 try{
 FileOutputStream fos = new FileOutputStream(currentPa-
tient.getPatientId() +".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(currentPatient);
 oos.flush();
 oos.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 }

/**Name: setLastVisit()
* Komponent: Persistence
* Function: (No reference)
* Input: -
* Output: date
* Description: Set the date of the last visit to the current elderly
person
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void setLastVisit(Date date){
 currentPatient.setLastVisit(date);
 }

/** Name: loadRoomMapping()
* Komponent: Persistence
* Function: loadRoomMapping()
* Input: -
* Output:
* Description:
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//the method parameters were sujested by the location manager...
public boolean loadRoomMapping(int apartmentId, Array-
List<MappingItem> data){
 System.arraycopy(currentPatient.getAppMap(), 0, data, 0,
currentPatient.getAppMap().size());
 return true;
 }

}

Copyright © Fraunhofer IESE 2009 144

Copyright © Fraunhofer IESE 2009 145

1.7.8 Exercise to Experience Package for Persistence Group: Type Embedded in Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type embedded in
name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Persistence:persistenceImpl.java
package org.belami.dcga.persistence;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.*;

import org.belami.dcga.common_datastructures.*;

class PersistenceImpl implements Persistence{
/**Overview
 *Project: DCGA, Summer semester 2007, GSE-Project, Technische Uni-
versität Kaiserslautern
 *Subsystem: Persistence
 *Desing version: Persistence.doc (Date: --/06/2007)
 *Last modification: 21.06.2007
 **/

/** Atributes:
 * int n: Number of elderly persons that are stored (number of pa-
tients).
 * ElderlyPerson curentPatient: Temporary copy of the elderly per-
son selected by the care giver.
 * TaskList currentTaskList: First uncompleted Task List associated
the selected elderly person.
 * int numberTasks: number of tasks of the current Task List.

Copyright © Fraunhofer IESE 2009 146

 * int numberInformations: number of informations associated to the
selected elderly person.
 * int numberComments: number of comments associated to the se-
lected elderly person.
 * int lastCommentId: Id associated to the last stored comment.
 **/

ElderlyPerson currentPatient = new ElderlyPerson();
int n=0;
TaskList currentTaskList =new TaskList();
int numberTasks=0;
int numberInformations=0;
int numberComments=0;
int lastCommentId=0;

/** Methods:**/

/** Name: getPatientList()
 * Komponent: Persistence
 * Function: getPatientList()
 * Input : -
 * Output:
 * name: epData
 * description: : List of current patients
 * type: Set<ElderlyPersonShortInfo>
 *
 * Description:
 * 1. Reads ElderlyPersonsShortInformation list (epData) from Eld-
erlyPersonMap.text file
 * 2. Sets the number of patients (n)
 * 3. Return List of current patients (epData)
 *
 * Variables:
 * name : eData
 * description: Summarize of the elderly patient information:
id, name, address,
 * type: ElderlyPersonsShortInformation
 *
 * Last modificaction: 21.07.2007
 * Test cases:
 * **/
public Collection getPatientList(){

 Set<ElderlyPersonShortInfo> epData = new HashSet();
 try {
 FileInputStream fis = new FileInput-
Stream("ElderlyPersonsMap.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 epData = (Set<ElderlyPersonShortInfo>)ois.readObject();

Copyright © Fraunhofer IESE 2009 147

 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 n=0;
 ElderlyPersonShortInfo myPatient=new ElderlyPersonShortInfo();

 Iterator myIterator = epData.iterator();
 while (myIterator.hasNext()) {
 myPatient= (ElderlyPersonShortInfo) myIterator.next();
 n++; }

 return epData;
}

/**
* Name: setPatientId()
* Komponent: Persistence
* Function: setPatientId()
* Input:
* name:pId
* description: id of the selected elderly person
* type: int
* Output: -
* Description: Sets the data of the currentPatient
* 1. Reads the data of the selected elderly person from the file
pID.txt
* 2. Updates currentPatient
* 3. Sets numberInformations, numberComments
* 5. Searchs and sets lastCommentId
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void setPatientId(int pId){
 currentPatient=null;
 try{
 FileInputStream fis = new FileInputStream(pId+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 currentPatient = (ElderlyPerson)ois.readObject();
 ois.close();

 numberInformations= currentPatient.getInformations().size();
 numberComments= currentPatient.getComments().size();

 //checks for the highest commentId (if some comment was deleted,
its Id, won´t be used any more)
 lastCommentId= numberComments;

Copyright © Fraunhofer IESE 2009 148

 Comment myComment=new Comment();
 Iterator myIterator = currentPatient.getComments().iterator();
 while (myIterator.hasNext()) {
 myComment = (Comment) myIterator.next();
 if (myComment.getCommentId()>lastCommentId){
 lastCommentId=myComment.getCommentId();
 }
 }
 }catch(Exception e){
 e.printStackTrace();
 }

}

/**
* Name: getPatient()
* Komponent: Persistence
* Function: getPatient()
* Input: -
* Output: currentPatient
* Description: Returns the current patient
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//precondition: setPatient(id) has been called
public ElderlyPerson getPatient(){
 return currentPatient;
}

/**
* Name: getTaskList()
* Komponent: Persistence
* Function: getTaskList()
* Input: -
* Output: currentTaskList
* Description: Sets and returns currentTaskList for the selected Eld-
erlyPerson,
* Assumes the undone task list with lower id as the next task list to
be done.
* 1. Initializes currentTaskList=null;
* 2. For each task list (myTaskList)
* if (first task list) then initializes id
* else if (task list id <id) and (task list state = undone)
then
* sets id=task list id, currentTask-
List=myTaskList; numberTasks
* 3. Return currentTaskList
* Variables:

Copyright © Fraunhofer IESE 2009 149

* name: myTaskList
* description: task list
* type:TaskList
*
* name: erste
* description: first task list
* type:boolean
*
* Last modificaction: 21.07.2007
* Test cases:
* **/
//precondition: setPatient(id) has been called
public TaskList getTaskList(){
 boolean taskListSelected=false;
 currentTaskList=null;

 TaskList myTaskList=new TaskList();
 boolean erste= true;
 int id=0;
 Iterator myIterator = currentPatient.getTaskLists().iterator();
 while (myIterator.hasNext()) {
 myTaskList= (TaskList) myIterator.next();
 //finds the first undone TaskList in the Collection
 if (erste && (myTaskList.getState()==false)){
 id=myTaskList.getTaskListId();
 currentTaskList =myTaskList;
 erste=false;
 taskListSelected=true;
 }
 //looks for undone TaskList with smaller ID
 else{
 if ((myTaskList.getTaskListId()<id) && (myTask-
List.getState()==false)) {
 id=myTaskList.getTaskListId();
 currentTaskList =myTaskList;
 }
 }
 }
 numberTasks= currentTaskList.getTasks().size();

 if(!taskListSelected)
 throw new NoSuchElementException("There are no unodne
TaskLists for the currentPatient");

 return currentTaskList;

}

/**

Copyright © Fraunhofer IESE 2009 150

* Name: storeTask()
* Komponent: Persistence
* Function: storeTask()
* Input: -
* Output: -
* Description: Sets task id and adds it to the current task list
* 1. Sets task id
* 2. Adds task to currentTaskList
* 3. Updates numberTasks
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//preconditions: setPatient(id) and getTaskList() has been called
public void storeTask(Task t){
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;
}

/**
* Name: updateTask()
* Komponent: Persistence
* Function: updateTask()
* Input:
* name:tId
* description: id of the selected task
* type: int
*
* name:newstate
* description: task new state
* type: int

* Output: -
* Description: Updates the selected task state as newstate
* 1. Search selected task (myTask)in the currect tas list (cur-
rentTaskList)
* 2. Updates task state as newstate
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//preconditions: setPatient(id) and getTaskList() has been called

public void updateTask(int tId, int newstate){
 boolean updated=false;
 Task myTask = new Task();
 Iterator myIterator = currentTaskList.getTasks().iterator();
 while (myIterator.hasNext()) {

Copyright © Fraunhofer IESE 2009 151

 myTask= (Task) myIterator.next();
 if (myTask.getTaskId()==tId){
 myTask.setState(newstate);
 updated=true;
 }
 }
 if(!updated)
 throw new NoSuchElementException("Task with taskId=
"+tId+" doesn't exist");

}

/**
* Name: getCommentList()
* Komponent: Persistence
* Function: getCommentList()
* Input: -
* Output:
* name: comm
* description: list of comments
* type: CommentShorInfo
*
* Description: Returns comment list (summary)
* 1. Copy the comments (complete information)in an array (com-
ments)
* 2. For each comment (c) in the array, adds the comment to the
summary list of short
* comment (comm)
* 3. Returns comment list (comm)
*
* Variables: -
* name: comments
* description: copy of the current comment list
* type: Comment[]
*
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Collection<CommentShortInfo> getCommentList(){
 Set<CommentShortInfo> comm = new HashSet();
 Comment[] comments =new Comment[numberComments];
 System.arraycopy((currentPatient.getComments()).toArray(), 0,
comments, 0, numberComments);

 for(int i=0; i<numberComments;i++){
 CommentShortInfo c= new Com-
mentShortInfo(comments[i].getCommentId(),
String.valueOf(comments[i].getLocation())
,comments[i].getDescription(), comments[i].getCommentDate());

Copyright © Fraunhofer IESE 2009 152

 comm.add(c);
 }
 //in case that there are no comments for the currentPatient
stored: returnes empty Collection
 return comm;
}

/**
* Name: getComment()
* Komponent: Persistence
* Function: getComment()
* Input:
* name: comId
* description: selected comment id
* type: int
*
* Output:
* name: myComment
* description: selected comment
* type: Comment
*
* Description: Searchs and returns the selected comment
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Comment getComment(int comId){

 Comment myComment= new Comment();
 Comment c= new Comment();
 Iterator myIterator = currentPatient.getComments().iterator();
 boolean found=false;
 while (myIterator.hasNext()) {
 c= (Comment) myIterator.next();
 if (c.getCommentId()==comId){
 myComment=c;
 found=true;
 }
 }
 if (found){
 return myComment;
 }else {
 throw new NoSuchElementException("Comment with com-
mentId= "+comId+" doesn't exist");
 //return null;
 }
}

Copyright © Fraunhofer IESE 2009 153

/**
* Name: storeComment()
* Komponent: Persistence
* Function: storeComment()
* Input:
* name: com
* description: new comment
* type: Comment
*
* Output: -
* Description: Adds a comment to current list comments.
* 1. Adds a comment (comm)
* 2. Updates numberComments
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void storeComment(Comment com){
 com.setCommentId(lastCommentId+1);
 currentPatient.addComment(com);
 numberComments++;
 lastCommentId++;
}

/** Name: deleteComment()
* Komponent: Persistence
* Function: deleteComment()
* Input:
* name: comId
* description: selected comment id
* type: int
*
* Output: -
* Description: Remove the selected comment
* 1. Removes selected comment
* 2. Updates numberComments
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void deleteComment(int comId){
 boolean deleted=false;
 Comment c= new Comment();
 Iterator myIterator = currentPatient.getComments().iterator();
 while (myIterator.hasNext()) {
 c= (Comment) myIterator.next();
 if (c.getCommentId()==comId){
 myIterator.remove();
 numberComments--;

Copyright © Fraunhofer IESE 2009 154

 deleted=true;
 }
 }
 if(!deleted)
 throw new NoSuchElementException("Comment with commentId=
"+comId+" doesn't exist");
}

/**
* Name: getInformationList()
* Komponent: Persistence
* Function: getInformationList()
* Input: -
* Output: Information List
* Description: Returns Information list
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Collection getInformationList(){
 return currentPatient.getInformations();
}

/**Name: storeInformation()
* Komponent: Persistence
* Function: storeInformation()
* Input:
* name: info
* description: new information
* type: Information
*
* Output: -
* Description: Adds an information to current list comments.
* 1. Adds an Information
* 2. Updates numberInformations
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void storeInformation(Information info){
 info.setInformationId(numberInformations+1);
 currentPatient.addInformation(info);
 numberInformations++;
}

/**Name: storeData
* Komponent: Persistence
* Function: storeData
* Input:

Copyright © Fraunhofer IESE 2009 155

* name: elderlyPersons
* description: list of elderly person, including care tasks, com-
ments and informations
* type: Information
*
* Output: -
* Description: Store the list of elderly person for the current day
* 1. Sets n (number of elderly persons)
* 2. Sets the List ElderlyPersonShortInfo (epData)
* 3. Stores the summary file of elderly persons (ElderlyPer-
sonsMap.txt) based on epData
* 4. Stores each elderly person into patientID.txt;
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void storeData(Collection elderlyPersons){

 n = elderlyPersons.size();

 //Copies an array from the specified source collection
 ElderlyPerson[] ePersons = new ElderlyPerson[n];
 System.arraycopy(elderlyPersons.toArray(), 0, ePersons, 0, n);

 //creates and writes the ElderlyPersonShortInfo - needed for the
getPatientList()
 Set<ElderlyPersonShortInfo> epData = new HashSet();
 ElderlyPersonShortInfo eData=new ElderlyPersonShortInfo();
 for(int i=0;i<n;i++){
 eData= new ElderlyPerson-
ShortInfo(ePersons[i].getPatientId(),ePersons[i].getName(), ePer-
sons[i].getAddress());
 epData.add(eData);
 }

 try{
 FileOutputStream fos = new FileOutput-
Stream("ElderlyPersonsMap.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(epData);
 oos.flush();
 oos.close();
 } catch(Exception e) {
 e.printStackTrace();
 }

 //writes every ElderlyPerson in a separate txt-file
 for(int i=0;i<n;i++){
 try{

Copyright © Fraunhofer IESE 2009 156

 int id= ePersons[i].getPatientId();
 FileOutputStream fos = new FileOutputStream(id
+".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(ePersons[i]);
 oos.flush();
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 }

}

/**Name: loadData
* Komponent: Persistence
* Function: loadData
* Input:
* Output:
* name: elderlyPersons
* description: list of elderly person, including care tasks, com-
ments and informations
* type: Collection
*
* Description: Returns the current list of elderly person
* 1. Reads ElderlyPersonsMap.txt and sets n (number of elderly
persons)
* 2. For each elderly person
* Reads elderly person (patient)from the patientId.txt file
* Adds elderly person to elderly persons set (elderlyPer-
sons)
* Variables:
* Last modificaction: 21.07.2007
* Test cases:
* **/
public Collection loadData(){

 Set<ElderlyPersonShortInfo> epData = new HashSet();
 try {
 FileInputStream fis = new FileInput-
Stream("ElderlyPersonsMap.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 epData = (Set<ElderlyPersonShortInfo>)ois.readObject();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();

Copyright © Fraunhofer IESE 2009 157

 }
 //counts the ElderlyPerson entrys
 n=0;;
 ElderlyPersonShortInfo myPatient=new ElderlyPersonShortInfo();

 Iterator myIterator = epData.iterator();
 while (myIterator.hasNext()) {
 myPatient= (ElderlyPersonShortInfo) myIterator.next();
 n++; }

 //reads all ElderlyPerson
 Set elderlyPersons = new HashSet();
 ElderlyPerson patient =new ElderlyPerson();
 elderlyPersons=null;
 try{
 for(int i=0;i<n;i++){
 FileInputStream fis = new FileInput-
Stream((i+1)+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);

 patient = (ElderlyPerson)ois.readObject();
 elderlyPersons.add(patient);
 ois.close();
 }
 }catch(Exception e){
 e.printStackTrace();
 }

 return elderlyPersons;

 }

/**Name: markTaskListDone()
* Komponent: Persistence
* Function: markTaskListDone()
* Input: -
* Output:
* Description: Stores the elderly person information that has been
added/changed during last visit
* 1. Updates task list state as done
* 2. Updates elderly person file (patientId.txt) based on current-
Patient data
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void markTaskListDone(){

Copyright © Fraunhofer IESE 2009 158

 currentTaskList.setState(true);
 try{
 FileOutputStream fos = new FileOutputStream(currentPa-
tient.getPatientId() +".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(currentPatient);
 oos.flush();
 oos.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 }

/**Name: setLastVisit()
* Komponent: Persistence
* Function: (No reference)
* Input: -
* Output: date
* Description: Set the date of the last visit to the current elderly
person
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
public void setLastVisit(Date date){
 currentPatient.setLastVisit(date);
 }

/** Name: loadRoomMapping()
* Komponent: Persistence
* Function: loadRoomMapping()
* Input: -
* Output:
* Description:
* Variables: -
* Last modificaction: 21.07.2007
* Test cases:
* **/
//the method parameters were sujested by the location manager...
public boolean loadRoomMapping(int apartmentId, Array-
List<MappingItem> data){
 System.arraycopy(currentPatient.getAppMap(), 0, data, 0,
currentPatient.getAppMap().size());
 return true;
 }

}

Copyright © Fraunhofer IESE 2009 159

Copyright © Fraunhofer IESE 2009 160

1.7.9 Exercise to Experience Package for Synchronization Group: Long Method

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long Method

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Persistence:persistenceImpl.java in your code code smells of long method couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.persistence;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.HashSet;
import java.util.Set;
import java.util.*;
import org.belami.dcga.common_datastructures.*;

class PersistenceImpl implements Persistence{

//delcare variables needed to handle the currentPatient

//creates a temporary copy of the ElderlyPerson
//data will be added when setPatient() is called
ElderlyPerson curentPatient = new ElderlyPerson();

//number of ElderlyPersons stored
int n=0;

Copyright © Fraunhofer IESE 2009 161

//currentTaskList Object
TaskList currentTaskList =new TaskList();

//number of tasks in the currentTaskList, number of Comments and In-
formations for the currentPatient
int numberTasks=0;
int numberInformations=0;

//comments can be deleted (the ID of deleted comment will not be used
for that ElderlyPerson for that day
int numberComments=0;
int lastCommentId=0;

public Collection getPatientList(){
 //returns List of ElderlyPerson`s patientId,name
 //information is stored when storeData() called, number of EP-
Data Objects = n

 //the List that will be returned
 Set<ElderlyPersonShortInfo> epData = new HashSet();

 //reads the number of EPs
 Integer cant = new Integer(0);
 try {
 FileInputStream fis = new FileInput-
Stream("NumberOfElderlyPersons.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 cant= (Integer)ois.readObject();
 n = cant.intValue();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 //reads all ElderlyPersons from the txt-files

 try{
 FileInputStream fis = new FileInput-
Stream("ElderlyPersonsMap.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 ElderlyPersonShortInfo eData =new ElderlyPerson-
ShortInfo();
 for(int i=0;i<n;i++){
 eData = (ElderlyPerson-
ShortInfo)ois.readObject();
 epData.add(eData);

Copyright © Fraunhofer IESE 2009 162

 }
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 return epData;
}
public void setPatientId(int pId){
 //reads the currentPatient from the (pId).txt

 try{
 FileInputStream fis = new FileInputStream(pId+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 curentPatient = (ElderlyPerson)ois.readObject();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }
 numberInformations= curentPatient.getInformations().size();
 numberComments= curentPatient.getComments().size();

 //retrieves the last commentId (example for commentList with
IDs: 1,2,5,6 (3,4 were deleted)
 lastCommentId= numberComments;
 Comment[] comments =new Comment[numberComments];
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, curentPatient.getComments().size());

 for (int i=0;i<numberComments;i++){
 if (comments[i].getCommentId()>lastCommentId)
 lastCommentId=comments[i].getCommentId();
 }

