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Abstract

Traffic routes through a street network contain patterns
and are no random walks. Such patterns exist for instance
along streets or between neighbouring street segments. The
extraction of these patterns is a challenging task due to
the enormous size of city street networks, the large num-
ber of required training data and the unknown distribution
of the latter. We apply Bayesian Networks to model the cor-
relations between the locations in space-time trajectories
and address the following tasks. We introduce and exam-
ine a Bayesian Network Learning algorithm enabling us to
handle the complexity and performance requirements of the
spatial context. Furthermore, we apply our method to Ger-
man cities, evaluate the accuracy and analyse the runtime
behaviour for different parameter settings.

1 Introduction

Our work is motivated by the planning of poster cam-
paigns. Usually, a predefined number of posters is dis-
tributed over a city for a given period of time, with the main
goal to reach as many people as often as possible. When
planning campaigns of poster advertisements, the question
for the selected poster locations arises. More precisely,
the number of reached people and their average amount of
poster contacts (opportunity to see) result from the depen-
dencies between poster locations.

Locations are dependent, if they often co-occur within
the trajectories of people. A trajectory of a person (i.e. a
person’s movement through geographic space within a cer-
tain period of time) is not a random walk through the city,
but is made for a specific purpose. For example, consider
the daily path of a commuter. Starting at home, it mainly
passes a motorway and ends at the place of work. During
the trip it is more likely for the commuter to stay on the mo-
torway than to leave it and enter one of the villages along
the motorway. Thus, different locations within a region oc-
cur not independently within one trajectory, but correlate.

Throughout this paper, we consider the streets of a city or
region as domain. The NAVTEQ network [4] consisting of
street segments and their neighbourhood relationships pro-
vides the discrete traffic network for our work. A trajectory
through a city can be represented as sequence of street seg-
ments. However, in our application we do not need to con-
sider the sequential order of the passed segments and can
thus represent a trajectory as a set. Each set of segments can
be represented binary by its characteristic function. We can
thus form a vector with one position for each street segment
for a town. The function assigns a one, if a segment belongs
to a specific trajectory and a zero elsewise. With this repre-
sentation, arbitrary traffic behaviour induces a multivariate
probability distribution on street segments. Our goal is to
depict this distribution.

When given a huge number of trajectories (for exam-
ple in form of GPS-logs), the conditional dependencies be-
tween two or more locations can be determined by simply
counting co-occurrences within the data. In case of pair-
wise dependencies between locations, the dependencies can
be stored in a square matrix. However, this only generates
useful results under the assumption that the current position
just depends on the previous one (Markov assumption) [1].
Trajectory data violates this assumption, as the behaviour
of a person at a crossroad depends on his or her origin. In
order to obtain dependencies between more than two loca-
tions the matrix has to be extended into higher dimensions.
This means to consider not only pairs of locations, but tu-
ples of various sizes. This approach raises the problem that
the matrix soon becomes huge and hard to handle in prac-
tice. Furthermore, in order to represent the dependencies of
all locations in the matrix, the input data has to contain suf-
ficient trajectories to represent the probability distribution.

Our approach tackles the first of these two problems,
by using Bayesian Networks as a compact graphical repre-
sentation of conditional dependencies. We circumvent the
second problem by generating a sufficient artificial set of
routes. Bayesian Networks are graphical models which rep-
resent a probability distribution of random variables. Vari-
ables are modelled by nodes, and edges denote the con-
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ditional probability between the connected variables. The
advance is the compact representation of the distribution,
the possibility for visual analyses and inclusion of expert
knowledge. Being a generative model, Bayesian Networks
can also be used to draw samples according to the repre-
sented probability distribution. This allows utilization of
Bayesian Networks for an iterative sampling of routes ac-
cording to a known or estimated traffic distribution.

This paper is organised as follows. We give an introduc-
tion of probabilities in spatio-temporal spaces in sections
2. We present our structure learning of a Bayesian Net-
work that models the correlations of locations within routes
in section 2.2. In sections 3.1 and 3.2 we analyse and in-
terpret the structure learning algorithm with respect to run-
time, memory requirements and applicability. We apply the
method to a German city in section 4 and conclude with a
summary and further prospects.

