CHARACTERIZATION OF PEM FUEL CELLS BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

<u>Dietmar Gerteisen</u>, Anne-Christine Scherzer, Stefan Keller

Fraunhofer-Institut für Solare Energie Systeme ISE

Heraeus-Seminar: Next generation polymer membrane fuel cells

2.-5. July 2017

www.ise.fraunhofer.de

AGENDA

- Motivation: What can impedance spectra tell us?
- Characteristics of EIS and their interpretation
 - High frequency resistance (HFR)
 - 45°-branch at high frequencies
 - Charge transfer resistance
 - Mass tansport resistance
- Differential cell measurements vs. "normal" stoichiometric measurements
 - Channel impedance
- Conclusion

Interpretation of typical polarization curve

- PolCurve shows voltage at specific current
 - Voltage loss breakdown is of interest
- EIS can discriminate different loss mechanisms
 - if processes occure at different time constants

Mukerjee et al., Energy Environ. Sci., 2011, 4, 346-369

Typical impedance spectrum of a PEMFC stack

Question: What can we learn from such spectra?

High frequency resistance

High frequency resistance (HFR)

$$Z_{FC}(\omega \rightarrow \infty) = i\omega L_{cable} + R_{contact}^{K} + R_{membrane} + R_{contact}^{A}$$

Der Hochfrequenzwiderstand (HFR)

$$Z_{blank}(\omega \rightarrow \infty) = i\omega L_{cable} + R_{contact}^{K} + R_{contact}^{A} + R_{GDL}^{A}$$

$$Z_{FC}(\omega \rightarrow \infty) - Z_{blanc}(\omega \rightarrow \infty) = R_{membrane} - R_{blanc}$$

negligible or known

From HFR or conductivity, the membrane water content λ can be determined

$$\sigma = (0.514 * \lambda - 0.326)e^{1268(\frac{1}{303} - \frac{1}{T})}$$

45°-branch and charge transfer resistance

45°-branch @ high frequency

45°-branch @ high frequency

10 CONFIDENTIAL

Fraunhofer

45°-branch @ high frequency

Example:

- EIS @ N₂/H₂
- Protonic resistance of CL

45°-branch @ high frequency **Inhomogeneous CL properties**

- Agglomerate model
- \blacksquare Oxygen transport in CCL \rightarrow concentration gradient dependent on D_{eff}
- Proton transport in CCL → overpotential gradient dependent on $\sigma_{
 m eff}$

1D cathode model

Charge balance equation & boundary conditions

$$l_{CL}^{2}C_{DL}\frac{\partial(\Phi^{p}-\Phi^{e})}{\partial t}-\frac{\partial}{\partial x}\left(\sigma\frac{\partial\Phi^{p}}{\partial x}\right)=-l_{CL}^{2}\Lambda j_{gen}^{a}$$

$$\frac{\partial \Phi^p(0)}{\partial x} = 0 \qquad \qquad \Phi^p(1) = 0$$

Mass balanance equation & boundary conditions

$$l_{CL}^{2} \varepsilon_{CL}^{eff} \frac{\partial c_{O2}}{\partial t} - \frac{\partial}{\partial x} \left(D_{O2}^{eff} \frac{\partial c_{O2}}{\partial x} \right) = -l_{CL}^{2} \frac{\Lambda}{4 F} j_{gen}^{a}$$

$$c_{O2}(0) = c_{O2}^{GDL} \qquad \qquad \frac{\partial c_{O2}(1)}{\partial x} = 0$$

1D cathode model

 Differential equation system after perturbation, linearization and Laplace transformation

$$l_{CL}^{2}C_{DL} s \left(\overline{\Phi^{p}} - \overline{\Phi^{e}}\right) - \frac{\partial}{\partial x} \left(\sigma \frac{\partial \overline{\Phi^{p}}}{\partial x}\right) = -l_{CL}^{2} \Lambda \overline{j_{gen}^{a}}$$

$$l_{CL}^{2} \varepsilon_{CL}^{eff} \ s \ \overline{c_{O2}} - \frac{\partial}{\partial x} \left(D_{O2}^{eff} \frac{\partial \overline{c_{O2}}}{\partial x} \right) = -l_{CL}^{2} \frac{\Lambda}{4 F} \overline{j_{gen}^{a}}$$

$$\overline{\Phi^p}(1) = \frac{\partial \overline{\Phi^p}(0)}{\partial x} = \frac{\partial \overline{c_{02}}(1)}{\partial x} = \overline{c_{02}}(0) = 0$$

$$\mathsf{Z} = \frac{\overline{\Phi^e}}{\sigma \frac{\partial \overline{\Phi^p}(1)}{\partial x}}$$