}
public ElderlyPerson getPatient(){
 //return currently ElderlyPerson
 return curentPatient;
}

public TaskList getTaskList(){
 //retrieve current TaskList and returns it

 if (curentPatient.getTaskLists().size()>0) {
 TaskList[] tLists = new Task-
List[curentPatient.getTaskLists().size()];

Copyright © Fraunhofer IESE 2009 163

 System.arraycopy(curentPatient.getTaskLists().toArray(), 0,
tLists, 0, curentPatient.getTaskLists().size());

 //selects the current TaskList from the array tLists[] and makes
a reference to currentTaskList
 //looks for the TaskList with the smallest TaskListId that is
still unfinished

 int Id = tLists[0].getTaskListId();
 int pos= 0;
 for(int i=1;i<curentPatient.getTaskLists().size();i++){
 if ((tLists[i].getTaskListId()< Id)&&
(tLists[i].getState() == false)){
 Id = tLists[i].getTaskListId();
 pos=i;
 }
 }
 currentTaskList = tLists[pos];
 numberTasks = tLists[pos].getTasks().size();
 //counts the Tasks in the currentTaskList

 }else {
 currentTaskList= null;
 numberTasks =0;
 }
 System.out.println(numberTasks);
 return currentTaskList;

}

public void storeTask(Task t){
 // retrieve and set taskId, set current TaskListId, create a
Task and stores it
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;
}
public void updateTask(int tId, int newstate){
 // update Task with taskId==tId state=newstate

 Task[] tasks =new Task[numberTasks];
 System.arraycopy((currentTaskList.getTasks()).toArray(), 0,
tasks, 0,numberTasks-1);
 for(int i=0;i<numberTasks;i++){
 if(tasks[i].getTaskId()==tId){
 tasks[i].setState(newstate);
 break;
 }

Copyright © Fraunhofer IESE 2009 164

 }

}

public Collection<CommentShortInfo> getCommentList(){
 //returns a Collection of CommentShortInfo for the cureent Eld-
erlyPerson
 Set<CommentShortInfo> comm = new HashSet();

 Comment[] comments =new Comment[numberComments];
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, numberComments);
 for(int i=0; i<numberComments;i++){
 String mylocation = ""+ comments[i].getLocation();
 CommentShortInfo c= new Com-
mentShortInfo(comments[i].getCommentId(), mylocation
,comments[i].getDescription(), comments[i].getCommentDate());
 comm.add(c);
 }
 return comm;
}

public Comment getComment(int comId){
 //returns Comment with commentId=comId
 Comment[] comments =new Comment[numberComments];
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, curentPatient.getComments().size());

 for (int i=0;i<numberComments;i++){
 if (comments[i].getCommentId()==comId)
 return comments[i];
 }
 throw new NoSuchElementException("Doen't exist");
}

public void storeComment(Comment com){
 //retrieves commonId, create a Comment with description, and
stores it
 com.setCommentId(lastCommentId+1);
 curentPatient.addComment(com);
 numberComments++;
 lastCommentId++;
}
//when a Comment is deleted, there will be no Comment will comId for
that person any more
//the free comId won`t be set to another Comment

public void deleteComment(int comId){
 //deletes the Comment with commentId==comId from the database

Copyright © Fraunhofer IESE 2009 165

 //finds the comment to be deleted
 Comment[] comments =new Comment[numberComments];
 Comment myComment =new Comment(-1);
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, curentPatient.getComments().size());
 for (int i=0;i<curentPatient.getComments().size();i++){
 if (comments[i].getCommentId()==comId){
 myComment=comments[i];
 numberComments--;
 break;
 }
 }
 //deletes the Comment from the Collection
 if (myComment.getCommentId()>0) {
 curentPatient.getComments().remove(myComment);
 }

 // if the comment with comId doesn`t exist: trows new NoSuchEle-
ment();
}

public Collection getInformationList(){
 //returns a Collection of Information about the current Elderly-
Person
 return curentPatient.getInformations();
}

public void storeInformation(Information info){
 //retrieves an informationId, creates an Information with de-
scription=descr and stores it
 info.setInformationId(numberInformations+1);
 curentPatient.addInformation(info);
 numberInformations++;
}
public void storeData(Collection elderlyPersons){
 //stores the Collection elderlyPersons

 // transform the Collection of ElderlyPersons to an array
 n = elderlyPersons.size();
 ElderlyPerson[] ePersons = new ElderlyPerson[n];
 System.arraycopy(elderlyPersons.toArray(), 0, ePersons, 0, n);

 //write a ElderlyPersonsMap.txt containig for all ElderlyPerson:
Id, name, address
 try{
 FileOutputStream fos = new FileOutput-
Stream("ElderlyPersonsMap.txt");

Copyright © Fraunhofer IESE 2009 166

 ObjectOutputStream oos = new ObjectOutputStream(fos);
 ElderlyPersonShortInfo[] epData =new ElderlyPersonShortInfo[n];
 for(int i=0;i<n;i++){
 epData[i]= new ElderlyPerson-
ShortInfo(ePersons[i].getPatientId(),ePersons[i].getName(), ePer-
sons[i].getAddress());
 oos.writeObject(epData[i]);
 oos.flush();
 };
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 //writes the number of EPs

 Integer num = new Integer(elderlyPersons.size());
 try{
 FileOutputStream fos = new FileOutput-
Stream("NumberOfElderlyPersons.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(num);
 oos.flush();
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 //writtes for every ElderlyPerson seperate file: (patientId).txt
 for(int i=0;i<n;i++){
 try{
 int id= ePersons[i].getPatientId();

 FileOutputStream fos = new FileOutputStream(id +".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(ePersons[i]);
 oos.flush();
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 }
 }
public Collection loadData(){

Copyright © Fraunhofer IESE 2009 167

 //returns a Collection of elderlyPersons

 //number of stored ElderlyPerson: - n (the number is set during
the storeData())

 //the Collection that will be returned
 Set elderlyPersons = new HashSet();
 // set number of elderlyPersons

 Integer cant = new Integer(0);
 try {
 FileInputStream fis = new FileInput-
Stream("NumberOfElderlyPersons.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 cant= (Integer)ois.readObject();
 n = cant.intValue();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }
 //reads all ElderlyPersons from the txt-files
 try{

 for(int i=0;i<n;i++){
 FileInputStream fis = new FileInputStream((i+1)+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);

 curentPatient = (ElderlyPerson)ois.readObject();
 elderlyPersons.add(curentPatient);
 ois.close();
 }

 }catch(Exception e){
 e.printStackTrace();
 }

 return elderlyPersons;

}
 //marks currentTaskList as done
 //writtes the changed currentlyPerson down into its txt-file
 public void markTaskListDone(){
 currentTaskList.setState(true);
 try{
 FileOutputStream fos = new FileOutputStream(curentPa-
tient.getPatientId() +".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(curentPatient);

Copyright © Fraunhofer IESE 2009 168

 oos.flush();
 oos.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 }

 public void setLastVisit(Date date){
 curentPatient.setLastVisit(date);
 }

 public boolean loadRoomMapping(int apartmentId, Array-
List<MappingItem> data){
 System.arraycopy(curentPatient.getAppMap(), 0, data, 0,
curentPatient.getAppMap().size()-1);
 return true;

 }
}

Copyright © Fraunhofer IESE 2009 169

1.7.10 Exercise to Experience Package for Synchronization Group: Type Embedded in
Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type Embedded in
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Synchronization:SynConnectorImpl.java
package org.belami.dcga.synchronization.syncconnector;

import java.io.IOException;

import org.belami.dcga.synchronization.MappedData;

/**
 * Implementation of the SyncConnector Interface.
 * @see SyncConnector
 */
class SyncConnectorImpl implements SyncConnector {
 private ConnectionManager connectionManager = null;

 /**
 * Associates the only instance of the ConnectionManager to the
SyncConnector.
 */
 public void initSync() {
 connectionManager = ConnectionManager.getInstance();
 }

 /**
 * This method writes a MappedData object (download type) into
the OutputStream and
 * receives the filled MappedData object through the Input-
Stream.

Copyright © Fraunhofer IESE 2009 170

 *
 * @return data: MappedData filled with data from the Operator-
System
 */
 public MappedData downloadData() {
 MappedData data = new MappedData(true, null);
 try {
 connectionMan-
ager.getOutputStream().writeObject(data);
 data = (MappedData) connectionMan-
ager.getInputStream().readObject();
 System.out.println("Download Ok");
 } catch (IOException e) {
 System.out.println("Download failed: "+
e.getMessage());
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 return data;
 }

 /**
 * This method writes a MappedData object (upload type) into the
OutputStream.
 */
 public void sendMappedData(MappedData data) {
 try {
 connectionMan-
ager.getOutputStream().writeObject(data);
 String result = (String) connectionMan-
ager.getInputStream().readObject();
 System.out.println(result);

 } catch (IOException e) {
 System.out.println("Upload failed: "+
e.getMessage());
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }

 }

 /**
 * Get-method for the ConnectionManager
 *
 * @return connectionManager
 */

Copyright © Fraunhofer IESE 2009 171

 public ConnectionManager getConnectionManager() {
 return connectionManager;
 }
}

Copyright © Fraunhofer IESE 2009 172

1.7.11 Exercise to Experience Package for UI Group: Long Method

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Long Method

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Persistence:persistenceImpl.java in your code code smells of long method couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.persistence;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.HashSet;
import java.util.Set;
import java.util.*;
import org.belami.dcga.common_datastructures.*;

class PersistenceImpl implements Persistence{

//delcare variables needed to handle the currentPatient

//creates a temporary copy of the ElderlyPerson
//data will be added when setPatient() is called
ElderlyPerson curentPatient = new ElderlyPerson();

//number of ElderlyPersons stored
int n=0;

Copyright © Fraunhofer IESE 2009 173

//currentTaskList Object
TaskList currentTaskList =new TaskList();

//number of tasks in the currentTaskList, number of Comments and In-
formations for the currentPatient
int numberTasks=0;
int numberInformations=0;

//comments can be deleted (the ID of deleted comment will not be used
for that ElderlyPerson for that day
int numberComments=0;
int lastCommentId=0;

public Collection getPatientList(){
 //returns List of ElderlyPerson`s patientId,name
 //information is stored when storeData() called, number of EP-
Data Objects = n

 //the List that will be returned
 Set<ElderlyPersonShortInfo> epData = new HashSet();

 //reads the number of EPs
 Integer cant = new Integer(0);
 try {
 FileInputStream fis = new FileInput-
Stream("NumberOfElderlyPersons.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 cant= (Integer)ois.readObject();
 n = cant.intValue();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 //reads all ElderlyPersons from the txt-files

 try{
 FileInputStream fis = new FileInput-
Stream("ElderlyPersonsMap.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 ElderlyPersonShortInfo eData =new ElderlyPerson-
ShortInfo();
 for(int i=0;i<n;i++){
 eData = (ElderlyPerson-
ShortInfo)ois.readObject();
 epData.add(eData);

Copyright © Fraunhofer IESE 2009 174

 }
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 return epData;
}
public void setPatientId(int pId){
 //reads the currentPatient from the (pId).txt

 try{
 FileInputStream fis = new FileInputStream(pId+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 curentPatient = (ElderlyPerson)ois.readObject();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }
 numberInformations= curentPatient.getInformations().size();
 numberComments= curentPatient.getComments().size();

 //retrieves the last commentId (example for commentList with
IDs: 1,2,5,6 (3,4 were deleted)
 lastCommentId= numberComments;
 Comment[] comments =new Comment[numberComments];
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, curentPatient.getComments().size());

 for (int i=0;i<numberComments;i++){
 if (comments[i].getCommentId()>lastCommentId)
 lastCommentId=comments[i].getCommentId();
 }

}
public ElderlyPerson getPatient(){
 //return currently ElderlyPerson
 return curentPatient;
}

public TaskList getTaskList(){
 //retrieve current TaskList and returns it

 if (curentPatient.getTaskLists().size()>0) {
 TaskList[] tLists = new Task-
List[curentPatient.getTaskLists().size()];

Copyright © Fraunhofer IESE 2009 175

 System.arraycopy(curentPatient.getTaskLists().toArray(), 0,
tLists, 0, curentPatient.getTaskLists().size());

 //selects the current TaskList from the array tLists[] and makes
a reference to currentTaskList
 //looks for the TaskList with the smallest TaskListId that is
still unfinished

 int Id = tLists[0].getTaskListId();
 int pos= 0;
 for(int i=1;i<curentPatient.getTaskLists().size();i++){
 if ((tLists[i].getTaskListId()< Id)&&
(tLists[i].getState() == false)){
 Id = tLists[i].getTaskListId();
 pos=i;
 }
 }
 currentTaskList = tLists[pos];
 numberTasks = tLists[pos].getTasks().size();
 //counts the Tasks in the currentTaskList

 }else {
 currentTaskList= null;
 numberTasks =0;
 }
 System.out.println(numberTasks);
 return currentTaskList;

}

public void storeTask(Task t){
 // retrieve and set taskId, set current TaskListId, create a
Task and stores it
 t.setTaskId(numberTasks+1);
 currentTaskList.addTask(t);
 numberTasks++;
}
public void updateTask(int tId, int newstate){
 // update Task with taskId==tId state=newstate

 Task[] tasks =new Task[numberTasks];
 System.arraycopy((currentTaskList.getTasks()).toArray(), 0,
tasks, 0,numberTasks-1);
 for(int i=0;i<numberTasks;i++){
 if(tasks[i].getTaskId()==tId){
 tasks[i].setState(newstate);
 break;
 }

Copyright © Fraunhofer IESE 2009 176

 }

}

public Collection<CommentShortInfo> getCommentList(){
 //returns a Collection of CommentShortInfo for the cureent Eld-
erlyPerson
 Set<CommentShortInfo> comm = new HashSet();

 Comment[] comments =new Comment[numberComments];
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, numberComments);
 for(int i=0; i<numberComments;i++){
 String mylocation = ""+ comments[i].getLocation();
 CommentShortInfo c= new Com-
mentShortInfo(comments[i].getCommentId(), mylocation
,comments[i].getDescription(), comments[i].getCommentDate());
 comm.add(c);
 }
 return comm;
}

public Comment getComment(int comId){
 //returns Comment with commentId=comId
 Comment[] comments =new Comment[numberComments];
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, curentPatient.getComments().size());

 for (int i=0;i<numberComments;i++){
 if (comments[i].getCommentId()==comId)
 return comments[i];
 }
 throw new NoSuchElementException("Doen't exist");
}

public void storeComment(Comment com){
 //retrieves commonId, create a Comment with description, and
stores it
 com.setCommentId(lastCommentId+1);
 curentPatient.addComment(com);
 numberComments++;
 lastCommentId++;
}
//when a Comment is deleted, there will be no Comment will comId for
that person any more
//the free comId won`t be set to another Comment

public void deleteComment(int comId){
 //deletes the Comment with commentId==comId from the database

Copyright © Fraunhofer IESE 2009 177

 //finds the comment to be deleted
 Comment[] comments =new Comment[numberComments];
 Comment myComment =new Comment(-1);
 System.arraycopy((curentPatient.getComments()).toArray(), 0,
comments, 0, curentPatient.getComments().size());
 for (int i=0;i<curentPatient.getComments().size();i++){
 if (comments[i].getCommentId()==comId){
 myComment=comments[i];
 numberComments--;
 break;
 }
 }
 //deletes the Comment from the Collection
 if (myComment.getCommentId()>0) {
 curentPatient.getComments().remove(myComment);
 }

 // if the comment with comId doesn`t exist: trows new NoSuchEle-
ment();
}

public Collection getInformationList(){
 //returns a Collection of Information about the current Elderly-
Person
 return curentPatient.getInformations();
}

public void storeInformation(Information info){
 //retrieves an informationId, creates an Information with de-
scription=descr and stores it
 info.setInformationId(numberInformations+1);
 curentPatient.addInformation(info);
 numberInformations++;
}
public void storeData(Collection elderlyPersons){
 //stores the Collection elderlyPersons

 // transform the Collection of ElderlyPersons to an array
 n = elderlyPersons.size();
 ElderlyPerson[] ePersons = new ElderlyPerson[n];
 System.arraycopy(elderlyPersons.toArray(), 0, ePersons, 0, n);

 //write a ElderlyPersonsMap.txt containig for all ElderlyPerson:
Id, name, address
 try{
 FileOutputStream fos = new FileOutput-
Stream("ElderlyPersonsMap.txt");

Copyright © Fraunhofer IESE 2009 178

 ObjectOutputStream oos = new ObjectOutputStream(fos);
 ElderlyPersonShortInfo[] epData =new ElderlyPersonShortInfo[n];
 for(int i=0;i<n;i++){
 epData[i]= new ElderlyPerson-
ShortInfo(ePersons[i].getPatientId(),ePersons[i].getName(), ePer-
sons[i].getAddress());
 oos.writeObject(epData[i]);
 oos.flush();
 };
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 //writes the number of EPs

 Integer num = new Integer(elderlyPersons.size());
 try{
 FileOutputStream fos = new FileOutput-
Stream("NumberOfElderlyPersons.txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(num);
 oos.flush();
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 //writtes for every ElderlyPerson seperate file: (patientId).txt
 for(int i=0;i<n;i++){
 try{
 int id= ePersons[i].getPatientId();

 FileOutputStream fos = new FileOutputStream(id +".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(ePersons[i]);
 oos.flush();
 oos.close();

 }catch(Exception e){
 e.printStackTrace();
 }

 }
 }
public Collection loadData(){

Copyright © Fraunhofer IESE 2009 179

 //returns a Collection of elderlyPersons

 //number of stored ElderlyPerson: - n (the number is set during
the storeData())

 //the Collection that will be returned
 Set elderlyPersons = new HashSet();
 // set number of elderlyPersons

 Integer cant = new Integer(0);
 try {
 FileInputStream fis = new FileInput-
Stream("NumberOfElderlyPersons.txt");
 ObjectInputStream ois = new ObjectInputStream(fis);
 cant= (Integer)ois.readObject();
 n = cant.intValue();
 ois.close();
 }catch(Exception e){
 e.printStackTrace();
 }
 //reads all ElderlyPersons from the txt-files
 try{

 for(int i=0;i<n;i++){
 FileInputStream fis = new FileInputStream((i+1)+".txt");
 ObjectInputStream ois = new ObjectInputStream(fis);

 curentPatient = (ElderlyPerson)ois.readObject();
 elderlyPersons.add(curentPatient);
 ois.close();
 }

 }catch(Exception e){
 e.printStackTrace();
 }

 return elderlyPersons;

}
 //marks currentTaskList as done
 //writtes the changed currentlyPerson down into its txt-file
 public void markTaskListDone(){
 currentTaskList.setState(true);
 try{
 FileOutputStream fos = new FileOutputStream(curentPa-
tient.getPatientId() +".txt");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(curentPatient);

Copyright © Fraunhofer IESE 2009 180

 oos.flush();
 oos.close();
 }catch(Exception e){
 e.printStackTrace();
 }

 }

 public void setLastVisit(Date date){
 curentPatient.setLastVisit(date);
 }

 public boolean loadRoomMapping(int apartmentId, Array-
List<MappingItem> data){
 System.arraycopy(curentPatient.getAppMap(), 0, data, 0,
curentPatient.getAppMap().size()-1);
 return true;

 }
}

Copyright © Fraunhofer IESE 2009 181

1.7.12 Exercise to Experience Package for UI Group: Type Embedded in Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Type embedded in
name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

uiSystem :visualizationUnit.java
package org.belami.dcga.ui.ui_system.visualization_unit;

import java.lang.reflect.InvocationTargetException;
import java.util.Collection;
import java.util.GregorianCalendar;
import java.util.Vector;

import javax.swing.JOptionPane;

import org.belami.dcga.common_datastructures.CommentShortInfo;
import org.belami.dcga.common_datastructures.ElderlyPerson;
import org.belami.dcga.common_datastructures.ElderlyPersonShortInfo;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.ui.ui_system.interaction_unit.InteractionUnit;

/**
 * The visualisatin unit creates the display of the DCGA.
 *
 * @author A-Team
 * @version 1.0
 */
public class VisualizationUnit {

 /**
 * The controller of the gui.