2 Bayesian Networks

2.1 Basics

A Bayesian Network is a compact representation of the
joint probability distribution of a finite set of random vari-
ables X = X1, X2, . . . , Xn. It consists of a network struc-
ture which is a directed acyclic graph (DAG) G = (X, E ⊂
X × X) and of local probability distributions for all vari-
ables p(Xi = xi|parents(Xi)) [10]. The joint probability
distribution for X is given by

p(X = x) = p(X1 = x1, X2 = x2, . . . , Xn = xn)

=
n∏

i=1

p(Xi = xi|parents(Xi))

where parents(Xi) is the set of all ancestors Xj having a
directed edge in G connecting Xj with Xi, i.e.

parents(Xi) :=
{
Xj |(Xj , Xi) ∈ E

}
.

The lack of arcs between random variables denotes (con-
ditional) independence among the variables [8]. Learning
the structure of a Bayesian Network must solve two prob-
lems. First, the network structure must be learned. Second,
the local probability distributions have to be assigned.

Introducing a metric g on the space of possible net-
work structures M , which measures how well the joint
probability distribution of X given by a dataset D is rep-
resented by an arbitrary DAG BN ∈ M , the structure
search becomes an optimisation problem for the best net-
work structure BN∗ with respect to the score BN∗ =
arg maxBN∈M g(BN,D). This problem has been proven
to be NP-complete [2]. The standard approach to avoid
searching the complete set M for the optimum, is a greedy

search [3] which is applicable up to a few hundred vari-
ables. However, in our spatial domain we easily deal with
several thousands of variables. For example the city of
Hamburg contains about 36,000 street segments. To handle
such large amounts of variables, the literature provides spe-
cialised algorithms, which restrict the search space due to
certain heuristics [5, 7]. In addition, we expect our dataset
D to be sparse, as only a small percentage of all available
edges E co-occurs in one path.

2.2 State of the Art

Two approaches exist that either bound the search space
by limiting the degree of vertices within the network or by
limiting the set of possible edges: the Sparse Candidate al-
gorithm [5] and the Screen Based network search [7] re-
spectively.

The Sparse Candidate algorithm [5] limits the search
space by bounding for each variable in the network the num-
ber of possible parents (the parent candidate set). It iden-
tifies the best parent candidate set for each variable using
two heuristics: one for selection of appropriate parent vari-
ables and a second to evaluate the size of the parent can-
didate sets. Beginning with a minimal parent set size of
two, the algorithm stepwise increases the number of pos-
sible parents until the stop criteria of the second heuristic
applies. The advantage of this algorithm is the strongly re-
duced Bayesian Network structure search space. But, as a
main challenge of an approach like this, Friedman, Nach-
man and Peér mention the ability to represent higher or-
der XOR relations or so called mutually independence re-
lations. If more variables than the maximal cardinality of
the parent set are concerned in such a negative correlation,
there is no chance for the algorithm to discover this rela-
tion during structure learning. This algorithm does also not
utilise the sparseness of the given dataset.

Another state of the art structure learning algorithm is the
Screen Based Network Search algorithm [7], which bounds
the search space through pre-sampling the allowed edges
of the Bayesian Network. It uses the sparseness within
the data by processing frequent sets of random variables.
The Bayesian Network learning task for a large number of
random variables is divided into smaller learning tasks that
are easy to handle. This requires the combination of those
Bayesian Networks, encoding a partial probability distribu-
tions, to a valid Bayesian Network. The first step is called
screening step. There it builds for each high frequent vari-
able set a corresponding local Bayesian Network. Providing
the most important information about the probability distri-
bution, it is reasonable to only consider the variable sets
with high frequency. The edges of these small Bayesian
Networks enclosed with a score (for example the frequency
of the variable set, but also other heuristics are described
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in [6]) are accumulated in a stack (called edgedump). This
becomes the main input for the second step, the search for
an all-embracing Bayesian Network. One by one edges are
drawn from the top of the edgedump and are included in
the resulting Bayesian Network in case that the score of the
graphical model increases and its graph stays without cy-
cles. In an optional last step, which models negative corre-
lations, high frequent variable pairs are investigated for mu-
tual independence (within the dataset) and additional edges
are added to represent their negative correlations. Transfer-
ring this algorithm to a spatial probability space defined for
an arbitrary city might cause undesirable memory or time
requirements. As described in section 1 each street segment
of the traffic network becomes a random variable and there-
fore a possible item during the frequent itemset enumera-
tion. The number of frequent sets increases drastically by
increasing the maximum frequent set lengths. One solution
to reduce the number of frequent sets, is to increase the fre-
quency threshold t, used for the decision whether a set of
variables is highly frequent or not, such that we can handle
the number of resulting frequent sets. But this step requires
additional knowledge about the distribution, and the result-
ing Bayesian Network hardly describes the dataset as only
a few variables get the chance to be connected.