What happens for inhomogeneous CL properties?

 Differential equation system after perturbation, linearization and Laplace transformation

$$l_{CL}(C_{DL}) (\overline{\Phi^p} - \overline{\Phi^e}) - \frac{\partial}{\partial x} (\sigma \frac{\partial \overline{\Phi^p}}{\partial x}) = -l_{CL}^2 \Lambda \overline{j_{gen}^a}$$

$$l_{CL}(\varepsilon_{CL}^{eff}) s \, \overline{c_{O2}} - \frac{\partial}{\partial x} \left(D_{O2}^{eff} \frac{\partial \overline{c_{O2}}}{\partial x} \right) = -l_{CL}^2 \frac{\Lambda}{4 \, F} \overline{j_{gen}^a}$$

$$\overline{\Phi^p}(1) = \frac{\partial \overline{\Phi^p}(0)}{\partial x} = \frac{\partial \overline{c_{02}}(1)}{\partial x} = \overline{c_{02}}(0) = 0$$

$$p(y) = p_{base}(\alpha + (1 - \alpha))e^{-\beta * \tilde{y}}$$

$$\mathsf{Z} = \frac{\overline{\Phi^e}}{\sigma \frac{\partial \overline{\Phi^p}(1)}{\partial x}}$$

Homogeneous CL properties !!

- Polarization curve
 - Doubling of Tafel slope for thicker CL at lower current density

- Impedance spectra as Nyquist-Plot
 - R_{CT} increases with lowering the CL thickness

- Tafel-Impedance as Nyquist-Plot \rightarrow Z_T = i_{steady-state}*Z
 - Identical height → Tafel slope identical
 - Shift to higher real part due to larger 45° branch (scales with thickness)

- Impedance as Nyquist-Plot at high frequencies
 - Linear branch
 - Thicker CL layer = longer branch

- Impedance as Bode-Plot (only phase)
 - Linear branch shows 45°-phase

- Capacity-Plot $(1/\omega Z'')$ vs Z'
 - When the perturbation completely penetrates the CL, the curve deviates from the linear branch

- Impedance spectrum
 - No impact on LFR → no charging currents at steady-state
 - Depressed impedance arc

- Capacity-Plot $(1/\omega Z'')$ vs Z'
 - Turning point still defines the total electrode double-layer capacity
 - Convex shape in the high frequency range

Penetration depth

25 CONFIDENTIAL

D. Gerteisen, Journal of The Electrochemical Society, **162** (14) F1431-F1438 (2015)

- Tafel impedance
 - Tafel slope can not be extracted easily by the height or diameter of the spectra

Decreasing double-layer capacitance and protonic conductivity profile towards membrane

- Theoretical consideration
 - Derivation of divergence leads to additional term

$$l_{CL}{}^{2}C_{DL} s (\overline{\Phi^{p}} - \overline{\Phi^{e}}) - \frac{\partial}{\partial x} \left(\sigma \frac{\partial \overline{\Phi^{p}}}{\partial x} \right) = -l_{CL}{}^{2} \Lambda \overline{j_{gen}^{a}}$$

$$l_{CL}{}^{2}C_{DL} s (\overline{\Phi^{p}} - \overline{\Phi^{e}}) - \left(\frac{\partial}{\partial x} \sigma \right) \left(\frac{\partial \overline{\Phi^{p}}}{\partial x} \right) - \sigma \left(\frac{\partial^{2} \overline{\Phi^{p}}}{\partial x^{2}} \right) = -l_{CL}{}^{2} \Lambda \overline{j_{gen}^{a}}$$

$$j_{CDL}^{*} j_{para-Profile}^{*} j_{divergence}^{*} j_{gen}^{*}$$
New Term

F1431-F1438 (2015)

Decreasing double-layer capacitance and protonic conductivity profile towards membrane

Tafel impedance

Dependent on the parameter profile the spectra separates into a low and

high frequency arc.