Copyright © Fraunhofer IESE 2009 182

 */
 InteractionUnit interactionUnit;

 /**
 * The main frame of the gui.
 */
 private MainFrame mainFrame;

 /**
 * The dialog to choose a patient manually
 */
 PatientsDialog patientsDialog;

 /**
 * The dialog to show the patient informations
 */
 PatientInfoDialog patientInfoDialog;

 /**
 * The synchronization dialog to show while uploading /
downloading data
 */
 SynchronizationDialog syncDialog;

 /**
 * The frame to enter text comment
 */
 CommentInputFrame commentInputFrame;

 /**
 * Creates an instance of the visualisation unit.
 * The main frame is automatically created by the creation.
 * <code>VisualisationUnit</code> needs an interaction unit as
controller,
 * which must be set using the <code>setInteractionUnit</code>
Method.
 */
 public VisualizationUnit() {

 /*
 * Schedules a job for the event-dispatching thread
 * to create and show the main frame.
 */
 try {
 javax.swing.SwingUtilities.invokeAndWait(new Run-
nable() {
 public void run() {
 createAndShowMainFrame();
 }

Copyright © Fraunhofer IESE 2009 183

 });
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }

 }

 /**
 * Sets the controller for the display.
 * @param interactionUnit The controller
 */
 public void setInteractionUnit(InteractionUnit interactionUnit)
{
 this.interactionUnit = interactionUnit;
 }

 /**
 * Creates the main frame and shows it. For thread safety,
 * this method should be invoked from the event-dispatching
thread.
 */
 private void createAndShowMainFrame() {
 mainFrame = MainFrame.createMainFrame(this);
 }

 /**
 * Used to set the title of the main window. It contains the
Customer-No,
 * the Patientname and furthermore the actual date and time.
 * (e.g. "Customer: 0815, Ms. Schmidt | Monday, 10/10/2010 |
10:15 PM")
 * @param elderlyPerson
 */
 public void updateTitleBar(ElderlyPerson elderlyPerson) {
 GregorianCalendar today = new GregorianCalendar();
 String minute = ("0"+today.get(GregorianCalendar.MINUTE));
 minute = minute.substring(minute.length()-2, min-
ute.length());
 String hour = ("0"+today.get(GregorianCalendar.HOUR));
 hour = hour.substring(hour.length()-2, hour.length());
 mainFrame.setTitle("Customer: " + elderlyPer-
son.getName()+" | " //Name of elderly Person
 +(today.get(GregorianCalendar.MONTH)+1) /*+1,
because of format 0-11*/+ "/"
 +today.get(GregorianCalendar.DAY_OF_MONTH)+"/"
 //american format

Copyright © Fraunhofer IESE 2009 184

 +today.get(GregorianCalendar.YEAR)+" | "
 //month/day/year
 +hour + ":"
 +minute);
 }

 /**
 * Updates the "Current Comments" and the "Old Comments"
 * @param commentList
 */
 public void updateComments(Collection<CommentShortInfo> current-
CommentsList, Collection<CommentShortInfo> oldCommentsList) {

 CommentTabbedPane commentTabbedPane =
 main-
Frame.infoAndCommentPane.commentPanel.commentTabbedPane;

 commentTabbed-
Pane.setNewCurrentCommentsList(currentCommentsList);
 commentTabbedPane.setNewOldCommentsList(oldCommentsList);

 }

 /**
 * Updates the "Done Tasks", "Open Tasks" and the ProgressBar.
 * @param doneTasks, openTasks
 */
 public void updateTasks(Vector<Task> openTaskList, Vector<Task>
doneTaskList) {
 main-
Frame.taskPanel.taskTabbedPane.openTasksListTable.setNewTaskList(open
TaskList);
 main-
Frame.taskPanel.taskTabbedPane.doneTasksListTable.setNewTaskList(done
TaskList);

 main-
Frame.taskPanel.progressPanel.progressBar.setMaximum(openTaskList.siz
e() + doneTaskList.size());
 main-
Frame.taskPanel.progressPanel.progressBar.setValue(openTaskList.size(
));
 main-
Frame.taskPanel.progressPanel.progressBar.setString(String.valueOf(do
neTaskList.size()) + "/"
 + String.valueOf(openTaskList.size() + do-
neTaskList.size()) + " Tasks completed.");

Copyright © Fraunhofer IESE 2009 185

 main-
Frame.taskPanel.progressPanel.markAsDoneButton.setEnabled(false);
 }

 /**
 * Updates the visualization of amiCA information box
 * @param infoList
 */
 public void updateInformation(Collection<Information> infoList)
{

 this.mainFrame.infoAndCommentPane.infoPanel.setNewInformationLis
t(infoList);
 }

 /**
 * opens a new window where the user is able to select the cur-
rent patient.
 * @param patientList
 */
 public void showPatientList(Collection<ElderlyPersonShortInfo>
patientList) {
 patientsDialog = new PatientsDialog(this, patientList);
 }

 /**
 * opens a new window where the user can see further information
about the actual patient.
 * @param dumdidum
 */
 public void showPatientInformation(ElderlyPerson ep) {
 patientInfoDialog = new PatientInfoDialog(this, ep);
 }

 /**
 * Changes the image of record button to “start button”,
 * activates the comment buttons
 */
 public void showNormalButtonState() {

 // Get the panel with the buttons
 ButtonPanel buttonPanel = main-
Frame.infoAndCommentPane.commentPanel.buttonPanel;

 // Set the state of the buttons
 buttonPanel.recordButton.setEnabled(true);
 buttonPanel.recordButton.setIcon(new
javax.swing.ImageIcon(getClass().getResource(
 buttonPanel.getrecordButtonRes())));

Copyright © Fraunhofer IESE 2009 186

 buttonPanel.playButton.setEnabled(false);
 buttonPanel.stopButton.setEnabled(false);
 buttonPanel.deleteButton.setEnabled(false);

 }

 /**
 * Changes the image of record button to “stop button”,
 * deactivates the other comment buttons.
 */
 public void showRecordingState() {

 // Get the panel with the buttons
 ButtonPanel buttonPanel = main-
Frame.infoAndCommentPane.commentPanel.buttonPanel;

 // Set the state of the buttons
 buttonPanel.recordButton.setEnabled(true);
 buttonPanel.recordButton.setIcon(new
javax.swing.ImageIcon(getClass().getResource(
 buttonPanel.getrecordStopButtonRes())));
 buttonPanel.playButton.setEnabled(false);
 buttonPanel.stopButton.setEnabled(false);
 buttonPanel.deleteButton.setEnabled(false);

 }

 /**
 * Deactivates all comment buttons, except the “stop button”
 * @param dumdidum
 */
 public void showPlayingState() {

 // Get the panel with the buttons
 ButtonPanel buttonPanel = main-
Frame.infoAndCommentPane.commentPanel.buttonPanel;

 // Set the state of the buttons
 buttonPanel.recordButton.setEnabled(false);
 buttonPanel.playButton.setEnabled(false);
 buttonPanel.stopButton.setEnabled(true);
 buttonPanel.deleteButton.setEnabled(false);

 }

 /**
 * Shows a confirmation dialog with a custom text mes-sage, ok
and cancel buttons.
 */

Copyright © Fraunhofer IESE 2009 187

 public boolean showConfirmationDialog() {

 int dialogReturn = JOptionPane.showConfirmDialog(
 this.mainFrame,
 "The task could not have been completed. Would
you like to complete it anyway?",
 "Confirmation",
 JOptionPane.YES_NO_OPTION);

 if (dialogReturn == JOptionPane.YES_OPTION) {
 return true;
 } else {
 return false;
 }

 }

 /**
 * Shows a dialog with a comment text message, ok button
 */
 public void showCommentDialog(String comment) {
 JOptionPane.showMessageDialog(this.mainFrame,
 comment,
 "Text Comment",
 JOption-
Pane.PLAIN_MESSAGE);
 }

 /**
 * Shows a dialog with a custom text message, ok button
 * @param dumdidum
 */
 public void showDialog(String message) {
 JOptionPane.showMessageDialog(this.mainFrame, message);
 }

 /**
 * Shows a dialog with a text input field, ok and cancel buttons
 * @param dumdidum
 */
 public void showTextCommentInputDialog() {
 commentInputFrame = new CommentInputFrame(this);
 }

 /**
 * Shows a modal window with a custom text message during the
synchronization process.
 * @param message
 * @param dumdidum

Copyright © Fraunhofer IESE 2009 188

 */
 public void showSynchronizationWindow(String message) {
 syncDialog = new SynchronizationDialog(this, message);
 }

 /**
 * Closes the modal window after the synchronization process.
 * @param dumdidum
 */
 public void closeSynchronizationWindow() {
 syncDialog.dispose();
 }

 /**
 * Obtains the controller of the gui.
 * @return a reference to the <code>InteractionUnit</code>
 */
 public InteractionUnit getInteractionUnit() {
 return interactionUnit;
 }

 /**
 * Obtains the main frame of the <code>VisualizationUnit</code>.
 * @return the main frame of the <code>VisualizationUnit</code>.
 */
 public MainFrame getMainFrame() {
 return mainFrame;
 }

 /***
 * Obtains the patients dialog of the
<code>VisualizationUnit</code>.
 * @return the patients dialog of the
<code>VisualizationUnit</code>.
 */
 public PatientsDialog getPatientsDialog() {
 return patientsDialog;
 }

}

1.8 Exercises of the Assignments (Tuesday)

1.8.1 Exercise to Experience Package for Amica Interaction Group: Comments

Your Name: _______________________

Copyright © Fraunhofer IESE 2009 189

Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Comments

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Amica_Interaction:match.java
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.belami.dcga.amica_interaction.Situation;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

/**
 * Data structure containing the information of one "match" element
from the XML mapping file.
 *
 * @author Marc Giombetti
 * @author Philip Preissing
 * @author Michel Weimerskirch
 */
public class Match {
 /**
 * Fact ID that has to be matched with the Situation object
 */
 private String factName = null;
 /**
 * Comparator method for the fact ID from the mapping-file
 */
 private String factNameComparator = null;

Copyright © Fraunhofer IESE 2009 190

 /**
 * Start date that has to be matched with the Situation object
 */
 private Date startDate = null;
 /**
 * Comparator method for the start date from the mapping-file
 */
 private String startDateComparator = null;

 /**
 * End date that has to be matched with the Situation object
 */
 private Date endDate = null;
 /**
 * Comparator method for the end date from the mapping-file
 */
 private String endDateComparator = null;

 /**
 * Description that has to be matched with the Situation object
 */
 private String description = null;
 /**
 * Comparator method for the description from the mapping-file
 */
 private String descriptionComparator = null;

 /**
 * Source that has to be matched with the Situation object
 */
 private String source = null;
 /**
 * Comparator method for the source identifier from the mapping-
file
 */
 private String sourceComparator = null;

 /**
 * Location that has to be matched with the Situation object
 */
 private String location = null;
 /**
 * Comparator method for the location identifier from the map-
ping-file
 */
 private String locationComparator = null;

 /**

Copyright © Fraunhofer IESE 2009 191

 * NodeList used to map a matching Situation to an Information.
Might be null if not applicable.
 */
 public NodeList mapInformationNodes = null;
 /**
 * NodeList used to map a matching Situation to a Task. Might be
null if not applicable.
 */
 public NodeList mapTaskNodes = null;
 /**
 * Boolean value that specifies if a matching Situation is mapped
a TaskEvent.
 */
 public boolean mapTaskEvent = false;

 private DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-
dd");

 private static DateFormat dateTimeFormat = new SimpleDateFor-
mat("yyyy-MM-dd k:m:s");

 /**
 * Creates a new instance of Match
 * @param matchNode DOM Node from the XML mapping document
 */
 public Match(Node matchNode) {
 NodeList childNodes = matchNode.getChildNodes();
 for(int i=0, l=childNodes.getLength(); i<l; i++) {
 Node currentNode = childNodes.item(i);
 String nodeName = currentNode.getNodeName();

 if(nodeName.equals("factName")) {
 Node comparator = currentNode.getFirstChild();
 factNameComparator = comparator.getNodeName();
 factName = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("startDate")) {
 Node comparator = currentNode.getFirstChild();
 startDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 startDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("endDate")) {
 Node comparator = currentNode.getFirstChild();

Copyright © Fraunhofer IESE 2009 192

 endDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 endDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("description")) {
 Node comparator = currentNode.getFirstChild();
 descriptionComparator = comparator.getNodeName();
 description = compara-
tor.getFirstChild().getNodeValue();
 } else if(nodeName.equals("source")) {
 Node comparator = currentNode.getFirstChild();
 sourceComparator = comparator.getNodeName();
 source = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("location")) {
 Node comparator = currentNode.getFirstChild();
 locationComparator = comparator.getNodeName();
 location = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("map")) {
 NodeList mapNodes = currentNode.getChildNodes();
 for (int j=0, k=mapNodes.getLength(); j<k; j++) {
 Node node = mapNodes.item(j);
 if(node.getNodeName().equals("task")) {
 mapTaskNodes = node.getChildNodes();
 } else if(node.getNodeName().equals("taskEvent"))
{
 mapTaskEvent = true;
 } else
if(node.getNodeName().equals("information")) {
 mapInformationNodes = node.getChildNodes();
 }
 }
 }
 }
 }

 /**
 * Returns true if the given situation is matched.
 * @param situation A Situation
 * @return True if the given situation is matched.
 */
 public boolean matches(Situation situation) {
 if(factNameComparator != null) {
 if(!compare(situation.getFactName(), factName, factName-
Comparator)) {

Copyright © Fraunhofer IESE 2009 193

 return false;
 }
 }
 if(startDateComparator != null) {
 if(!compare(situation.getStartDate(), startDate, start-
DateComparator)) {
 return false;
 }
 }
 if(endDateComparator != null) {
 if(!compare(situation.getEndDate(), endDate, endDateCom-
parator)) {
 return false;
 }
 }
 if(descriptionComparator != null) {
 if(!compare(situation.getDescription(), description, de-
scriptionComparator)) {
 return false;
 }
 }
 if(sourceComparator != null) {
 if(!compare(situation.getSource(), source, sourceCompara-
tor)) {
 return false;
 }
 }
 if(locationComparator != null) {
 if(!compare(situation.getLocation()+"", location, loca-
tionComparator)) {
 return false;
 }
 }

 return true;
 }

 /**
 * Returns true if the given situation can be mapped to an Infor-
mation.
 * @param situation A Situation
 * @return True if the given situation can be mapped to an Infor-
mation.
 */
 public boolean mapsInformation(Situation situation) {
 return mapInformationNodes != null;
 }

Copyright © Fraunhofer IESE 2009 194

 /**
 * Returns true if the given situation can be mapped to a Task.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a Task.
 */
 public boolean mapsTask(Situation situation) {
 return mapTaskNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a
TaskEvent.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a
TaskEvent.
 */
 public boolean mapsTaskEvent(Situation situation) {
 return mapTaskEvent;
 }

 /**
 * Map the given Situation to an Information object.
 * @param situation A Situation
 * @return Mapped Information object
 */
 public Information mapInformation(Situation situation) {
 Information information = new Information();
 for(int i=0, l=mapInformationNodes.getLength(); i<l; i++) {
 Node node = mapInformationNodes.item(i);
 if (node.getNodeName().equals("location")) {
 informa-
tion.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {
 informa-
tion.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 }
 }

 return information;
 }

 /**
 * Map the given Situation to a Task object.
 * @param situation A Situation
 * @return Mapped Task object
 */

Copyright © Fraunhofer IESE 2009 195

 public Task mapTask(Situation situation) {
 Task task = new Task();
 for(int i=0, l=mapTaskNodes.getLength(); i<l; i++) {
 Node node = mapTaskNodes.item(i);
 if(node.getNodeName().equals("priority")) {

task.setPriority(Integer.parseInt(prepareString(node.getFirstChild().
getNodeValue(), situation)));
 } else if (node.getNodeName().equals("location")) {

task.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

task.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 } else if (node.getNodeName().equals("autoMarkable")) {
 TaskEvent taskEvent = new
TaskEvent(situation.getSource(), situation.getLocation(), situa-
tion.getFactName());
 ArrayList<TaskEvent> taskEventCollection = new Array-
List<TaskEvent>();
 taskEventCollection.add(taskEvent);

 task.setAutoMarkable(true);
 task.addTaskEvents(taskEventCollection);
 }
 }

 return task;
 }

 /**
 * Map the given Situation to a TaskEvent object.
 * @param situation A Situation
 * @return Mapped TaskEvent object
 */
 public TaskEvent mapTaskEvent(Situation situation) {
 TaskEvent taskEvent = new TaskEvent(situation.getSource(),
situation.getLocation(), situation.getFactName());
 return taskEvent;
 }

 /**
 * Compare two String objects using the comparison method given
by the "comparator" String.
 * @param a Original object
 * @param b Compared object

Copyright © Fraunhofer IESE 2009 196

 * @param comparator One of "isNull", "notNull", "startsWith",
"endsWith", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(String a, String b, String com-
parator) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if (b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("startsWith")) {
 if(a.startsWith(b)) return true;
 else return false;
 } else if(comparator.equals("endsWith")) {
 if(a.endsWith(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Compare two Date objects using the comparison method given by
the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "before", "af-
ter", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(Date a, Date b, String compara-
tor) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if(b == null || a == null) {
 return false;
 } else {

Copyright © Fraunhofer IESE 2009 197

 if(comparator.equals("before")) {
 if(a.before(b)) return true;
 else return false;
 } else if(comparator.equals("after")) {
 if(a.after(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Replaces keywords in a String using data from the given Situa-
tion object
 * @param text Untreated input String
 * @param situation A Situation
 * @return Treated Text
 */
 protected static String prepareString(String text, Situation
situation) {
 text = text.replaceAll("\\{\\{priority\\}\\}", situa-
tion.getPriority()+"");
 if (situation.getDescription()!= null) {
 text = text.replaceAll("\\{\\{description\\}\\}", situa-
tion.getDescription());
 }
 if (situation.getLocation()!= null) {
 text = text.replaceAll("\\{\\{location\\}\\}", situa-
tion.getLocation()+"");
 }
 text = text.replaceAll("\\{\\{startDate\\}\\}", dateTimeFor-
mat.format(situation.getStartDate()));
 if (situation.getEndDate()!= null) {
 text = text.replaceAll("\\{\\{endDate\\}\\}", dateTimeFor-
mat.format(situation.getEndDate()));
 }
 text = text.replaceAll("\\{\\{source\\}\\}", situa-
tion.getSource());
 text = text.replaceAll("\\{\\{factName\\}\\}", situa-
tion.getFactName());

 return text;
 }
}

Copyright © Fraunhofer IESE 2009 198

1.8.2 Exercise to Experience Package for Amica Interaction Group: Uncommunicative
Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Uncommunicative
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Amica_Interaction:match.java
package org.belami.dcga.amica_interaction.mapping;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Date;
import org.belami.dcga.amica_interaction.Situation;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