Due to memory and time complexity, both algorithms
were unable to find satisfying solutions or gave no solution
at all in our application. We present a new approach (in
section 3) that will bound both, the edgeset E and the vertex
degree and therefore reduces the influence of the number
of variables n and their joint probability distribution on the
estimated time and memory requirements (see section 3.1).
This is a strong condition in our spatial context, as only this
independence guarantees the applicability of an algorithm
to arbitrary large city sizes with unknown traffic behaviour
as shown in the next sections.

3 Scalable Sparse Bayesian Network Struc-
ture Learning Algorithm

Our new approach (algorithm 1) bases on a heuristic that
combines the ideas of both algorithms (bounding the edge-
set and the number of possible ancestors). This is done in a
two-step algorithm: First, we pre-sample within each route
ω a set of maximal k distinct edges uniformly distributed.
Afterwards, we apply a Screen Based Network Search like
algorithm to the dataset as follows. We enumerate frequent
variable sets on this pre-sampled data with threshold t and
maximal length ml. This results in an adjustable bounded
number of subsets. For each of these sets we determine
in a second step a Bayesian Network that fits the original
data best and collect their edges on a stack. We may order
this stack by the score of the local networks or by the fre-
quency in the local Bayesian Networks [6]. In a third step,

we draw edges from the ordered stack and build a global
Bayesian Network by adding the edge in any direction if
it does not create any cycle in the network and increases
the score. Afterwards, we scan the original dataset and re-
compute the common probability tables for each vertex in
the Bayesian Network. This new Baysian Network learn-

Algorithm 1 SCALABLE SPARSE
BAYESIAN NETWORK LEARNING

Require: D , complete dataset
k , maximal frequent set size
ml , frequent set length
t , support threshold
g(·) , Bayesian Network score

Ensure: BN , a Bayesian Network
1: for all observations ω ∈ D do
2: ω′ := sample k locations from ω
3: add ω′ to D′

4: end for
5: FS := enumerate frequent sets (D′,t,ml)
6: for all fs ∈ FS do
7: BN∗ = arg maxBNonfs g(BN,D)
8: add edges of BN∗ to edgedump or if already in

edgedump increase their score
9: end for

10: sort edgedump decreasing
11: for all edge ∈ edgedump do
12: if BN ∪ edge contains no cycle then
13: if g(BN ∪ edge) > g(BN) then
14: add edge to BN
15: end if
16: end if
17: end for
18: return BN

ing algrithm features pre-sampling to transform an arbitrary
dataset to a processable one with adjustable size and den-
sity. Furthermore, the pre-sampling is reasonable as it does
not destroy too much information given by the set of routes.
The information about the most significant dependencies,
represented by highly frequent variable sets, remains in the
input data, because the corresponding variable sets keep a
high frequency.

3.1 Analysis

The inclusion of the pre-sampling step to the Screen
Based Network Search bounds the memory requirement of
the network search independently from the observed prob-
ability distribution and reduces the influence of the number
of random variables on the running time.

To prove the memory boundedness we have to prove
it for the main memory consumers. These are the list of
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frequent sets and the edgedump. In general an expecta-
tion for the number of frequent sets of length ml within
a dataset that contains n random variables and m observa-
tions is given by n

avglen

(
avglen

ml

)
where avglen is the av-

erage length of the observed paths. The pre-sampling up-
per bounds avglen to k. Therefore the number of fre-
quent sets is lower than n

avglen

(
k

ml

)
. To store these sets,

we need O( n·ml
avglen

(
k

ml

)
). To estimate the edgedump size

we have to know the number of possible edges. A di-
rected acyclic graph with n vertices may contain at most
1/2 · n(n − 1) edges. Thus, the edgedump may only con-
tain ml ·

(
k

ml

)
1/2 · ml(ml − 1) edges. Of course, this is

a rough approximation because edges co-occur in the fre-
quent sets and the required memory becomes much smaller
using an appropriate data structure for the edgedump. This
worst case assumption results in case of n � avglen � ml
in a total memory requirement in O(n ·

(
k

ml

)
). The re-

quired time decomposes in four steps: frequent set enumer-
ation, Bayesian Network screening, sorting the edgedump
and testing for cycles. The frequent set enumeration re-
quires O((td + mld)(n + m + 2td+mld)) with td := n− t
and mld := m − k [9]. Bayesian Network learning is ex-
ponential and requires every time O(2ml). This results in
a total requirement of O(n · 2ml