S.K. Roy, H. Hagelin-Weaver, M.E. Orazem, Journal of Power Sources 196 (2011)

H. Nara, S. Tominaka, T. Momma, T. Osaka, Journal of The Electrochemical Society 158 (2011)

Origin of the separation into high/loe frequency arc

- Comparison between homogeneous (solid) and non-homogeneous CL-properties: $\beta_{\sigma} = \beta_{CDL} = 2$ (dashed)
- Charge balance equation

$$l_{CL}{}^{2}C_{DL} s \left(\overline{\Phi^{p}} - \overline{\Phi^{e}}\right) - \left(\frac{\partial}{\partial x}\sigma\right) \left(\frac{\partial \overline{\Phi^{p}}}{\partial x}\right) - \sigma \left(\frac{\partial^{2}\overline{\Phi^{p}}}{\partial x^{2}}\right) = -l_{CL}{}^{2}\Lambda \overline{j_{gen}^{a}}$$

→ Additional term shows minimum, which is responsible for the separation

Impact of the electrode potential on the low frequency arc

Distributed double-layer capacitance

$$p(y) = p_{base}(\alpha + (1 - \alpha)e^{-\beta * \tilde{y}})$$

- Low frequency arc decreases with decreasing potential
 - Charge transfer resistance
 - No mass transport resistance

Low frequency arc

Impedance measurement at "normal" flow conditions

- What means "normal" in this context?
 - Non-excessive stoichiometry
 - Inhomogeneous conditions over active area
 - Cell with technical relevant size
 - Real stack hardware

How to interprete the low-frequency arc at "normal" flow conditions

Large impact on flow conditions \rightarrow in-plane effects have to be considered

Low-frequency arc: Insights by spatially resolved EIS measurements

- Multi-Channel-Characterization-System (MCCS)
- Segmented Along-the-channel-Cell

Low-frequency arc: Insights by spatially resolved EIS measurements

Segmented Along-the-channel-Cell

- 25 segments
- Size: 1 cm²
- 9 Channel á 25cm length
- Land/channel width 0.45/0.55mm

perfect contact resistance

Current distribution and evolution of impedance spectra downstream the channel

- **Current generation** decreases from inlet to outlet (I_{total} =40A)
- Low frequency arc increases

Current distribution and evolution of impedance spectra downstream the channel

- EIS @ low current density (I_{total}<3A)
- Even at low current density values and "normal" flow conditions a low-frequency arc appears

Current distribution and evolution of impedance spectra downstream the channel

- Even at low current density values and "normal" flow conditions a low-frequency arc appears
- Increasing flow rate
 - Does not impact air inlet segment
 - Has a small impact on the high frequency arc
 - Effects strongly the lowfrequency arc

What is the origin of the low-frequency arc?

current per segment: $i_{seq} = i_0 c exp(\eta/b)$

current response: $\Delta i_{seq} = i_0 \exp(\eta/b) (\Delta c + c \Delta \eta/b) - C_{DL} d_t \Delta \eta$

What is the origin of the low-frequency arc?

- Differential cell
 - High stoichiometry → no concentration gradient
 - Oscillating concentration in porous media

1D-cut is representative for whole cell

What is the origin of the low-frequency arc?