/**
 * Data structure containing the information of one "match" element
from the XML mapping file.
 *
 * @author Marc Giombetti
 * @author Philip Preissing
 * @author Michel Weimerskirch
 */
public class Match {
 /**

Copyright © Fraunhofer IESE 2009 199

 * Fact ID that has to be matched with the Situation object
 */
 private String factName = null;
 /**
 * Comparator method for the fact ID from the mapping-file
 */
 private String factNameComparator = null;

 /**
 * Start date that has to be matched with the Situation object
 */
 private Date startDate = null;
 /**
 * Comparator method for the start date from the mapping-file
 */
 private String startDateComparator = null;

 /**
 * End date that has to be matched with the Situation object
 */
 private Date endDate = null;
 /**
 * Comparator method for the end date from the mapping-file
 */
 private String endDateComparator = null;

 /**
 * Description that has to be matched with the Situation object
 */
 private String description = null;
 /**
 * Comparator method for the description from the mapping-file
 */
 private String descriptionComparator = null;

 /**
 * Source that has to be matched with the Situation object
 */
 private String source = null;
 /**
 * Comparator method for the source identifier from the mapping-
file
 */
 private String sourceComparator = null;

 /**
 * Location that has to be matched with the Situation object
 */
 private String location = null;

Copyright © Fraunhofer IESE 2009 200

 /**
 * Comparator method for the location identifier from the map-
ping-file
 */
 private String locationComparator = null;

 /**
 * NodeList used to map a matching Situation to an Information.
Might be null if not applicable.
 */
 public NodeList mapInformationNodes = null;
 /**
 * NodeList used to map a matching Situation to a Task. Might be
null if not applicable.
 */
 public NodeList mapTaskNodes = null;
 /**
 * Boolean value that specifies if a matching Situation is mapped
a TaskEvent.
 */
 public boolean mapTaskEvent = false;

 private DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-
dd");

 private static DateFormat dateTimeFormat = new SimpleDateFor-
mat("yyyy-MM-dd k:m:s");

 /**
 * Creates a new instance of Match
 * @param matchNode DOM Node from the XML mapping document
 */
 public Match(Node matchNode) {
 NodeList childNodes = matchNode.getChildNodes();
 for(int i=0, l=childNodes.getLength(); i<l; i++) {
 Node currentNode = childNodes.item(i);
 String nodeName = currentNode.getNodeName();

 if(nodeName.equals("factName")) {
 Node comparator = currentNode.getFirstChild();
 factNameComparator = comparator.getNodeName();
 factName = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("startDate")) {
 Node comparator = currentNode.getFirstChild();
 startDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {

Copyright © Fraunhofer IESE 2009 201

 startDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("endDate")) {
 Node comparator = currentNode.getFirstChild();
 endDateComparator = comparator.getNodeName();
 if(comparator.getFirstChild() != null) {
 try {
 endDate = dateFor-
mat.parse(comparator.getFirstChild().getNodeValue());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 } else if(nodeName.equals("description")) {
 Node comparator = currentNode.getFirstChild();
 descriptionComparator = comparator.getNodeName();
 description = compara-
tor.getFirstChild().getNodeValue();
 } else if(nodeName.equals("source")) {
 Node comparator = currentNode.getFirstChild();
 sourceComparator = comparator.getNodeName();
 source = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("location")) {
 Node comparator = currentNode.getFirstChild();
 locationComparator = comparator.getNodeName();
 location = comparator.getFirstChild().getNodeValue();
 } else if(nodeName.equals("map")) {
 NodeList mapNodes = currentNode.getChildNodes();
 for (int j=0, k=mapNodes.getLength(); j<k; j++) {
 Node node = mapNodes.item(j);
 if(node.getNodeName().equals("task")) {
 mapTaskNodes = node.getChildNodes();
 } else if(node.getNodeName().equals("taskEvent"))
{
 mapTaskEvent = true;
 } else
if(node.getNodeName().equals("information")) {
 mapInformationNodes = node.getChildNodes();
 }
 }
 }
 }
 }

 /**

Copyright © Fraunhofer IESE 2009 202

 * Returns true if the given situation is matched.
 * @param situation A Situation
 * @return True if the given situation is matched.
 */
 public boolean matches(Situation situation) {
 if(factNameComparator != null) {
 if(!compare(situation.getFactName(), factName, factName-
Comparator)) {
 return false;
 }
 }
 if(startDateComparator != null) {
 if(!compare(situation.getStartDate(), startDate, start-
DateComparator)) {
 return false;
 }
 }
 if(endDateComparator != null) {
 if(!compare(situation.getEndDate(), endDate, endDateCom-
parator)) {
 return false;
 }
 }
 if(descriptionComparator != null) {
 if(!compare(situation.getDescription(), description, de-
scriptionComparator)) {
 return false;
 }
 }
 if(sourceComparator != null) {
 if(!compare(situation.getSource(), source, sourceCompara-
tor)) {
 return false;
 }
 }
 if(locationComparator != null) {
 if(!compare(situation.getLocation()+"", location, loca-
tionComparator)) {
 return false;
 }
 }

 return true;
 }

 /**
 * Returns true if the given situation can be mapped to an Infor-
mation.

Copyright © Fraunhofer IESE 2009 203

 * @param situation A Situation
 * @return True if the given situation can be mapped to an Infor-
mation.
 */
 public boolean mapsInformation(Situation situation) {
 return mapInformationNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a Task.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a Task.
 */
 public boolean mapsTask(Situation situation) {
 return mapTaskNodes != null;
 }

 /**
 * Returns true if the given situation can be mapped to a
TaskEvent.
 * @param situation A Situation
 * @return True if the given situation can be mapped to a
TaskEvent.
 */
 public boolean mapsTaskEvent(Situation situation) {
 return mapTaskEvent;
 }

 /**
 * Map the given Situation to an Information object.
 * @param situation A Situation
 * @return Mapped Information object
 */
 public Information mapInformation(Situation situation) {
 Information information = new Information();
 for(int i=0, l=mapInformationNodes.getLength(); i<l; i++) {
 Node node = mapInformationNodes.item(i);
 if (node.getNodeName().equals("location")) {
 informa-
tion.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {
 informa-
tion.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 }
 }

Copyright © Fraunhofer IESE 2009 204

 return information;
 }

 /**
 * Map the given Situation to a Task object.
 * @param situation A Situation
 * @return Mapped Task object
 */
 public Task mapTask(Situation situation) {
 Task task = new Task();
 for(int i=0, l=mapTaskNodes.getLength(); i<l; i++) {
 Node node = mapTaskNodes.item(i);
 if(node.getNodeName().equals("priority")) {

task.setPriority(Integer.parseInt(prepareString(node.getFirstChild().
getNodeValue(), situation)));
 } else if (node.getNodeName().equals("location")) {

task.setLocation(prepareString(node.getFirstChild().getNodeValue(),
situation));
 } else if (node.getNodeName().equals("description")) {

task.setDescription(prepareString(node.getFirstChild().getNodeValue()
, situation));
 } else if (node.getNodeName().equals("autoMarkable")) {
 TaskEvent taskEvent = new
TaskEvent(situation.getSource(), situation.getLocation(), situa-
tion.getFactName());
 ArrayList<TaskEvent> taskEventCollection = new Array-
List<TaskEvent>();
 taskEventCollection.add(taskEvent);

 task.setAutoMarkable(true);
 task.addTaskEvents(taskEventCollection);
 }
 }

 return task;
 }

 /**
 * Map the given Situation to a TaskEvent object.
 * @param situation A Situation
 * @return Mapped TaskEvent object
 */
 public TaskEvent mapTaskEvent(Situation situation) {
 TaskEvent taskEvent = new TaskEvent(situation.getSource(),
situation.getLocation(), situation.getFactName());

Copyright © Fraunhofer IESE 2009 205

 return taskEvent;
 }

 /**
 * Compare two String objects using the comparison method given
by the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "startsWith",
"endsWith", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(String a, String b, String com-
parator) {
 if(comparator.equals("notNull")) {
 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if (b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("startsWith")) {
 if(a.startsWith(b)) return true;
 else return false;
 } else if(comparator.equals("endsWith")) {
 if(a.endsWith(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Compare two Date objects using the comparison method given by
the "comparator" String.
 * @param a Original object
 * @param b Compared object
 * @param comparator One of "isNull", "notNull", "before", "af-
ter", "equals"
 * @return True if the comparison is successful.
 */
 protected static boolean compare(Date a, Date b, String compara-
tor) {
 if(comparator.equals("notNull")) {

Copyright © Fraunhofer IESE 2009 206

 if(a != null) return true;
 else return false;
 } else if(comparator.equals("isNull")) {
 if(a == null) return true;
 else return false;
 } else if(b == null || a == null) {
 return false;
 } else {
 if(comparator.equals("before")) {
 if(a.before(b)) return true;
 else return false;
 } else if(comparator.equals("after")) {
 if(a.after(b)) return true;
 else return false;
 } else { //default: equals
 if(a.equals(b)) return true;
 else return false;
 }
 }
 }

 /**
 * Replaces keywords in a String using data from the given Situa-
tion object
 * @param text Untreated input String
 * @param situation A Situation
 * @return Treated Text
 */
 protected static String prepareString(String text, Situation
situation) {
 text = text.replaceAll("\\{\\{priority\\}\\}", situa-
tion.getPriority()+"");
 if (situation.getDescription()!= null) {
 text = text.replaceAll("\\{\\{description\\}\\}", situa-
tion.getDescription());
 }
 if (situation.getLocation()!= null) {
 text = text.replaceAll("\\{\\{location\\}\\}", situa-
tion.getLocation()+"");
 }
 text = text.replaceAll("\\{\\{startDate\\}\\}", dateTimeFor-
mat.format(situation.getStartDate()));
 if (situation.getEndDate()!= null) {
 text = text.replaceAll("\\{\\{endDate\\}\\}", dateTimeFor-
mat.format(situation.getEndDate()));
 }
 text = text.replaceAll("\\{\\{source\\}\\}", situa-
tion.getSource());

Copyright © Fraunhofer IESE 2009 207

 text = text.replaceAll("\\{\\{factName\\}\\}", situa-
tion.getFactName());

 return text;
 }
}

AmicaInteraction: UnplannedTaskHandler.java

package org.belami.dcga.amica_interaction;

import org.belami.dcga.amica_interaction.mapping.Match;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.computation.Computation;

/**
 * The Handler for the unplanned tasks.
 *
 * @author Marc Giombetti
 * @author Philip Preissing
 * @author Michel Weimerskirch
 *
 */
class UnplannedTaskHandler {
 Computation computation;

 /** Creates a new instance of UnplannedTaskHandler
 * @param computation2 */
 public UnplannedTaskHandler(Computation computation2) {
 computation = computation2;
 }

 /**
 * Creation of a new unplanned task for a given situation
 *
 * @param s A situation
 */
 public void handleUnplannedTask(Situation s, Match match) {
 Task task = match.mapTask(s);

 computation.addUnplannedTask(task);
 }
}

Copyright © Fraunhofer IESE 2009 208

1.8.3 Exercise to Experience Package for Computation Group: Comments

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Comments

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Computation:ComputationImpl.java
package org.belami.dcga.computation;

import java.util.Collection;
import java.util.Date;
import java.util.Observer;
import java.util.Vector;

import org.belami.dcga.common_datastructures.Comment;
import org.belami.dcga.common_datastructures.CommentShortInfo;
import org.belami.dcga.common_datastructures.ElderlyPerson;
import org.belami.dcga.common_datastructures.ElderlyPersonShortInfo;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.belami.dcga.computation.commentmanager.CommentManager;
import org.belami.dcga.computation.commentmanager.CommentManagerImpl;
import
org.belami.dcga.computation.informationmanager.InformationManager;
import
org.belami.dcga.computation.informationmanager.InformationManagerImpl
;
import org.belami.dcga.computation.patientmanager.PatientManager;
import org.belami.dcga.computation.patientmanager.PatientManagerImpl;
import
org.belami.dcga.computation.taskmanager.RoomNotVisitedException;
import org.belami.dcga.computation.taskmanager.TaskManager;
import org.belami.dcga.computation.taskmanager.TaskManagerImpl;

Copyright © Fraunhofer IESE 2009 209

import org.belami.dcga.location_manager.LocationManager;
import org.belami.dcga.synchronization.Synchronization;
import org.belami.dcga.ui.UI;

/**
 * This Class is an implementation of the Computation Interface where
the
 * communication is controlled. For a detailed description have a
look at the
 * interface {@link Computation}
 *
 * @see Computation
 * @author Daniel Schneider
 * @version 1.0
 *
 */
class ComputationImpl implements Computation {

 /**
 * Main method for the program. The computation controller is
instantiated
 * which begins to execute a startup sequence
 *
 * @param args
 * command line arguments (not specified yet)
 */
 public static void main(String[] args) {
 Computation.INSTANCE.startUp();
 }

 /**
 * Provides a singleton instance for the computation component
 */
 private static ComputationImpl INSTANCE = null;

 /**
 * Store the current room. The value -1 means that the room was
not yet set.
 */
 private int currentRoom = -1;

 /**
 * A singleton instance of the TaskManager. We need this in-
stance to work on
 * it and this is also needed for the testcases
 *
 * @see TaskManager

Copyright © Fraunhofer IESE 2009 210

 * @see TaskManagerImpl
 */
 private TaskManager taskManager = TaskManager.INSTANCE;

 /**
 * An instance of the CommentManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see CommentManager
 * @see CommentManagerImpl
 */
 private CommentManager commentManager = new CommentManager-
Impl();

 /**
 * An instance of the InformationManager. We need this instance
to work on
 * it and this is also needed for the testcases
 *
 * @see InformationManager
 * @see InformationManagerImpl
 */
 private InformationManager informationManager = new Information-
ManagerImpl();

 /**
 * An instance of the PatientManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see PatientManager
 * @see PatientManagerImpl
 */
 private PatientManager patientManager = new PatientManager-
Impl();

 /**
 * An instance of the LocationManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see LocationManager
 */
 private LocationManager locationManager = LocationMan-
ager.INSTANCE;

 /**

Copyright © Fraunhofer IESE 2009 211

 * An instance of the Synchronization. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see Synchronization
 */
 private Synchronization synchronization = Synchroniza-
tion.INSTANCE;

 /**
 * An instance of the UI. We need this instance to work on it
 * and this is also needed for the testcases
 *
 * @see UI
 */
 private UI ui = UI.INSTANCE;

 /**
 * By using the singleton pattern we have to make a private con-
structor. By
 * this we assure that there can only be one instance at any
time.
 *
 */
 private ComputationImpl() {
 }

 /**
 * Its the startUp sequence for DCGA. We have to create all the
required
 * components and initialize them if needed.
 *
 * @see org.belami.dcga.computation.Computation#startUp()
 */
 public void startUp() {
 ui.initialize();

 }

 /**
 * This is part of the singleton pattern. We provide the only
existing
 * interface with this method
 *
 * @return instance of the computation
 */
 protected static Computation getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new ComputationImpl();

Copyright © Fraunhofer IESE 2009 212

 }
 return INSTANCE;
 }

 /**
 * The controller is told to be initialized. This initialization
means to
 * tell the subcomponents also to initialize themselves. This
method is
 * called when a new patientId is set.
 *
 */
 private void initialize() {
 // PatientManager does not have to be initialized because
the
 // patientManager itself performs this function call
 taskManager.initialize();
 // DO we still need this?

 }

 /**
 * Set the current room variable in this component to a new
value. Its a
 * setter methods for the private variable {@link #currentRoom}
 *
 * @param id
 * of the current room
 *
 */
 private void setCurrentRoom(int roomId) {
 this.currentRoom = roomId;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addInformation(org.belami.dcg
a.common_datastructures.Information)
 */
 public void addInformation(Information information) {
 informationManager.addInformation(information);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#deleteComment(int)
 */
 public void deleteComment(int commentId) {
 commentManager.deleteComment(commentId);

Copyright © Fraunhofer IESE 2009 213

 }

 /**
 * @see org.belami.dcga.computation.Computation#getComment(int)
 */
 public Comment getComment(int commentId) {
 return commentManager.getComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getCurrentRoom()
 */
 public int getCurrentRoom() {
 return currentRoom;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#getInformationList()
 */
 public Collection<Information> getInformationList() {
 return informationManager.getInformationList();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientInfo()
 */
 public ElderlyPerson getPatientInfo() {
 return patientManager.getPatientInfo();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getTaskList()
 */
 public Vector<Task> getTaskList() {
 return taskManager.getTaskList();
 }

 /**
 * @throws RoomNotVisitedException
 * @see
org.belami.dcga.computation.Computation#markTaskAsCompleted(int)
 */
 public void markTaskAsCompleted(int taskId, boolean override)
 throws RoomNotVisitedException {
 taskManager.markTaskAsCompletedManually(taskId, override);
 }

Copyright © Fraunhofer IESE 2009 214

 /**
 * @see
org.belami.dcga.computation.Computation#setTaskEventDone(TaskEvent)
 */
 public void setTaskEventDone(TaskEvent taskEvent) {
 taskManager.setTaskEventDone(taskEvent);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addUnplannedTask(Task)
 */
 public void addUnplannedTask(Task unplannedTask) {
 taskManager.addUnplannedTask(unplannedTask);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onAmiCaConnected(int)
 */
 public ElderlyPerson onAmiCaConnected(int patientId) {
 setPatientId(patientId);
 return patientManager.getPatientInfo();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onNewRoomEntered(int)
 */
 public void onNewRoomEntered(int roomId) {
 setCurrentRoom(roomId);
 taskManager.sort();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setPatientId(int)
 */
 public void setPatientId(int patientId) {
 patientManager.setPatientId(patientId);
 initialize();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startDownload()
 */
 public void startDownload() {
 synchronization.initDownload();
 }

Copyright © Fraunhofer IESE 2009 215

 /**
 * @see org.belami.dcga.computation.Computation#startUpload()
 */
 public void startUpload() {
 synchronization.initUpload();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#storeComment(org.belami.dcga.
common_datastructures.Comment)
 */
 public void storeComment(Comment comment) {
 commentManager.storeComment(comment);
 }

 /**
 * Register the Observer at the subcomponents.
 *
 * @see
org.belami.dcga.computation.Computation#unregisterObserver(java.util.
Observable)
 */
 public void unregisterObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {
 case OpenTaskWarning:
 taskMan-
ager.deleteOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.deleteTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.deleteObserver(observer);
 break;
 case Patient:
 patientManager.deleteObserver(observer);
 break;
 case InformationList:
 informationManager.deleteObserver(observer);
 break;
 }
 }

 /**

Copyright © Fraunhofer IESE 2009 216

 * @see
org.belami.dcga.computation.Computation#registerObserver(java.util.Ob
servable)
 */
 public void registerObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {
 case OpenTaskWarning:
 taskMan-
ager.addOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.addTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.addObserver(observer);
 break;
 case Patient:
 patientManager.addObserver(observer);
 break;
 case InformationList:
 informationManager.addObserver(observer);
 break;
 }