(
k

ml

)
). Sorting n elements

is in O(n(log n)). Given the maximal edgedump size this
leads to O(

(
k

ml

)
·n log n). Detecting cycles is in order of the

numbers of ancestors of the nodes. Worst case this equals
to the number of edges, so as a rough bound detecting the
cycles is in O((n ·

(
k

ml

)
)2). The sum leads to an overall time

requirement in O((n + m)2n+m + n2 + n log n).
We expect the resulting network structure to simplify the

dependencies, as it becomes more unlikely for a relation to
be recognised with increasing number of affected variables.
But in case of sparse data, the most significant dependencies
are the most frequent ones, and we can be sure to represent
them.

Our main result that makes our Scalable Sparse Bayesian
Network learning algorithm applicable to arbitrary cities
and spatial regions, is the linear dependency of the mem-
ory requirement on dimensions n and m of the input data
D, and a further speed up of the structure learning process
compared to Screen Based Network Search.

3.2 Properties of Spatial Bayesian Net-
works

The interpretation of the resulting network structure may
easily lead to the assumption that an edge from Xi to Xj

denotes the probability of a path that first passes Xi to pass
also Xj . However, our model deals with trajectories as sets
of locations, omitting their temporal order (see section 1).
Therefore, the existence of the given edge only containes
the information that knowing whether a route passes Xi we

may have an assumption for also passing Xj . In general,
the direction of the edges does not represent causality.

When introducing the traffic network and routes, we did
not require connectivity of either. Now, in the resulting
Bayesian Network previously separable components, con-
tained in the traffic network, stay not necessarily separable
in the Bayesian Network. The reason is that routes may con-
tain locations of multiple components (connected by streets
outside of the city).

We use this property in our application. When generating
our dataset, we do not only allow paths through the possibly
unconnected street network G of a city, but through a suffi-
ciently large network that includes all connected paths min-
imizing the cost c(s, g) from any start s to any goal g within
the city network clc(s,g)(G). For the subsequent Bayesian
structure learning we consider just the important part of the
routes that passes the city. Thus, routes may become uncon-
nected. Nevertheless, the Bayesian Network may recognise
the dependencies between these locations.

The resulting spatial network also has another interest-
ing property. Due to the independence relations of the
source nodes within the DAG, we know that an arbitrary
path through G passes one of the source locations. For a
set of nodes, containing all sources or all of its descendants,
the same property holds. Thus, the Bayesian Network rep-
resents dependencies and conditional independencies be-
tween locations graphically by its topological structure (see
[1] and [10]).

4 Applicability

In this section, we demonstrate the applicability of our
algorithm for the city Brandenburg an der Havel. The traf-
fic network of this town contains about 4,200 street seg-
ments. We use a route generator that minimises travel
time between start and destination of each route, to sample
training datasets of different sizes (500, 1,000 and 200,000
routes). In this case these routes have a maximum length
of 200 segments. The routes are encoded binary within a
matrix. Per route there might be at most 200 ones and at
least 4,000 zeros. Therefore, we call the dataset sparse. Our
three datasets vary not only in the number of routes, but also
in the coverage of the traffic network. Uncovered locations,
will result in Bayesian Network nodes with degree zero af-
ter the stucture learning. During structure learning, we ap-
ply the scoring function BDeu [8] to evaluate the Bayesian
Network.

One benefit of Bayesian Networks is their ability to cre-
ate samples according to the represented distribution. In our
application, we exert sample generation not only to generate
trajectories accoring to the represented dependencies, but
also as a method to validate the accuracy of our Bayesian
Network. We applied Ancestral Sampling [1]. This algo-
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rithm first orders the random variables of the Bayesian Net-
work topologically. Afterwards, it processes the variables
in this order and samples their states according to the states
sampled in previous steps. This is possible, due to the fact
that the parents of each variable appear earlier within the
topological ordering than the variable itself. With increas-
ing number of samples, their distribution converges to the
distribution represented by the Bayesian Network [1]. In
the optimal case, the network represents the original distri-
bution of the given dataset D. Therefore, we may recognise
errors of the learning algorithm when validating the gener-
ated samples with the training set. We compare the relative
frequency p(e) for edges e of the training dataset with the
set of samples drawn according to the Bayesian Network.
Figure 1 displays the error distribution for the complete set
of locations of a region. In addition it shows the error sepa-
rated in three frequency classes: low p(e) < 0.015, medium
0.015 < p(e) < 0.1 and high. The separation illustrates
the comparably high quantity of low frequent segments and
their small variance. The few errors, are caused by the inac-

Figure 1. Difference of relative frequency of
locations in the dataset and in sets of sam-
ples

curate representation of mutual independence relations de-
noting dependencies as, for example, when a route passes a
certain set of locations it unlikely passes another set of loca-
tions. We successfully applied this algorithm also to other
cities, including Hamburg that contains about 36,000 street
segments. This could not be achieved with [7] and [5] on
our machine due to their variable memory requirements.