Differential cell

Non-differential cell

- "normal" stoichiometry concentration gradient present
- c_{O2} oscillates also in-plane

Numerical model available that acounts for the oxygen dynamics in through- as well as in-plane direction

Analytical cathode EIS model developed by Kulikovsky et al. for small current density values

- Negligible steady-state gradients in the CCL
 - $<= 100 \text{mA/cm}^2$

impedance

 $J \ll \min \left\{ j_p = \frac{\bar{\sigma}_p b}{l_{\cdot}}, \quad j_{ox} = \frac{4F' D_{ox} c_1}{l_t} \right\}$

- $J_{0.1}$: Bessel function 1th/2nd

Faradaic and proton transport

Impedance due to oxygen transport in CCL

$$Z_{ct+p} = \frac{l_t}{\sigma_p} \left(\frac{2}{\beta \zeta} \right) \frac{J_1(\zeta) Y_0(\phi) - J_0(\phi) Y_1(\zeta)}{J_0(\phi) Y_0(\zeta) - J_0(\zeta) Y_0(\phi)}$$

$$\phi = \exp\left(\frac{\beta}{2}\right)\zeta, \quad \zeta = \frac{2}{\beta}\sqrt{-\frac{j_0l_t}{\sigma_0b} - i\frac{\omega C_{dl}l_t^2}{\sigma_0}}$$

$$Z_{ox} = \frac{b\left(1 - \tilde{Z}_W\right)}{j_0\left(\tilde{Z}_W - \frac{\omega^2}{\omega_{ct}^*\omega_0^*} + i\omega\left(\frac{1}{\omega_{ct}^*} + \frac{1}{\omega_0^*}\right)\right)\left(1 + \frac{i\omega}{\omega_{ct}^*}\right)}$$

$$\omega_0^* = \frac{j_0}{4Fc_1l_t}, \quad \omega_{ct}^* = \frac{j_0}{C_{dl}bl_t} \qquad \qquad \tilde{Z}_W = \frac{\tanh\left(\sqrt{(j_0 + i4Fc_1l_t\omega)/j_{ox}}\right)}{\sqrt{(j_0 + i4Fc_1l_t\omega)/j_{ox}}}$$

Analytical cathode EIS model developed by Kulikovsky et al. for small current density values

Impedance due to oxygen transport in GDL and channel

$$Z_{gdl+c} = -\frac{l_t/\sigma_0}{\varphi \sin \varphi} \left(\frac{c_1^0 \tilde{\eta}_1^1}{c_1^1 \tilde{j}_0} \varphi^2 - 1 \right)^{-1}$$

Perturbation amplitude of the oxygen concentration at the GDL/CL interface, which is a <u>function of position</u>

 Derivation of the different impedance contribution can be found in

T. Reshetenko and A. Kulikovsky. Impedance spectroscopy study of the PEM fuel cell cathode with nonuniform nafion loading. *J. Electrochem. Soc.*, 164:E1–E6, 2017. doi: 10.1149/2.0041711jes.

A. A. Kulikovsky. A simple physics—based equation for low–current impedance of a PEM fuel cell cathode. *Electrochimica Acta*, 196:231–235, 2016. doi: 10.1016/j.electacta.2016.02.150.

A. Kulikovsky and O. Shamardina. A model for PEM fuel cell impedance: Oxygen flow in the channel triggers spatial and frequency oscillations of the local impedance. *J. Electrochem. Soc.*, 162:F1068–F1077, 2015. doi:10.1149/2.0911509jes.

- Impact of position
 - Increase of impedance spectra is dominated by channel impedance

- Impact of the flow rate / gas velocity
 - Inlet flow rate dominates the channel impedance
 - Small impact on high frequency arc (similar to experiement)

- Impact of oxygen diffusivity in CCL
 - only Z_{ox,CL} is changing

- Impact of oxygen diffusivity in GDL
 - all mass transport related impedances are affected

Conclusion

- Impedance spectroscopy is a powerfull characterization method for analysing fuel cells
- Dependent on the cell hardware and operating conditions, the spectrum shows different features that has to be interpreted carefully
 - Inhomogeneous catalyst layer properties can result in nonexpected characteristics
 - In-plane effects have to be considered in non-differential cell measurements
- By means of spatially resolved EIS measurements the mass transport impedances can better get extracted

Thank You Very Much for Your Attention!

Dr. Dietmar Gerteisen Fraunhofer Institute for Solar Energy Systeme ISE

Tel.: +49 761 4588 5205 Fax: +49 761 4588 9230

Dietmar.gerteisen@ise.fraunhofer.de

www.h2-ise.com