 }

 /**
 * @see
org.belami.dcga.computation.Computation#onApartmentLeft()
 */
 public void onApartmentLeft(Date date) {
 patientManager.setLastVisit(date);
 taskManager.onApartmentLeft();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#wasRoomVisited(int)
 */
 public boolean wasRoomVisited(int roomId) {
 /**
 * This method was formerly called wasRoomVisited but Lo-
cationManager
 * implemented it with another name. Perhaps it was a non-
consistent
 * specification
 */
 return locationManager.wasRoomEntered(roomId);

Copyright © Fraunhofer IESE 2009 217

 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientList()
 */
 public Collection<ElderlyPersonShortInfo> getPatientList() {
 return patientManager.getPatientList();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getCommentList()
 */
 public Collection<CommentShortInfo> getCommentList() {
 return commentManager.getCommentList();
 }
}

Copyright © Fraunhofer IESE 2009 218

1.8.4 Exercise to Experience Package for Computation Group: Uncommunicative Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the follwing type: Uncommunicative
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

CommonDataStructures:Task.java in your code code smells of uncommunicative name couldn’t
be found. Therefore, another DCGA file is used.
package org.belami.dcga.common_datastructures;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;

import org.belami.dcga.computation.Computation;

public class Task implements Serializable, Comparable<Task> {

 /**
 * Task is not yet done.
 */
 public static final int UNDONE = 0;

 public static final int DONE_SYSTEM = 1;

 public static final int DONE_CG = 2;

 private int taskId;

 private int priority;

 private String description;

 // room-Id

Copyright © Fraunhofer IESE 2009 219

 private String location;

 // room-ID as Integer, needed by taskmanager!
 private int roomID;

 /**
 * @see org.belami.common_datastructures.Task
 */
 private int state;

 /**
 * indicates, whether the task can be automatically marked as
completed or
 * not. If the task can be auto-marked it is still possible to
mark it
 * manually.
 */
 private boolean autoMarkable;

 private boolean unplannedTask;

 // Stores TaskEvents needed for auto-completion, set it with
addTaskEvents()
 private HashSet<TaskEvent> taskEvents = new Hash-
Set<TaskEvent>();

 // required: a no-args constructor
 public Task() {
 taskId = -1;
 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;
 unplannedTask = false;

 }

 // Constructor where the Id is set
 public Task(int tId) {
 taskId = tId;

 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;
 unplannedTask = false;
 }

Copyright © Fraunhofer IESE 2009 220

 // implements the getter methods of the class
 public int getTaskId() {
 return taskId;
 }

 public int getPriority() {
 return priority;
 }

 public String getDescription() {
 return description;
 }

 public String getLocation() {
 return location;
 }

 public int getState() {
 return state;
 }

 public boolean isAutoMarkable() {
 return autoMarkable;
 }

 public boolean getUnplannedTask() {
 return unplannedTask;
 }

 // implements the setter methods of the class
 public void setTaskId(int Id) {
 taskId = Id;
 }

 public void setPriority(int prio) {
 priority = prio;
 }

 public void setDescription(String desc) {
 description = desc;
 }

 public void setLocation(String loc) {
 location = loc;
 }

 public void setState(int st) {

Copyright © Fraunhofer IESE 2009 221

 state = st;
 }

 public void setAutoMarkable(boolean mM) {
 autoMarkable = mM;
 }

 public void setUnplannedTask(boolean uT) {
 unplannedTask = uT;
 }

 public void addTaskEvents(Collection<TaskEvent> events) {
 taskEvents = new HashSet<TaskEvent>(events);
 }

 /**
 * Removes TaskEvent "event" from the taskEvents Set.
 *
 * @param event
 * event to delete (equivalent to mark as done)
 */
 public void setTaskEventDone(TaskEvent event) {
 taskEvents.remove(event);
 }

 /**
 * checks, if the Task is ready. If the task has to be marked as
done
 * manually (check for completeness not possible), false is re-
turned.
 * Otherwise it returns true, if all taskevents are done (in
this case
 * taskEvents hashset is empty
 *
 * @return
 */
 public boolean isReady() {
 if (autoMarkable == true && taskEvents.isEmpty())
 return true;
 else
 return false;
 }

 public int getRoomID() {
 return roomID;
 }

 public int compareTo(Task task) {
 int curRoom = Computation.INSTANCE.getCurrentRoom();

Copyright © Fraunhofer IESE 2009 222

 if (task.getRoomID() != curRoom) {
 if (getRoomID() != curRoom)
 return getPriority() - task.getPriority();
 else
 return 1;
 } else {
 if (getRoomID() != curRoom)
 return -1;
 else
 return getPriority() - task.getPriority();
 }
 }

 public String toString() {
 return description;
 }

 public void setRoomID(int roomID) {
 this.roomID = roomID;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 final Task other = (Task) obj;
 if (autoMarkable != other.autoMarkable)
 return false;
 if (description == null) {
 if (other.description != null)
 return false;
 } else if (!description.equals(other.description))
 return false;
 if (location == null) {
 if (other.location != null)
 return false;
 } else if (!location.equals(other.location))
 return false;
 if (priority != other.priority)
 return false;
 if (roomID != other.roomID)
 return false;
 if (state != other.state)

Copyright © Fraunhofer IESE 2009 223

 return false;
 if (taskId != other.taskId)
 return false;
 if (unplannedTask != other.unplannedTask)
 return false;
 return true;
 }

}

Copyright © Fraunhofer IESE 2009 224

1.8.5 Exercise to Experience Package for Location Manager Group: Comments

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Comments

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Computation:ComputationImpl.java in your code code smells of comments couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.computation;

import java.util.Collection;
import java.util.Date;
import java.util.Observer;
import java.util.Vector;

import org.belami.dcga.common_datastructures.Comment;
import org.belami.dcga.common_datastructures.CommentShortInfo;
import org.belami.dcga.common_datastructures.ElderlyPerson;
import org.belami.dcga.common_datastructures.ElderlyPersonShortInfo;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.belami.dcga.computation.commentmanager.CommentManager;
import org.belami.dcga.computation.commentmanager.CommentManagerImpl;
import
org.belami.dcga.computation.informationmanager.InformationManager;
import
org.belami.dcga.computation.informationmanager.InformationManagerImpl
;
import org.belami.dcga.computation.patientmanager.PatientManager;
import org.belami.dcga.computation.patientmanager.PatientManagerImpl;
import
org.belami.dcga.computation.taskmanager.RoomNotVisitedException;
import org.belami.dcga.computation.taskmanager.TaskManager;

Copyright © Fraunhofer IESE 2009 225

import org.belami.dcga.computation.taskmanager.TaskManagerImpl;
import org.belami.dcga.location_manager.LocationManager;
import org.belami.dcga.synchronization.Synchronization;
import org.belami.dcga.ui.UI;

/**
 * This Class is an implementation of the Computation Interface where
the
 * communication is controlled. For a detailed description have a
look at the
 * interface {@link Computation}
 */
class ComputationImpl implements Computation {

 /**
 * Main method for the program. The computation controller is
instantiated
 * which begins to execute a startup sequence
 *
 * @param args
 * command line arguments (not specified yet)
 */
 public static void main(String[] args) {
 Computation.INSTANCE.startUp();
 }

 /**
 * Provides a singleton instance for the computation component
 */
 private static ComputationImpl INSTANCE = null;

 /**
 * Store the current room. The value -1 means that the room was
not yet set.
 */
 private int currentRoom = -1;

 /**
 * A singleton instance of the TaskManager. We need this in-
stance to work on
 * it and this is also needed for the testcases
 *
 * @see TaskManager
 * @see TaskManagerImpl
 */
 private TaskManager taskManager = TaskManager.INSTANCE;

Copyright © Fraunhofer IESE 2009 226

 /**
 * An instance of the CommentManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see CommentManager
 * @see CommentManagerImpl
 */
 private CommentManager commentManager = new CommentManager-
Impl();

 /**
 * An instance of the InformationManager. We need this instance
to work on
 * it and this is also needed for the testcases
 *
 * @see InformationManager
 * @see InformationManagerImpl
 */
 private InformationManager informationManager = new Information-
ManagerImpl();

 /**
 * An instance of the PatientManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see PatientManager
 * @see PatientManagerImpl
 */
 private PatientManager patientManager = new PatientManager-
Impl();

 /**
 * An instance of the LocationManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see LocationManager
 */
 private LocationManager locationManager = LocationMan-
ager.INSTANCE;

 /**
 * An instance of the Synchronization. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see Synchronization

Copyright © Fraunhofer IESE 2009 227

 */
 private Synchronization synchronization = Synchroniza-
tion.INSTANCE;

 /**
 * An instance of the UI. We need this instance to work on it
 * and this is also needed for the testcases
 *
 * @see UI
 */
 private UI ui = UI.INSTANCE;

 /**
 * By using the singleton pattern we have to make a private con-
structor. By
 * this we assure that there can only be one instance at any
time.
 *
 */
 private ComputationImpl() {
 }

 /**
 * Its the startUp sequence for DCGA. We have to create all the
required
 * components and initialize them if needed.
 *
 * @see org.belami.dcga.computation.Computation#startUp()
 */
 public void startUp() {
 ui.initialize();

 }

 /**
 * This is part of the singleton pattern. We provide the only
existing
 * interface with this method
 *
 * @return instance of the computation
 */
 protected static Computation getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new ComputationImpl();
 }
 return INSTANCE;
 }

 /**

Copyright © Fraunhofer IESE 2009 228

 * The controller is told to be initialized. This initialization
means to
 * tell the subcomponents also to initialize themselves. This
method is
 * called when a new patientId is set.
 *
 */
 private void initialize() {
 // PatientManager does not have to be initialized because
the
 // patientManager itself performs this function call
 taskManager.initialize();
 // DO we still need this?

 }

 /**
 * Set the current room variable in this component to a new
value. Its a
 * setter methods for the private variable {@link #currentRoom}
 *
 * @param id
 * of the current room
 *
 */
 private void setCurrentRoom(int roomId) {
 this.currentRoom = roomId;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addInformation(org.belami.dcg
a.common_datastructures.Information)
 */
 public void addInformation(Information information) {
 informationManager.addInformation(information);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#deleteComment(int)
 */
 public void deleteComment(int commentId) {
 commentManager.deleteComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getComment(int)
 */

Copyright © Fraunhofer IESE 2009 229

 public Comment getComment(int commentId) {
 return commentManager.getComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getCurrentRoom()
 */
 public int getCurrentRoom() {
 return currentRoom;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#getInformationList()
 */
 public Collection<Information> getInformationList() {
 return informationManager.getInformationList();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientInfo()
 */
 public ElderlyPerson getPatientInfo() {
 return patientManager.getPatientInfo();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getTaskList()
 */
 public Vector<Task> getTaskList() {
 return taskManager.getTaskList();
 }

 /**
 * @throws RoomNotVisitedException
 * @see
org.belami.dcga.computation.Computation#markTaskAsCompleted(int)
 */
 public void markTaskAsCompleted(int taskId, boolean override)
 throws RoomNotVisitedException {
 taskManager.markTaskAsCompletedManually(taskId, override);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setTaskEventDone(TaskEvent)
 */
 public void setTaskEventDone(TaskEvent taskEvent) {

Copyright © Fraunhofer IESE 2009 230

 taskManager.setTaskEventDone(taskEvent);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addUnplannedTask(Task)
 */
 public void addUnplannedTask(Task unplannedTask) {
 taskManager.addUnplannedTask(unplannedTask);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onAmiCaConnected(int)
 */
 public ElderlyPerson onAmiCaConnected(int patientId) {
 setPatientId(patientId);
 return patientManager.getPatientInfo();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onNewRoomEntered(int)
 */
 public void onNewRoomEntered(int roomId) {
 setCurrentRoom(roomId);
 taskManager.sort();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setPatientId(int)
 */
 public void setPatientId(int patientId) {
 patientManager.setPatientId(patientId);
 initialize();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startDownload()
 */
 public void startDownload() {
 synchronization.initDownload();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startUpload()
 */
 public void startUpload() {

Copyright © Fraunhofer IESE 2009 231

 synchronization.initUpload();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#storeComment(org.belami.dcga.
common_datastructures.Comment)
 */
 public void storeComment(Comment comment) {
 commentManager.storeComment(comment);
 }

 /**
 * Register the Observer at the subcomponents.
 *
 * @see
org.belami.dcga.computation.Computation#unregisterObserver(java.util.
Observable)
 */
 public void unregisterObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {
 case OpenTaskWarning:
 taskMan-
ager.deleteOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.deleteTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.deleteObserver(observer);
 break;
 case Patient:
 patientManager.deleteObserver(observer);
 break;
 case InformationList:
 informationManager.deleteObserver(observer);
 break;
 }
 }

 /**
 * @see
org.belami.dcga.computation.Computation#registerObserver(java.util.Ob
servable)
 */
 public void registerObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {

Copyright © Fraunhofer IESE 2009 232

 case OpenTaskWarning:
 taskMan-
ager.addOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.addTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.addObserver(observer);
 break;
 case Patient:
 patientManager.addObserver(observer);
 break;
 case InformationList:
 informationManager.addObserver(observer);
 break;
 }

 }

 /**
 * @see
org.belami.dcga.computation.Computation#onApartmentLeft()
 */
 public void onApartmentLeft(Date date) {
 patientManager.setLastVisit(date);
 taskManager.onApartmentLeft();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#wasRoomVisited(int)
 */
 public boolean wasRoomVisited(int roomId) {
 /**
 * This method was formerly called wasRoomVisited but Lo-
cationManager
 * implemented it with another name. Perhaps it was a non-
consistent
 * specification
 */
 return locationManager.wasRoomEntered(roomId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientList()
 */
 public Collection<ElderlyPersonShortInfo> getPatientList() {
 return patientManager.getPatientList();

Copyright © Fraunhofer IESE 2009 233

 }

 /**
 * @see org.belami.dcga.computation.Computation#getCommentList()
 */
 public Collection<CommentShortInfo> getCommentList() {
 return commentManager.getCommentList();
 }
}

Copyright © Fraunhofer IESE 2009 234

1.8.6 Exercise to Experience Package for Location Manager Group: Uncommunicative
Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Uncommunicative
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

CommonDataStructures:: Task.java in your code code smells of uncommunicative name
couldn’t be found. Therefore, another DCGA file is used.
package org.belami.dcga.common_datastructures;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;

import org.belami.dcga.computation.Computation;

public class Task implements Serializable, Comparable<Task> {

 /**
 * Task is not yet done.
 */
 public static final int UNDONE = 0;

 public static final int DONE_SYSTEM = 1;

 public static final int DONE_CG = 2;

 private int taskId;

 private int priority;

 private String description;

Copyright © Fraunhofer IESE 2009 235

 // room-Id
 private String location;

 // room-ID as Integer, needed by taskmanager!
 private int roomID;

 /**
 * @see org.belami.common_datastructures.Task
 */
 private int state;

 /**
 * indicates, whether the task can be automatically marked as
completed or
 * not. If the task can be auto-marked it is still possible to
mark it
 * manually.
 */
 private boolean autoMarkable;

 private boolean unplannedTask;

 // Stores TaskEvents needed for auto-completion, set it with
addTaskEvents()
 private HashSet<TaskEvent> taskEvents = new Hash-
Set<TaskEvent>();

 // required: a no-args constructor
 public Task() {
 taskId = -1;
 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;
 unplannedTask = false;

 }

 // Constructor where the Id is set
 public Task(int tId) {
 taskId = tId;

 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;

Copyright © Fraunhofer IESE 2009 236

 unplannedTask = false;
 }

 // implements the getter methods of the class
 public int getTaskId() {
 return taskId;
 }

 public int getPriority() {
 return priority;
 }

 public String getDescription() {
 return description;
 }

 public String getLocation() {
 return location;
 }

 public int getState() {
 return state;
 }

 public boolean isAutoMarkable() {
 return autoMarkable;
 }

 public boolean getUnplannedTask() {
 return unplannedTask;
 }

 // implements the setter methods of the class
 public void setTaskId(int Id) {
 taskId = Id;
 }

 public void setPriority(int prio) {
 priority = prio;
 }

 public void setDescription(String desc) {
 description = desc;
 }

 public void setLocation(String loc) {
 location = loc;
 }

Copyright © Fraunhofer IESE 2009 237

 public void setState(int st) {
 state = st;
 }

 public void setAutoMarkable(boolean mM) {
 autoMarkable = mM;
 }

 public void setUnplannedTask(boolean uT) {
 unplannedTask = uT;
 }

 public void addTaskEvents(Collection<TaskEvent> events) {
 taskEvents = new HashSet<TaskEvent>(events);
 }

 /**
 * Removes TaskEvent "event" from the taskEvents Set.
 *
 * @param event
 * event to delete (equivalent to mark as done)
 */
 public void setTaskEventDone(TaskEvent event) {
 taskEvents.remove(event);
 }

 /**
 * checks, if the Task is ready. If the task has to be marked as
done
 * manually (check for completeness not possible), false is re-
turned.
 * Otherwise it returns true, if all taskevents are done (in
this case
 * taskEvents hashset is empty
 *
 * @return
 */
 public boolean isReady() {
 if (autoMarkable == true && taskEvents.isEmpty())
 return true;
 else
 return false;
 }

 public int getRoomID() {
 return roomID;
 }

Copyright © Fraunhofer IESE 2009 238

 public int compareTo(Task task) {
 int curRoom = Computation.INSTANCE.getCurrentRoom();
 if (task.getRoomID() != curRoom) {
 if (getRoomID() != curRoom)
 return getPriority() - task.getPriority();
 else
 return 1;
 } else {
 if (getRoomID() != curRoom)
 return -1;
 else
 return getPriority() - task.getPriority();
 }
 }

 public String toString() {
 return description;
 }

 public void setRoomID(int roomID) {
 this.roomID = roomID;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 final Task other = (Task) obj;
 if (autoMarkable != other.autoMarkable)
 return false;
 if (description == null) {
 if (other.description != null)
 return false;
 } else if (!description.equals(other.description))
 return false;
 if (location == null) {
 if (other.location != null)
 return false;
 } else if (!location.equals(other.location))
 return false;
 if (priority != other.priority)
 return false;
 if (roomID != other.roomID)

Copyright © Fraunhofer IESE 2009 239

 return false;
 if (state != other.state)
 return false;
 if (taskId != other.taskId)
 return false;
 if (unplannedTask != other.unplannedTask)
 return false;
 return true;
 }

}

Copyright © Fraunhofer IESE 2009 240

1.8.7 Exercise to Experience Package for Persistence Group: Comments

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Comments

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Computation:ComputationImpl.java in your code code smells of comments couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.computation;

import java.util.Collection;
import java.util.Date;
import java.util.Observer;
import java.util.Vector;

import org.belami.dcga.common_datastructures.Comment;
import org.belami.dcga.common_datastructures.CommentShortInfo;
import org.belami.dcga.common_datastructures.ElderlyPerson;
import org.belami.dcga.common_datastructures.ElderlyPersonShortInfo;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.belami.dcga.computation.commentmanager.CommentManager;
import org.belami.dcga.computation.commentmanager.CommentManagerImpl;
import
org.belami.dcga.computation.informationmanager.InformationManager;
import
org.belami.dcga.computation.informationmanager.InformationManagerImpl
;
import org.belami.dcga.computation.patientmanager.PatientManager;
import org.belami.dcga.computation.patientmanager.PatientManagerImpl;
import
org.belami.dcga.computation.taskmanager.RoomNotVisitedException;
import org.belami.dcga.computation.taskmanager.TaskManager;

Copyright © Fraunhofer IESE 2009 241

import org.belami.dcga.computation.taskmanager.TaskManagerImpl;
import org.belami.dcga.location_manager.LocationManager;
import org.belami.dcga.synchronization.Synchronization;
import org.belami.dcga.ui.UI;