5 Evaluation

As none of the other presented Bayesian Network learn-
ing algorithms returned a network structure for our spatial

domain, our validation focuses on comparison with other
baseline models that model individual mobility. These are:
drawing random segments from the street segments without
regard for connectivity, and Hidden Markov Models [11].
Being generative models both approaches return a set of
segments. We perform our experiment as follows. For a
town (in this case we use the German city Rodgau) we cre-
ate 300,000 artificial routes and build a Bayesian Network
to represent their probability distribution. We also use these
trajectories to learn a Hidden Markov Model (HMM). Like
Bayesian Networks, Hidden Markov Models are graphical
models. The main difference is that Markov Models do not
represent a probability distribution but a stochastic process,
a so called Markov process. A system is assumed to act
in discrete states. A first order Hidden Markov Model (as
we will use here) keeps the transition probabilities between
consecutive states within a transition matrix. This implies
that each state only depends on its ancestor and not on the
whole state history. Such Markov Models may be used to
sample Markov chains of arbitrary length. In our case a
state is defined as being at a certain segment, this is similiar
to the random variable definition in section 1.

The other baseline model is the simplest generative
model that creates sets of street segments. It utilises the
street network as an urn to draw segment sets from. We
compare also this method (weighted random sampling) to
our Bayesian Network based algorithm. In this case, the
similarity of both models is that each does not guarantee
the resulting sample to be connected but to converge to the
underlying frequency distribution of the original data. Both
baseline methods request for a certain sample length. We
draw this value according to the distribution specified by
the routeset.

All three models are used generatively to create a
set of 10,000 trajectory samples. Afterwards we draw
500 pairs of locations (segment1, segment2) from the
street network and compare their conditional probability
p(segment1|segment2) with the probability of the origi-
nal routes. We repeat the drawing 10,000 times to avoid
random effects. One criterion for comparison is the corre-
lation between the predicted probabilities and the original
probability. In our experiment the mean correlations were
75% for our Spatial Bayesian Networks, 71% for Hidden
Markov Models and 47% for weighted random sampling.
Figure 2 shows the complete correlation distribution over
all 10,000 sets of location pairs. The high correlation of
the Hidden Markov Models is misguiding, because in most
cases the Markov chain prediction equals zero. Due to the
relative small original conditional probabilities it correlates
well, though. Figure 3 displays the mean deviation between
predicted and original probabilities. It clearly visualises the
negative bias of the HMM. To summarise, the use of Spatial
Bayesian Networks to represent traffic behaviour results in a
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Figure 2. Distribution of correlation for 10,000
sets of 500 location pairs

more accurate description than the two baseline approaches.

6 Conclusion

This work shows that recent advances in Bayesian Net-
work learning increase the applicability of those to chal-
lenging real-world domains. We introduce a new method
for Bayesian structure learning in presence of sparse data
that combines the features of state of the art algorithms
(Sparse Candidate algorithm [5] and Screen Based Net-
work Search [7]) by limiting the size of the maximum fre-
quent sets in the data. This enables the usage of Bayesian
Networks also in spatial applications that have serious de-
mands on the structure learning method. Unknown traffic
behaviour (which leads to unpredictable probability distri-
butions) and arbitrary city sizes (resulting in many random
variables and a large dataset) are no obstacles for the struc-
ture learning method we presented, neither in time nor space
requirements.

Bayesian Networks enrich a street map with additional
information about the traffic behaviour within a city. In spa-
tial applications, Bayesian Networks provide new possibil-
ities compared to other representations of the conditional
probabilities among the locations. For example, a Bayesian
Network offers a graphical representation of independence
relations [10] among poster locations.

In future work, we will investigate the usage of Spa-
tial Bayesian Networks to plan poster advertisement cam-
paigns.

Figure 3. Distribution of prediction error
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