/**
 * This Class is an implementation of the Computation Interface where
the
 * communication is controlled. For a detailed description have a
look at the
 * interface {@link Computation}
 */
class ComputationImpl implements Computation {

 /**
 * Main method for the program. The computation controller is
instantiated
 * which begins to execute a startup sequence
 *
 * @param args
 * command line arguments (not specified yet)
 */
 public static void main(String[] args) {
 Computation.INSTANCE.startUp();
 }

 /**
 * Provides a singleton instance for the computation component
 */
 private static ComputationImpl INSTANCE = null;

 /**
 * Store the current room. The value -1 means that the room was
not yet set.
 */
 private int currentRoom = -1;

 /**
 * A singleton instance of the TaskManager. We need this in-
stance to work on
 * it and this is also needed for the testcases
 *
 * @see TaskManager
 * @see TaskManagerImpl
 */
 private TaskManager taskManager = TaskManager.INSTANCE;

Copyright © Fraunhofer IESE 2009 242

 /**
 * An instance of the CommentManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see CommentManager
 * @see CommentManagerImpl
 */
 private CommentManager commentManager = new CommentManager-
Impl();

 /**
 * An instance of the InformationManager. We need this instance
to work on
 * it and this is also needed for the testcases
 *
 * @see InformationManager
 * @see InformationManagerImpl
 */
 private InformationManager informationManager = new Information-
ManagerImpl();

 /**
 * An instance of the PatientManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see PatientManager
 * @see PatientManagerImpl
 */
 private PatientManager patientManager = new PatientManager-
Impl();

 /**
 * An instance of the LocationManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see LocationManager
 */
 private LocationManager locationManager = LocationMan-
ager.INSTANCE;

 /**
 * An instance of the Synchronization. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see Synchronization

Copyright © Fraunhofer IESE 2009 243

 */
 private Synchronization synchronization = Synchroniza-
tion.INSTANCE;

 /**
 * An instance of the UI. We need this instance to work on it
 * and this is also needed for the testcases
 *
 * @see UI
 */
 private UI ui = UI.INSTANCE;

 /**
 * By using the singleton pattern we have to make a private con-
structor. By
 * this we assure that there can only be one instance at any
time.
 *
 */
 private ComputationImpl() {
 }

 /**
 * Its the startUp sequence for DCGA. We have to create all the
required
 * components and initialize them if needed.
 *
 * @see org.belami.dcga.computation.Computation#startUp()
 */
 public void startUp() {
 ui.initialize();

 }

 /**
 * This is part of the singleton pattern. We provide the only
existing
 * interface with this method
 *
 * @return instance of the computation
 */
 protected static Computation getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new ComputationImpl();
 }
 return INSTANCE;
 }

 /**

Copyright © Fraunhofer IESE 2009 244

 * The controller is told to be initialized. This initialization
means to
 * tell the subcomponents also to initialize themselves. This
method is
 * called when a new patientId is set.
 *
 */
 private void initialize() {
 // PatientManager does not have to be initialized because
the
 // patientManager itself performs this function call
 taskManager.initialize();
 // DO we still need this?

 }

 /**
 * Set the current room variable in this component to a new
value. Its a
 * setter methods for the private variable {@link #currentRoom}
 *
 * @param id
 * of the current room
 *
 */
 private void setCurrentRoom(int roomId) {
 this.currentRoom = roomId;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addInformation(org.belami.dcg
a.common_datastructures.Information)
 */
 public void addInformation(Information information) {
 informationManager.addInformation(information);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#deleteComment(int)
 */
 public void deleteComment(int commentId) {
 commentManager.deleteComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getComment(int)
 */

Copyright © Fraunhofer IESE 2009 245

 public Comment getComment(int commentId) {
 return commentManager.getComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getCurrentRoom()
 */
 public int getCurrentRoom() {
 return currentRoom;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#getInformationList()
 */
 public Collection<Information> getInformationList() {
 return informationManager.getInformationList();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientInfo()
 */
 public ElderlyPerson getPatientInfo() {
 return patientManager.getPatientInfo();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getTaskList()
 */
 public Vector<Task> getTaskList() {
 return taskManager.getTaskList();
 }

 /**
 * @throws RoomNotVisitedException
 * @see
org.belami.dcga.computation.Computation#markTaskAsCompleted(int)
 */
 public void markTaskAsCompleted(int taskId, boolean override)
 throws RoomNotVisitedException {
 taskManager.markTaskAsCompletedManually(taskId, override);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setTaskEventDone(TaskEvent)
 */
 public void setTaskEventDone(TaskEvent taskEvent) {

Copyright © Fraunhofer IESE 2009 246

 taskManager.setTaskEventDone(taskEvent);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addUnplannedTask(Task)
 */
 public void addUnplannedTask(Task unplannedTask) {
 taskManager.addUnplannedTask(unplannedTask);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onAmiCaConnected(int)
 */
 public ElderlyPerson onAmiCaConnected(int patientId) {
 setPatientId(patientId);
 return patientManager.getPatientInfo();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onNewRoomEntered(int)
 */
 public void onNewRoomEntered(int roomId) {
 setCurrentRoom(roomId);
 taskManager.sort();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setPatientId(int)
 */
 public void setPatientId(int patientId) {
 patientManager.setPatientId(patientId);
 initialize();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startDownload()
 */
 public void startDownload() {
 synchronization.initDownload();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startUpload()
 */
 public void startUpload() {

Copyright © Fraunhofer IESE 2009 247

 synchronization.initUpload();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#storeComment(org.belami.dcga.
common_datastructures.Comment)
 */
 public void storeComment(Comment comment) {
 commentManager.storeComment(comment);
 }

 /**
 * Register the Observer at the subcomponents.
 *
 * @see
org.belami.dcga.computation.Computation#unregisterObserver(java.util.
Observable)
 */
 public void unregisterObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {
 case OpenTaskWarning:
 taskMan-
ager.deleteOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.deleteTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.deleteObserver(observer);
 break;
 case Patient:
 patientManager.deleteObserver(observer);
 break;
 case InformationList:
 informationManager.deleteObserver(observer);
 break;
 }
 }

 /**
 * @see
org.belami.dcga.computation.Computation#registerObserver(java.util.Ob
servable)
 */
 public void registerObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {

Copyright © Fraunhofer IESE 2009 248

 case OpenTaskWarning:
 taskMan-
ager.addOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.addTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.addObserver(observer);
 break;
 case Patient:
 patientManager.addObserver(observer);
 break;
 case InformationList:
 informationManager.addObserver(observer);
 break;
 }

 }

 /**
 * @see
org.belami.dcga.computation.Computation#onApartmentLeft()
 */
 public void onApartmentLeft(Date date) {
 patientManager.setLastVisit(date);
 taskManager.onApartmentLeft();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#wasRoomVisited(int)
 */
 public boolean wasRoomVisited(int roomId) {
 /**
 * This method was formerly called wasRoomVisited but Lo-
cationManager
 * implemented it with another name. Perhaps it was a non-
consistent
 * specification
 */
 return locationManager.wasRoomEntered(roomId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientList()
 */
 public Collection<ElderlyPersonShortInfo> getPatientList() {
 return patientManager.getPatientList();

Copyright © Fraunhofer IESE 2009 249

 }

 /**
 * @see org.belami.dcga.computation.Computation#getCommentList()
 */
 public Collection<CommentShortInfo> getCommentList() {
 return commentManager.getCommentList();
 }

Copyright © Fraunhofer IESE 2009 250

1.8.8 Exercise to Experience Package for Persistence Group: Uncommunicative Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Uncommunicative
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

CommonDataStructures:: Task.java in your code code smells of uncommunicative name
couldn’t be found. Therefore, another DCGA file is used.
package org.belami.dcga.common_datastructures;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;

import org.belami.dcga.computation.Computation;

public class Task implements Serializable, Comparable<Task> {

 /**
 * Task is not yet done.
 */
 public static final int UNDONE = 0;

 public static final int DONE_SYSTEM = 1;

 public static final int DONE_CG = 2;

 private int taskId;

 private int priority;

 private String description;

 // room-Id

Copyright © Fraunhofer IESE 2009 251

 private String location;

 // room-ID as Integer, needed by taskmanager!
 private int roomID;

 /**
 * @see org.belami.common_datastructures.Task
 */
 private int state;

 /**
 * indicates, whether the task can be automatically marked as
completed or
 * not. If the task can be auto-marked it is still possible to
mark it
 * manually.
 */
 private boolean autoMarkable;

 private boolean unplannedTask;

 // Stores TaskEvents needed for auto-completion, set it with
addTaskEvents()
 private HashSet<TaskEvent> taskEvents = new Hash-
Set<TaskEvent>();

 // required: a no-args constructor
 public Task() {
 taskId = -1;
 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;
 unplannedTask = false;

 }

 // Constructor where the Id is set
 public Task(int tId) {
 taskId = tId;

 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;
 unplannedTask = false;
 }

Copyright © Fraunhofer IESE 2009 252

 // implements the getter methods of the class
 public int getTaskId() {
 return taskId;
 }

 public int getPriority() {
 return priority;
 }

 public String getDescription() {
 return description;
 }

 public String getLocation() {
 return location;
 }

 public int getState() {
 return state;
 }

 public boolean isAutoMarkable() {
 return autoMarkable;
 }

 public boolean getUnplannedTask() {
 return unplannedTask;
 }

 // implements the setter methods of the class
 public void setTaskId(int Id) {
 taskId = Id;
 }

 public void setPriority(int prio) {
 priority = prio;
 }

 public void setDescription(String desc) {
 description = desc;
 }

 public void setLocation(String loc) {
 location = loc;
 }

 public void setState(int st) {

Copyright © Fraunhofer IESE 2009 253

 state = st;
 }

 public void setAutoMarkable(boolean mM) {
 autoMarkable = mM;
 }

 public void setUnplannedTask(boolean uT) {
 unplannedTask = uT;
 }

 public void addTaskEvents(Collection<TaskEvent> events) {
 taskEvents = new HashSet<TaskEvent>(events);
 }

 /**
 * Removes TaskEvent "event" from the taskEvents Set.
 *
 * @param event
 * event to delete (equivalent to mark as done)
 */
 public void setTaskEventDone(TaskEvent event) {
 taskEvents.remove(event);
 }

 /**
 * checks, if the Task is ready. If the task has to be marked as
done
 * manually (check for completeness not possible), false is re-
turned.
 * Otherwise it returns true, if all taskevents are done (in
this case
 * taskEvents hashset is empty
 *
 * @return
 */
 public boolean isReady() {
 if (autoMarkable == true && taskEvents.isEmpty())
 return true;
 else
 return false;
 }

 public int getRoomID() {
 return roomID;
 }

 public int compareTo(Task task) {
 int curRoom = Computation.INSTANCE.getCurrentRoom();

Copyright © Fraunhofer IESE 2009 254

 if (task.getRoomID() != curRoom) {
 if (getRoomID() != curRoom)
 return getPriority() - task.getPriority();
 else
 return 1;
 } else {
 if (getRoomID() != curRoom)
 return -1;
 else
 return getPriority() - task.getPriority();
 }
 }

 public String toString() {
 return description;
 }

 public void setRoomID(int roomID) {
 this.roomID = roomID;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 final Task other = (Task) obj;
 if (autoMarkable != other.autoMarkable)
 return false;
 if (description == null) {
 if (other.description != null)
 return false;
 } else if (!description.equals(other.description))
 return false;
 if (location == null) {
 if (other.location != null)
 return false;
 } else if (!location.equals(other.location))
 return false;
 if (priority != other.priority)
 return false;
 if (roomID != other.roomID)
 return false;
 if (state != other.state)

Copyright © Fraunhofer IESE 2009 255

 return false;
 if (taskId != other.taskId)
 return false;
 if (unplannedTask != other.unplannedTask)
 return false;
 return true;
 }

}

Copyright © Fraunhofer IESE 2009 256

1.8.9 Exercise to Experience Package for Synchronization Group: Comments

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Comments

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

Computation:ComputationImpl.java in your code code smells of comments couldn’t be found.
Therefore, another DCGA file is used.
package org.belami.dcga.computation;

import java.util.Collection;
import java.util.Date;
import java.util.Observer;
import java.util.Vector;

import org.belami.dcga.common_datastructures.Comment;
import org.belami.dcga.common_datastructures.CommentShortInfo;
import org.belami.dcga.common_datastructures.ElderlyPerson;
import org.belami.dcga.common_datastructures.ElderlyPersonShortInfo;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.common_datastructures.TaskEvent;
import org.belami.dcga.computation.commentmanager.CommentManager;
import org.belami.dcga.computation.commentmanager.CommentManagerImpl;
import
org.belami.dcga.computation.informationmanager.InformationManager;
import
org.belami.dcga.computation.informationmanager.InformationManagerImpl
;
import org.belami.dcga.computation.patientmanager.PatientManager;
import org.belami.dcga.computation.patientmanager.PatientManagerImpl;
import
org.belami.dcga.computation.taskmanager.RoomNotVisitedException;
import org.belami.dcga.computation.taskmanager.TaskManager;

Copyright © Fraunhofer IESE 2009 257

import org.belami.dcga.computation.taskmanager.TaskManagerImpl;
import org.belami.dcga.location_manager.LocationManager;
import org.belami.dcga.synchronization.Synchronization;
import org.belami.dcga.ui.UI;

/**
 * This Class is an implementation of the Computation Interface where
the
 * communication is controlled. For a detailed description have a
look at the
 * interface {@link Computation}
 */
class ComputationImpl implements Computation {

 /**
 * Main method for the program. The computation controller is
instantiated
 * which begins to execute a startup sequence
 *
 * @param args
 * command line arguments (not specified yet)
 */
 public static void main(String[] args) {
 Computation.INSTANCE.startUp();
 }

 /**
 * Provides a singleton instance for the computation component
 */
 private static ComputationImpl INSTANCE = null;

 /**
 * Store the current room. The value -1 means that the room was
not yet set.
 */
 private int currentRoom = -1;

 /**
 * A singleton instance of the TaskManager. We need this in-
stance to work on
 * it and this is also needed for the testcases
 *
 * @see TaskManager
 * @see TaskManagerImpl
 */
 private TaskManager taskManager = TaskManager.INSTANCE;

Copyright © Fraunhofer IESE 2009 258

 /**
 * An instance of the CommentManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see CommentManager
 * @see CommentManagerImpl
 */
 private CommentManager commentManager = new CommentManager-
Impl();

 /**
 * An instance of the InformationManager. We need this instance
to work on
 * it and this is also needed for the testcases
 *
 * @see InformationManager
 * @see InformationManagerImpl
 */
 private InformationManager informationManager = new Information-
ManagerImpl();

 /**
 * An instance of the PatientManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see PatientManager
 * @see PatientManagerImpl
 */
 private PatientManager patientManager = new PatientManager-
Impl();

 /**
 * An instance of the LocationManager. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see LocationManager
 */
 private LocationManager locationManager = LocationMan-
ager.INSTANCE;

 /**
 * An instance of the Synchronization. We need this instance to
work on it
 * and this is also needed for the testcases
 *
 * @see Synchronization

Copyright © Fraunhofer IESE 2009 259

 */
 private Synchronization synchronization = Synchroniza-
tion.INSTANCE;

 /**
 * An instance of the UI. We need this instance to work on it
 * and this is also needed for the testcases
 *
 * @see UI
 */
 private UI ui = UI.INSTANCE;

 /**
 * By using the singleton pattern we have to make a private con-
structor. By
 * this we assure that there can only be one instance at any
time.
 *
 */
 private ComputationImpl() {
 }

 /**
 * Its the startUp sequence for DCGA. We have to create all the
required
 * components and initialize them if needed.
 *
 * @see org.belami.dcga.computation.Computation#startUp()
 */
 public void startUp() {
 ui.initialize();

 }

 /**
 * This is part of the singleton pattern. We provide the only
existing
 * interface with this method
 *
 * @return instance of the computation
 */
 protected static Computation getInstance() {
 if (INSTANCE == null) {
 INSTANCE = new ComputationImpl();
 }
 return INSTANCE;
 }

 /**

Copyright © Fraunhofer IESE 2009 260

 * The controller is told to be initialized. This initialization
means to
 * tell the subcomponents also to initialize themselves. This
method is
 * called when a new patientId is set.
 *
 */
 private void initialize() {
 // PatientManager does not have to be initialized because
the
 // patientManager itself performs this function call
 taskManager.initialize();
 // DO we still need this?

 }

 /**
 * Set the current room variable in this component to a new
value. Its a
 * setter methods for the private variable {@link #currentRoom}
 *
 * @param id
 * of the current room
 *
 */
 private void setCurrentRoom(int roomId) {
 this.currentRoom = roomId;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addInformation(org.belami.dcg
a.common_datastructures.Information)
 */
 public void addInformation(Information information) {
 informationManager.addInformation(information);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#deleteComment(int)
 */
 public void deleteComment(int commentId) {
 commentManager.deleteComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getComment(int)
 */

Copyright © Fraunhofer IESE 2009 261

 public Comment getComment(int commentId) {
 return commentManager.getComment(commentId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getCurrentRoom()
 */
 public int getCurrentRoom() {
 return currentRoom;
 }

 /**
 * @see
org.belami.dcga.computation.Computation#getInformationList()
 */
 public Collection<Information> getInformationList() {
 return informationManager.getInformationList();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientInfo()
 */
 public ElderlyPerson getPatientInfo() {
 return patientManager.getPatientInfo();
 }

 /**
 * @see org.belami.dcga.computation.Computation#getTaskList()
 */
 public Vector<Task> getTaskList() {
 return taskManager.getTaskList();
 }

 /**
 * @throws RoomNotVisitedException
 * @see
org.belami.dcga.computation.Computation#markTaskAsCompleted(int)
 */
 public void markTaskAsCompleted(int taskId, boolean override)
 throws RoomNotVisitedException {
 taskManager.markTaskAsCompletedManually(taskId, override);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setTaskEventDone(TaskEvent)
 */
 public void setTaskEventDone(TaskEvent taskEvent) {

Copyright © Fraunhofer IESE 2009 262

 taskManager.setTaskEventDone(taskEvent);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#addUnplannedTask(Task)
 */
 public void addUnplannedTask(Task unplannedTask) {
 taskManager.addUnplannedTask(unplannedTask);
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onAmiCaConnected(int)
 */
 public ElderlyPerson onAmiCaConnected(int patientId) {
 setPatientId(patientId);
 return patientManager.getPatientInfo();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#onNewRoomEntered(int)
 */
 public void onNewRoomEntered(int roomId) {
 setCurrentRoom(roomId);
 taskManager.sort();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#setPatientId(int)
 */
 public void setPatientId(int patientId) {
 patientManager.setPatientId(patientId);
 initialize();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startDownload()
 */
 public void startDownload() {
 synchronization.initDownload();
 }

 /**
 * @see org.belami.dcga.computation.Computation#startUpload()
 */
 public void startUpload() {

Copyright © Fraunhofer IESE 2009 263

 synchronization.initUpload();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#storeComment(org.belami.dcga.
common_datastructures.Comment)
 */
 public void storeComment(Comment comment) {
 commentManager.storeComment(comment);
 }

 /**
 * Register the Observer at the subcomponents.
 *
 * @see
org.belami.dcga.computation.Computation#unregisterObserver(java.util.
Observable)
 */
 public void unregisterObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {
 case OpenTaskWarning:
 taskMan-
ager.deleteOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.deleteTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.deleteObserver(observer);
 break;
 case Patient:
 patientManager.deleteObserver(observer);
 break;
 case InformationList:
 informationManager.deleteObserver(observer);
 break;
 }
 }

 /**
 * @see
org.belami.dcga.computation.Computation#registerObserver(java.util.Ob
servable)
 */
 public void registerObserver(Observer observer, ControllerOb-
servables observables) {
 switch (observables) {

Copyright © Fraunhofer IESE 2009 264

 case OpenTaskWarning:
 taskMan-
ager.addOpenTaskWarningObserver(observer);
 break;
 case TaskList:
 taskManager.addTaskListObserver(observer);
 break;
 case CommentList:
 commentManager.addObserver(observer);
 break;
 case Patient:
 patientManager.addObserver(observer);
 break;
 case InformationList:
 informationManager.addObserver(observer);
 break;
 }

 }

 /**
 * @see
org.belami.dcga.computation.Computation#onApartmentLeft()
 */
 public void onApartmentLeft(Date date) {
 patientManager.setLastVisit(date);
 taskManager.onApartmentLeft();
 }

 /**
 * @see
org.belami.dcga.computation.Computation#wasRoomVisited(int)
 */
 public boolean wasRoomVisited(int roomId) {
 /**
 * This method was formerly called wasRoomVisited but Lo-
cationManager
 * implemented it with another name. Perhaps it was a non-
consistent
 * specification
 */
 return locationManager.wasRoomEntered(roomId);
 }

 /**
 * @see org.belami.dcga.computation.Computation#getPatientList()
 */
 public Collection<ElderlyPersonShortInfo> getPatientList() {
 return patientManager.getPatientList();

Copyright © Fraunhofer IESE 2009 265

 }

 /**
 * @see org.belami.dcga.computation.Computation#getCommentList()
 */
 public Collection<CommentShortInfo> getCommentList() {
 return commentManager.getCommentList();
 }

Copyright © Fraunhofer IESE 2009 266

1.8.10 Exercise to Experience Package for Synchronization Group: Uncommunicative
Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Uncommunicative
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

CommonDataStructures:: Task.java in your code code smells of uncommunicative name
couldn’t be found. Therefore, another DCGA file is used.
package org.belami.dcga.common_datastructures;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;

import org.belami.dcga.computation.Computation;

public class Task implements Serializable, Comparable<Task> {

 /**
 * Task is not yet done.
 */
 public static final int UNDONE = 0;

 public static final int DONE_SYSTEM = 1;

 public static final int DONE_CG = 2;

 private int taskId;

 private int priority;

 private String description;

Copyright © Fraunhofer IESE 2009 267

 // room-Id
 private String location;

 // room-ID as Integer, needed by taskmanager!
 private int roomID;

 /**
 * @see org.belami.common_datastructures.Task
 */
 private int state;

 /**
 * indicates, whether the task can be automatically marked as
completed or
 * not. If the task can be auto-marked it is still possible to
mark it
 * manually.
 */
 private boolean autoMarkable;

 private boolean unplannedTask;

 // Stores TaskEvents needed for auto-completion, set it with
addTaskEvents()
 private HashSet<TaskEvent> taskEvents = new Hash-
Set<TaskEvent>();

 // required: a no-args constructor
 public Task() {
 taskId = -1;
 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;
 unplannedTask = false;

 }

 // Constructor where the Id is set
 public Task(int tId) {
 taskId = tId;

 priority = 0;
 description = "INITIAL";
 location = "";
 state = UNDONE;
 autoMarkable = false;

Copyright © Fraunhofer IESE 2009 268

 unplannedTask = false;
 }

 // implements the getter methods of the class
 public int getTaskId() {
 return taskId;
 }

 public int getPriority() {
 return priority;
 }

 public String getDescription() {
 return description;
 }

 public String getLocation() {
 return location;
 }

 public int getState() {
 return state;
 }

 public boolean isAutoMarkable() {
 return autoMarkable;
 }

 public boolean getUnplannedTask() {
 return unplannedTask;
 }

 // implements the setter methods of the class
 public void setTaskId(int Id) {
 taskId = Id;
 }

 public void setPriority(int prio) {
 priority = prio;
 }

 public void setDescription(String desc) {
 description = desc;
 }

 public void setLocation(String loc) {
 location = loc;
 }

Copyright © Fraunhofer IESE 2009 269

 public void setState(int st) {
 state = st;
 }

 public void setAutoMarkable(boolean mM) {
 autoMarkable = mM;
 }

 public void setUnplannedTask(boolean uT) {
 unplannedTask = uT;
 }

 public void addTaskEvents(Collection<TaskEvent> events) {
 taskEvents = new HashSet<TaskEvent>(events);
 }

 /**
 * Removes TaskEvent "event" from the taskEvents Set.
 *
 * @param event
 * event to delete (equivalent to mark as done)
 */
 public void setTaskEventDone(TaskEvent event) {
 taskEvents.remove(event);
 }

 /**
 * checks, if the Task is ready. If the task has to be marked as
done
 * manually (check for completeness not possible), false is re-
turned.
 * Otherwise it returns true, if all taskevents are done (in
this case
 * taskEvents hashset is empty
 *
 * @return
 */
 public boolean isReady() {
 if (autoMarkable == true && taskEvents.isEmpty())
 return true;
 else
 return false;
 }

 public int getRoomID() {
 return roomID;
 }

Copyright © Fraunhofer IESE 2009 270

 public int compareTo(Task task) {
 int curRoom = Computation.INSTANCE.getCurrentRoom();
 if (task.getRoomID() != curRoom) {
 if (getRoomID() != curRoom)
 return getPriority() - task.getPriority();
 else
 return 1;
 } else {
 if (getRoomID() != curRoom)
 return -1;
 else
 return getPriority() - task.getPriority();
 }
 }

 public String toString() {
 return description;
 }

 public void setRoomID(int roomID) {
 this.roomID = roomID;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 final Task other = (Task) obj;
 if (autoMarkable != other.autoMarkable)
 return false;
 if (description == null) {
 if (other.description != null)
 return false;
 } else if (!description.equals(other.description))
 return false;
 if (location == null) {
 if (other.location != null)
 return false;
 } else if (!location.equals(other.location))
 return false;
 if (priority != other.priority)
 return false;
 if (roomID != other.roomID)

Copyright © Fraunhofer IESE 2009 271

 return false;
 if (state != other.state)
 return false;
 if (taskId != other.taskId)
 return false;
 if (unplannedTask != other.unplannedTask)
 return false;
 return true;
 }

}

Copyright © Fraunhofer IESE 2009 272

1.8.11 Exercise to Experience Package for UI Group: Comments

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Comments

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

uiSystem :visualizationUnit.java
package org.belami.dcga.ui.ui_system.visualization_unit;

import java.lang.reflect.InvocationTargetException;
import java.util.Collection;
import java.util.GregorianCalendar;
import java.util.Vector;

import javax.swing.JOptionPane;

import org.belami.dcga.common_datastructures.CommentShortInfo;
import org.belami.dcga.common_datastructures.ElderlyPerson;
import org.belami.dcga.common_datastructures.ElderlyPersonShortInfo;
import org.belami.dcga.common_datastructures.Information;
import org.belami.dcga.common_datastructures.Task;
import org.belami.dcga.ui.ui_system.interaction_unit.InteractionUnit;

/**
 * The visualisatin unit creates the display of the DCGA.
 *
 * @author A-Team
 * @version 1.0
 */
public class VisualizationUnit {

 /**
 * The controller of the gui.
 */
 InteractionUnit interactionUnit;

Copyright © Fraunhofer IESE 2009 273

 /**
 * The main frame of the gui.
 */
 private MainFrame mainFrame;

 /**
 * The dialog to choose a patient manually
 */
 PatientsDialog patientsDialog;

 /**
 * The dialog to show the patient informations
 */
 PatientInfoDialog patientInfoDialog;

 /**
 * The synchronization dialog to show while uploading /
downloading data
 */
 SynchronizationDialog syncDialog;

 /**
 * The frame to enter text comment
 */
 CommentInputFrame commentInputFrame;

 /**
 * Creates an instance of the visualisation unit.
 * The main frame is automatically created by the creation.
 * <code>VisualisationUnit</code> needs an interaction unit as
controller,
 * which must be set using the <code>setInteractionUnit</code>
Method.
 */
 public VisualizationUnit() {

 /*
 * Schedules a job for the event-dispatching thread
 * to create and show the main frame.
 */
 try {
 javax.swing.SwingUtilities.invokeAndWait(new Run-
nable() {
 public void run() {
 createAndShowMainFrame();
 }
 });
 } catch (InterruptedException e) {

Copyright © Fraunhofer IESE 2009 274

 e.printStackTrace();
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }

 }

 /**
 * Sets the controller for the display.
 * @param interactionUnit The controller
 */
 public void setInteractionUnit(InteractionUnit interactionUnit)
{
 this.interactionUnit = interactionUnit;
 }

 /**
 * Creates the main frame and shows it. For thread safety,
 * this method should be invoked from the event-dispatching
thread.
 */
 private void createAndShowMainFrame() {
 mainFrame = MainFrame.createMainFrame(this);
 }

 /**
 * Used to set the title of the main window. It contains the
Customer-No,
 * the Patientname and furthermore the actual date and time.
 * (e.g. "Customer: 0815, Ms. Schmidt | Monday, 10/10/2010 |
10:15 PM")
 * @param elderlyPerson
 */
 public void updateTitleBar(ElderlyPerson elderlyPerson) {
 GregorianCalendar today = new GregorianCalendar();
 String minute = ("0"+today.get(GregorianCalendar.MINUTE));
 minute = minute.substring(minute.length()-2, min-
ute.length());
 String hour = ("0"+today.get(GregorianCalendar.HOUR));
 hour = hour.substring(hour.length()-2, hour.length());
 mainFrame.setTitle("Customer: " + elderlyPer-
son.getName()+" | " //Name of elderly Person
 +(today.get(GregorianCalendar.MONTH)+1) /*+1,
because of format 0-11*/+ "/"
 +today.get(GregorianCalendar.DAY_OF_MONTH)+"/"
 //american format
 +today.get(GregorianCalendar.YEAR)+" | "
 //month/day/year
 +hour + ":"

Copyright © Fraunhofer IESE 2009 275

 +minute);
 }

 /**
 * Updates the "Current Comments" and the "Old Comments"
 * @param commentList
 */
 public void updateComments(Collection<CommentShortInfo> current-
CommentsList, Collection<CommentShortInfo> oldCommentsList) {

 CommentTabbedPane commentTabbedPane =
 main-
Frame.infoAndCommentPane.commentPanel.commentTabbedPane;

 commentTabbed-
Pane.setNewCurrentCommentsList(currentCommentsList);
 commentTabbedPane.setNewOldCommentsList(oldCommentsList);

 }

 /**
 * Updates the "Done Tasks", "Open Tasks" and the ProgressBar.
 * @param doneTasks, openTasks
 */
 public void updateTasks(Vector<Task> openTaskList, Vector<Task>
doneTaskList) {
 main-
Frame.taskPanel.taskTabbedPane.openTasksListTable.setNewTaskList(open
TaskList);
 main-
Frame.taskPanel.taskTabbedPane.doneTasksListTable.setNewTaskList(done
TaskList);

 main-
Frame.taskPanel.progressPanel.progressBar.setMaximum(openTaskList.siz
e() + doneTaskList.size());
 main-
Frame.taskPanel.progressPanel.progressBar.setValue(openTaskList.size(
));
 main-
Frame.taskPanel.progressPanel.progressBar.setString(String.valueOf(do
neTaskList.size()) + "/"
 + String.valueOf(openTaskList.size() + do-
neTaskList.size()) + " Tasks completed.");

 main-
Frame.taskPanel.progressPanel.markAsDoneButton.setEnabled(false);
 }

Copyright © Fraunhofer IESE 2009 276

 /**
 * Updates the visualization of amiCA information box
 * @param infoList
 */
 public void updateInformation(Collection<Information> infoList)
{

 this.mainFrame.infoAndCommentPane.infoPanel.setNewInformationLis
t(infoList);
 }

 /**
 * opens a new window where the user is able to select the cur-
rent patient.
 * @param patientList
 */
 public void showPatientList(Collection<ElderlyPersonShortInfo>
patientList) {
 patientsDialog = new PatientsDialog(this, patientList);
 }

 /**
 * opens a new window where the user can see further information
about the actual patient.
 * @param dumdidum
 */
 public void showPatientInformation(ElderlyPerson ep) {
 patientInfoDialog = new PatientInfoDialog(this, ep);
 }

 /**
 * Changes the image of record button to “start button”,
 * activates the comment buttons
 */
 public void showNormalButtonState() {
 boolean isCommentSelected;

 // Get the panel with the buttons
 ButtonPanel buttonPanel = main-
Frame.infoAndCommentPane.commentPanel.buttonPanel;

 // Set the state of the buttons
 buttonPanel.recordButton.setSelected(false);
 buttonPanel.recordButton.setEnabled(true);
 buttonPanel.recordButton.setIcon(new
javax.swing.ImageIcon(getClass().getResource(
 buttonPanel.getrecordButtonRes())));
 buttonPanel.playButton.setEnabled(false);
 buttonPanel.stopButton.setEnabled(false);

Copyright © Fraunhofer IESE 2009 277

 buttonPanel.deleteButton.setEnabled(false);

 isCommentSelected = !main-
Frame.infoAndCommentPane.commentPanel.
 commentTabbed-
Pane.curCommentList.isSelectionEmpty();

 if (isCommentSelected) {
 getMainFrame().infoAndCommentPane.commentPanel.
 buttonPanel.playButton.setEnabled(true);
 getMainFrame().infoAndCommentPane.commentPanel.
 buttonPanel.deleteButton.setEnabled(true);
 }
 }

 /**
 * Changes the image of record button to “stop button”,
 * deactivates the other comment buttons.
 */
 public void showRecordingState() {

 // Get the panel with the buttons
 ButtonPanel buttonPanel = main-
Frame.infoAndCommentPane.commentPanel.buttonPanel;

 // Set the state of the buttons
 buttonPanel.recordButton.setEnabled(true);
 buttonPanel.recordButton.setIcon(new
javax.swing.ImageIcon(getClass().getResource(
 buttonPanel.getrecordStopButtonRes())));
 buttonPanel.playButton.setEnabled(false);
 buttonPanel.stopButton.setEnabled(false);
 buttonPanel.deleteButton.setEnabled(false);

 }

 /**
 * Deactivates all comment buttons, except the “stop button”
 * @param dumdidum
 */
 public void showPlayingState() {

 // Get the panel with the buttons
 ButtonPanel buttonPanel = main-
Frame.infoAndCommentPane.commentPanel.buttonPanel;

 // Set the state of the buttons
 buttonPanel.recordButton.setEnabled(false);
 buttonPanel.playButton.setEnabled(false);

Copyright © Fraunhofer IESE 2009 278

 buttonPanel.stopButton.setEnabled(true);
 buttonPanel.deleteButton.setEnabled(false);

 }

 /**
 * Shows a confirmation dialog with a custom text mes-sage, ok
and cancel buttons.
 */
 public boolean showConfirmationDialog() {

 int dialogReturn = JOptionPane.showConfirmDialog(
 this.mainFrame,
 "The task could not have been completed. Would
you like to complete it anyway?",
 "Confirmation",
 JOptionPane.YES_NO_OPTION);

 if (dialogReturn == JOptionPane.YES_OPTION) {
 return true;
 } else {
 return false;
 }

 }

 /**
 * Shows a dialog with a comment text message, ok button
 */
 public void showCommentDialog(String comment) {
 JOptionPane.showMessageDialog(this.mainFrame,
 comment,
 "Text Comment",
 JOption-
Pane.PLAIN_MESSAGE);
 }

 /**
 * Shows a dialog with a custom text message, ok button
 * @param dumdidum
 */
 public void showDialog(String message) {
 JOptionPane.showMessageDialog(this.mainFrame, message);
 }

 /**
 * Shows a dialog with a text input field, ok and cancel buttons
 * @param dumdidum
 */

Copyright © Fraunhofer IESE 2009 279

 public void showTextCommentInputDialog() {
 commentInputFrame = new CommentInputFrame(this);
 }

 /**
 * Shows a modal window with a custom text message during the
synchronization process.
 * @param message
 * @param dumdidum
 */
 public void showSynchronizationWindow(String message) {
 syncDialog = new SynchronizationDialog(this, message);
 }

 /**
 * Closes the modal window after the synchronization process.
 * @param dumdidum
 */
 public void closeSynchronizationWindow() {
 syncDialog.dispose();
 }

 /**
 * Obtains the controller of the gui.
 * @return a reference to the <code>InteractionUnit</code>
 */
 public InteractionUnit getInteractionUnit() {
 return interactionUnit;
 }

 /**
 * Obtains the main frame of the <code>VisualizationUnit</code>.
 * @return the main frame of the <code>VisualizationUnit</code>.
 */
 public MainFrame getMainFrame() {
 return mainFrame;
 }

 /***
 * Obtains the patients dialog of the
<code>VisualizationUnit</code>.
 * @return the patients dialog of the
<code>VisualizationUnit</code>.
 */
 public PatientsDialog getPatientsDialog() {
 return patientsDialog;
 }

Copyright © Fraunhofer IESE 2009 280

1.8.12 Exercise to Experience Package for UI Group: Uncommunicative Name

Your Name: _______________________
Your Subject-ID: _____<your ID will be filled out by evaluators>

Please put the starting time in here [___ : ___]
Please put the ending time in here [___ : ___]
Exercise:

1. Identify and mark with a text marker code smells of the following type: Uncommunicative
Name

2. For each identified code smell state the refactoring you would apply into the code and give
a subsequent number - start with “1”

3. Use the Answer Sheet for Exercises. Put the related number in the first column in or-
der to relate your answer to the identified code smell. Then explain your decision (i.e., your
stepwise solution in your own words or why you wouldn’t remove the code smell).

uiSystem: tastList.java
package org.belami.dcga.ui.ui_system.interaction_unit;

import java.util.Observable;
import java.util.Observer;

public class TaskList implements Observer {

 private InteractionUnit interactionUnit;

 TaskList(InteractionUnit interactionUnit) {
 this.interactionUnit = interactionUnit;
 }

 public void update(Observable arg0, Object arg1) {
 interactionUnit.updateTasks();
 }
}

uiSystem:CommentTabbedPane.java
package org.belami.dcga.ui.ui_system.visualization_unit;

import java.util.Collection;

import javax.swing.JList;
import javax.swing.JScrollPane;
import javax.swing.JTabbedPane;

Copyright © Fraunhofer IESE 2009 281

import javax.swing.ListSelectionModel;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;

import org.belami.dcga.common_datastructures.CommentShortInfo;

/**
 * Appears on the right side of the Mainframe: includes "current" and
"old" comments.
 *
 * @version 1.0
 */
public class CommentTabbedPane extends JTabbedPane {

 /**
 * CommentTabbedPane implements Serializable
 * and should have a <code>serialVersionUID</code>.
 */
 private static final long serialVersionUID = 1L;

 /**
 * The title of the current comments tab.
 */
 private final String currentCommentsTabTitle = "Current Com-
ments";

 /**
 * The title of the old comments tab.
 */
 private final String oldCommentsTabTitle = "Old Comments";

 CurrentCommentsList curCommentList;

 OldCommentsList oldCommentList;

 /**
 * Creates an instance of the <code>CommentTabbedPane</code>.
 * Adds the subcomponents.
 */
 CommentTabbedPane(final VisualizationUnit visUnit) {

 curCommentList = new CurrentCommentsList();
 curCom-
mentList.getSelectionModel().addListSelectionListener(new ListSelec-
tionListener() {
 public void valueChanged(ListSelectionEvent e) {
 curCommentListListener(e, visUnit);

Copyright © Fraunhofer IESE 2009 282

 }
 });
 oldCommentList = new OldCommentsList();
 oldCom-
mentList.getSelectionModel().addListSelectionListener(new ListSelec-
tionListener() {
 public void valueChanged(ListSelectionEvent e) {
 oldCommentListListener(e, visUnit);
 }
 });

 this.addTab(currentCommentsTabTitle, new JScroll-
Pane(curCommentList));
 this.addTab(oldCommentsTabTitle, new JScroll-
Pane(oldCommentList));

 }

 public void setNewCurrentComment-
sList(Collection<CommentShortInfo> commentsList) {
 curCommentList.setListData(commentsList.toArray(new Com-
mentShortInfo[0]));
 }

 public void setNewOldCommentsList(Collection<CommentShortInfo>
commentsList) {
 oldCommentList.setListData(commentsList.toArray(new Com-
mentShortInfo[0]));
 }

 /**
 * curCommentListListener (ActionListener for "Current Comments"
JList)
 * @param e
 * @param visUnit
 */
 private void curCommentListListener(ListSelectionEvent e, Visu-
alizationUnit visUnit) {
 ListSelectionModel curCommentListSelectionModel = (ListSe-
lectionModel)e.getSource();

 if (!curCommentListSelectionModel.isSelectionEmpty()) {
 enableButtons(true, visUnit);
 } else {
 enableButtons(false, visUnit);
 }
 }
 /**

Copyright © Fraunhofer IESE 2009 283

 * oldCommentListListener (ActionListener for "Old Comments"
JList)
 * @param e
 * @param visUnit
 */
 private void oldCommentListListener(ListSelectionEvent e, Visu-
alizationUnit visUnit) {
 ListSelectionModel curCommentListSelectionModel = (ListSe-
lectionModel)e.getSource();

 if (!curCommentListSelectionModel.isSelectionEmpty()) {
 enableButtons(true, visUnit);
 } else {
 enableButtons(false, visUnit);
 }
 }

 /**
 *
 * @param state
 * @param visUnit
 */
 private void enableButtons(boolean state, VisualizationUnit vis-
Unit) {
 vis-
Unit.getMainFrame().infoAndCommentPane.commentPanel.buttonPanel.playB
utton.setEnabled(state);
 vis-
Unit.getMainFrame().infoAndCommentPane.commentPanel.buttonPanel.delet
eButton.setEnabled(state);
 }
}

class CurrentCommentsList extends JList {

 /**
 * CommentCommentsList implements Serializable
 * and should have a <code>serialVersionUID</code>.
 */
 private static final long serialVersionUID = 1L;

 CurrentCommentsList() {

 this.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 }

}

Copyright © Fraunhofer IESE 2009 284

class OldCommentsList extends JList {

 /**
 * OldCommentsList implements Serializable
 * and should have a <code>serialVersionUID</code>.
 */
 private static final long serialVersionUID = 1L;

 OldCommentsList() {

 this.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 }
}

Copyright © Fraunhofer IESE 2009 285

Experience Package using Common Datastructures

Common_datastructure: comments.java
package org.belami.dcga.common_datastructures;

import java.io.Serializable;
import java.util.GregorianCalendar;
import javax.sound.sampled.AudioInputStream;
public class Comment implements Serializable {
 private int commentId;
 private int location;
 private String description;
 private boolean isSpeech;
 private GregorianCalendar commentDate;
 //the speech file
 private AudioInputStream ais;
 public Comment(){
 }
 public Comment(int cId){
 commentId=cId;
 location = 0;
 description=null;
 }
 public Comment(int commentId, int location, String description,
boolean isSpeech, GregorianCalendar commentDate, AudioInputStream
ais) {
 super();
 this.commentId = commentId;
 this.location = location;
 this.description = description;
 this.isSpeech = isSpeech;
 this.commentDate = commentDate;
 this.ais = ais;
 }

 /**
 * This contructor is needed by the UI.
 * The commentId is created by Persistance.
 * @param location The id of the room, where the comment
was added
 * @param isSpeech <code>true</code>, if this is a
speech comment
 * @param description The text comment. <code>null</code>, if
this is
 * a speech comment.
 * @param ais The audio data. <code>null</code>, if
this is

Copyright © Fraunhofer IESE 2009 286

 * a text comment.
 */
 public Comment(int location, boolean isSpeech,
 String description, AudioInputStream ais) {

 this.commentDate = new GregorianCalendar(); // The date of
today
 this.location = location;
 this.isSpeech = isSpeech;
 this.description = description;
 this.ais = ais;

 }

 // implements the getter methods
 public int getCommentId(){
 return commentId;
 }

 public int getLocation(){
 return location;
 }
 public String getDescription(){
 return description;
 }
//implements the setter methods
 public void setCommentId(int id){
 commentId=id;
 }
 public void setLocation(int newLocation){
 location = newLocation;
 }
 public void setDescription(String newDescription){
 description=newDescription;
 }
 public boolean isSpeech() {
 return isSpeech;
 }
 public void setSpeech(boolean isSpeech) {
 this.isSpeech = isSpeech;
 }
 public GregorianCalendar getCommentDate() {
 return commentDate;
 }
 public void setCommentDate(GregorianCalendar comDate) {
 this.commentDate = comDate;
 }
 public AudioInputStream getAudioInputStream() {

Copyright © Fraunhofer IESE 2009 287

 return ais;
 }

 public void setAudioStream(AudioInputStream ais) {
 this.ais = ais;
 }
}

Copyright © Fraunhofer IESE 2009 288

1.9 Debriefing Questionnaire

Questions on Complexity of the Tasks

<D1> Agree Disagree

<D1.1> The complexity of the experience packages used in both runs
(Monday and Tuesday) were comparable

<D1.2> The complexity of the code in the exercises used in both runs
(Monday and Tuesday) were comparable

<D1.3> I knew most of the code in the exercises during both runs

Questions on Time Needed

<D2> I had enough time to Yes No

<D2.1> read the information provided by the learning spaces in run 1 (Monday)

<D2.2> read the information provided by the learning spaces in run 2 (Tuesday)

<D2.3> solve the exercises in run 1 (Monday)

<D2.4> solve the exercises in run 2 (Tuesday)

<D2.5> familiarize myself with the Wiki and the learning space

Questions on Learning Spaces

These questions are related to the run where you had access to the Learning
Space.

<D3> How did you use the Learning Space (LS)? <choose one option>
<D3.1> I first read the LS completely and started to solve the exercises without accessing the LS

again

<D3.2> I first read the LS completely and started to solve the exercises by accessing the LS again
<D3.3> I first read the LS partially and started to solve the exercises without accessing the LS

again

<D3.4> I first read the LS partially and started to solve the exercises by accessing the LS again
<D3.5> I didn’t read the LS and started with the exercise without accessing the LS at all
<D3.6> I didn’t read the LS and started with the exercise by accessing the LS later

<D4> What kind of information did you find useful in the Learn-

ing Space with regard to solving the exercise?
Agree Disagree

<D4.1> Descriptions of items labeled as Description
<D4.2> Definitions of items labeled as Definition
<D4.3> Example descriptions of items labeled as Example
<D4.4> Counterexample descriptions of items labeled as Counterexam-

ple

<D4.5> Process descriptions of items labeled as Process

Copyright © Fraunhofer IESE 2009 289

Questions on Stand-Alone Experience Package vs. Learning Spaces

Below you will find a number of opposing adjectives on both sides of each line.
You can react to the statements by checking the appropriate point on the line,
as in this example:

Useful Useless

when you think that it was very useful.

<D5> useful useless

boring absorbing

easy difficult

clear confusing

complete incomplete

I consider the explanations / information provided in a Learn-
ing Space in addition to an experience package descrption in
general

<D6> useful useless

boring absorbing

easy difficult

clear confusing

complete incomplete

I consider the explanations / information provided in a stand-
alone experience package description (without Learning
Space) in general

<D7> I would like to make the following comment(s) / improvement suggestion(s) (can be in
German)

<D8> I had a problem with … <please explain (can be in German)>:

Copyright © Fraunhofer IESE 2009 290

Questions on Evaluating of the Use and Acceptance of Learning Spaces

<D9> Performance expectancy Agree Disagree

<D9.1> I would find the system useful in my job.
<D9.2> Using the Learning Space enables me to accomplish tasks more

quickly.

<D9.3> Using the Learning Space increases my productivity.
<D9.4> If I use the Learning Space, I will increase my chances of getting

a pay raise.

<D10> Effort expectancy Agree Disagree

<D10.1> My interaction with the Learning Space would be clear and
understandable.

<D10.2> It would be easy for me to become skillful at using the Learning
Space.

<D10.3> I would find the Learning Space easy to use.

<D11> Attitude toward using technology Agree Disagree

<D11.1> Using the Learning Space is a good idea.
<D11.2> The Learning Space makes work more interesting.
<D11.3> Working with the Learning Space is fun.
<D11.4> I like working with the Learning Space.

Thanks for filling out the questionnaire!

Copyright © Fraunhofer IESE 2009 291

2 Material of the “Use and Acceptance” Case Study

Evaluierung des Learning Space Tools

Name: _______________________

(Der Name wird nur für Nachfragen bei Unklarheiten der Antworten benötigt.
Der Fragebogen wird natürlich anonym ausgewertet.)

Zugangsdaten zum Server:

http://ls.sop-world.org/

Login: lernen

Passwort: lsdevserver

Dann bitte als Benutzer „test“ mit dem Passwort „erfahrung“ rechts oben im
Wiki Fenster einloggen

I. ISONORM Fragebogen zur Software Ergonomie

Füllen Sie bitte den nachfolgenden Fragebogen aus. Die Fragen, die Ihrer Mei-
nung nach nicht für dieses System zutreffen, lassen Sie bitte unbeantwortet.

Der Fragebogen entspricht dem ISONORM 9142/10 Fragebogen.

Die folgenden Fragen beziehen sich ausschließlich auf die Arbeitsaufgabe der
Wiederverwendung von Erfahrung und der Verwendung von Lernräumen und
nicht auf die anderen Wiki-Funktionalitäten.

Aufgabenangemessenheit

<E1> Unterstützt die Software die Erledigung Ihrer Arbeitsaufgaben (Wiederverwendung von
Erfahrung), ohne Sie als Benutzer unnötig zu belasten?

 Die Software... --- -- - -/+ + ++ +++

<E1.1> ist kompliziert zu bedienen. ist unkompliziert zu bedie-
nen.

<E1.2> bietet nicht alle Funktionen,
um die anfallenden Aufgaben
effizient zu bewältigen.

bietet alle Funktionen,
die anfallenden Aufgaben
effizient zu bewältigen.

Copyright © Fraunhofer IESE 2009 292

<E1.4> erfordert überflüssige Ein-
gaben. erfordert keine überflüssi-

gen Eingaben.

<E1.5> ist schlecht auf die Anforde-
rungen der Arbeit zugeschnit-
ten.

ist gut auf die Anforderun-
gen der Arbeit zugeschnit-
ten.

Selbstbeschreibungsfähigkeit

<E2> Gibt Ihnen die Software genügend Erläuterungen und ist sie in ausreichendem Maße
verständlich?

 Die Software... --- -- - -/+ + ++ +++

<E2.1> bietet einen schlechten Über-
blick über ihr Funktionsange-
bot.

bietet einen guten Über-
blick über ihr Funktionsan-
gebot.

<E2.2> verwendet schlecht verständli-
che Begriffe, Bezeichnungen,
Abkürzungen oder Symbole in
Masken und Menüs.

verwendet gut verständli-
che Begriffe, Bezeichnun-
gen, Abkürzungen oder
Symbole in Masken und
Menüs.

<E2.3> liefert in unzureichendem
Maße Informationen darüber,
welche Eingaben zulässig oder
nötig sind.

liefert in zureichendem
Maße Informationen dar-
über, welche Eingaben
zulässig oder nötig sind.

Steuerbarkeit

<E3> Können Sie als Benutzer die Art und Weise, wie Sie mit der Software arbeiten, beeinflus-
sen?

 Die Software... --- -- - -/+ + ++ +++

<E3.1> bietet keine Möglichkeit, die
Arbeit an jedem Punkt zu unter-
brechen und dort später ohne
Verluste wieder weiterzumachen.

bietet die Möglichkeit,
die Arbeit an jedem
Punkt zu unterbrechen
und dort später ohne
Verluste wieder weiter-
zumachen.

<E3.2> erzwingt eine unnötig starre
Einhaltung von Bearbeitungs-
schritten.

erzwingt keine unnötig
starre Einhaltung von
Bearbeitungsschritten.

<E3.3> ermöglicht keinen leichten
Wechsel zwischen einzelnen
Menüs oder Masken.

ermöglicht einen leichten
Wechsel zwischen ein-
zelnen Menüs oder
Masken.

<E3.4> ist so gestaltet, dass der Benutzer
nicht beeinflussen kann, wie und
welche Informationen am Bild-
schirm dargeboten werden.

ist so gestaltet, dass der
Benutzer beeinflussen
kann, wie und welche
Informationen am Bild-
schirm dargeboten
werden.

<E3.5> erzwingt unnötige Unterbre-
chungen der Arbeit.

erzwingt keine unnöti-
gen Unterbrechungen
der Arbeit.

Copyright © Fraunhofer IESE 2009 293

Erwartungskonformität

<E4> Kommt die Software durch eine einheitliche und verständliche Gestaltung Ihren Erwar-
tungen und Gewohnheiten entgegen?

 Die Software... --- -- - -/+ + ++ +++

<E4.1> erschwert die Orientierung,
durch eine uneinheitliche
Gestaltung.

erleichtert die Orientierung,
durch eine einheitliche
Gestaltung.

<E4.2> lässt einen im Unklaren dar-
über, ob eine Eingabe erfolg-
reich war oder nicht.

lässt einen nicht im Unkla-
ren darüber, ob eine Einga-
be erfolgreich war oder
nicht.

<E4.3> informiert in unzureichendem
Maße über das, was sie gera-
de macht.

informiert in ausreichendem
Maße über das, was sie
gerade macht.

<E4.4> reagiert mit schwer vorher-
sehbaren Bearbeitungszeiten. reagiert mit gut vorherseh-

baren Bearbeitungszeiten.

<E4.5> lässt sich nicht durchgehend
nach einem einheitlichen
Prinzip bedienen.

lässt sich durchgehend nach
einem einheitlichen Prinzip
bedienen.

Individualisierbarkeit

<E6> Können Sie als Benutzer die Software ohne großen Aufwand an Ihre individuellen Be-
dürfnisse und Anforderungen anpassen?

 Die Software... --- -- - -/+ + ++ +++

<E6.2> lässt sich von dem Benutzer
schlecht an seine persönliche,
individuelle Art der Arbeitserledi-
gung anpassen.

lässt sich von dem Be-
nutzer gut an seine
persönliche, individuelle
Art der Arbeitserledigung
anpassen.

<E6.3> eignet sich für Anfänger und
Experten nicht gleichermaßen,
weil der Benutzer sie nur schwer
an seinen Kenntnisstand anpas-
sen kann.

eignet sich für Anfänger
und Experten gleicher-
maßen, weil der Benut-
zer sie leicht an seinen
Kenntnisstand anpassen
kann.

<E6.4> lässt sich - im Rahmen ihres
Leistungsumfangs - von dem
Benutzer schlecht für unter-
schiedliche Aufgaben passend
einrichten.

lässt sich - im Rahmen
ihres Leistungsumfangs -
von dem Benutzer gut
für unterschiedliche
Aufgaben passend
einrichten.

<E6.5> ist so gestaltet, dass der Benutzer
die Bildschirmdarstellung
schlecht an seine individuellen
Bedürfnisse anpassen kann.

ist so gestaltet, dass der
Benutzer die Bildschirm-
darstellung gut an seine
individuellen Bedürfnisse
anpassen kann.

Copyright © Fraunhofer IESE 2009 294

Lernförderlichkeit

<E7> Ist die Software so gestaltet, dass Sie sich ohne großen Aufwand in sie einarbeiten konn-
ten und bietet sie auch dann Unterstützung, wenn Sie neue Funktionen lernen möchten?

 Die Software... --- -- - -/+ + ++ +++

<E7.1> erfordert viel Zeit zum
Erlernen. erfordert wenig Zeit zum

Erlernen.

<E7.2> ermutigt nicht dazu, auch
neue Funktionen auszupro-
bieren.

ermutigt dazu, auch neue
Funktionen auszuprobieren.

<E7.3> erfordert, dass man sich
viele Details merken muss. erfordert nicht, dass man sich

viele Details merken muss.

<E7.4> ist so gestaltet, dass sich
einmal Gelerntes schlecht
einprägt.

ist so gestaltet, dass sich
einmal Gelerntes gut einprägt.

<E7.5> ist schlecht ohne fremde
Hilfe oder Handbuch er-
lernbar.

ist gut ohne fremde Hilfe oder
Handbuch erlernbar.

Copyright © Fraunhofer IESE 2009 295

II. UTAUT Fragebogen zur Nutzung und Akzeptanz (in Englisch)

The following questions are based on the UTAUT (Unified Theory of Acceptance
and Use of Technology).

<U1> Performance expectancy Agree Disagree

<U1.1> I would find the system useful in my job.
<U1.2> Using the system enables me to accomplish tasks more quickly.
<U1.3> Using the system increases my productivity.
<U1.4> If I use the system, I will increase my chances of getting a pay
raise.

<U2> Effort expectancy Agree Disagree

<U2.1> My interaction with the system would be clear and understand-
able.

<U2.2> It would be easy for me to become skillful at using the system.
<U2.3> I would find the system easy to use.
<U2.4> Learning to operate the system is easy for me.

<U3> Attitude toward using technology Agree Disagree

<U3.1> Using the system is a good idea.
<U3.2> The system makes work more interesting.
<U3.3> Working with the system is fun.
<U3.4> I like working with the system.

<U4> Facilitating conditions Agree Disagree

<U4.1> I have the resources necessary to use the system.
<U4.2> I have the knowledge necessary to use the system.
<U4.3> The system is not compatible with other systems I use.
<U4.4> A specific person (or group) is available for assistance with
system difficulties.

<U5> Self-efficacy Agree Disagree

<U5.1> I could complete a job or task using the system…
<U5.2> If there was no one around to tell me what to do as I go.
<U5.3> If I could call someone for help if I got stuck.
<U5.4> If I had a lot of time to complete the job for which the software
was provided.

<U5.5> If I had just the built-in help facility for assistance.

Copyright © Fraunhofer IESE 2009 296

III. Weitere Anmerkungen, Kritik, Verbesserungsvorschläge …

… zur Farbgebung, Strukturierung der Informationen, Navigation

… zur Anreicherung von Erfahrungen mit Lernelementen
(Integration von Wissensmanagement und E-Learning)

… zu Lernelementen

…

Document Information

Copyright 2009 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Dissertation Eric Ras - An-
nex 2: Materials of the
Empirical Studies

Date: January 20, 2009
Report: IESE-002.09/E
Status: Final
Distribution: Public

