PREDICTIVE MAINTENANCE IN FORMING MACHINES

Actual RTD topics

Markus Wabner

AGENDA

Overview – Research areas Fraunhofer IWU Introduction – Predictive maintenance Deterministic approach Machine learning approach: an IT infrastructure V. Visualization and information distribution Outlook

I. Overview – Research areas Fraunhofer IWU (I)

Maintenance: is the combination of all technical, administrative and managerial actions during the life cycle of an item intended to retain it in, or restore it to, a state in which it can perform the required function 150 13306:2010

I. Overview – Research areas Fraunhofer IWU (II)

<i>i</i> MAINStrategies	Developmen	nt of maintenand	ce strategies f	for manufa	cturing assets
					<u> </u>

i MAIN CM Planning and installation of condition monitoring systems

iMAIN Assets Analysis of failure causes and proactive asset planning

Cloud-based IT systems for data analysis **iMAIN** IT Systems

iMAIN Algorithms Algorithms for predictive maintenance

Berlin 18/10/2016

Model-based information enhancement and virtual sensors **iMAIN** CoSimulation

iMAIN Support AR-Technologies, User Interfaces, Information distribution

Development of business models for I4.0 maintenance **iMAIN** Business

i MAINServices **MAINTENANCE CLOUD** research and service platform

I.P.A. International Packaging Association Meeting

II. Introduction – Predictive maintenance

What is predictive maintenance?

Prediction (lat. praedicere ,predict' ,prognosticate' ,forecast')

Finding correlations → SoH vs. Load History data

II. Introduction – Predictive maintenance

What are the advantages of predictive maintenance?

Aim: Make maintenance plannable – with the following characteristics:

- Estimation of future failures dates / remaining useful life (RUL)
- Optimal usage of RUL in real production

Advantages for manufacturers:

- Avoiding of expensive and unplanned down times
- Improved ERP: assets and human resources

- Increasing productivity
- To guarantee manufacturing quality
- Increasing customer satisfaction (e.g. in just-in-time supply chains)
- New service-based business opportunities (e.g. I4.0 based)

Increasing efficiency / decreasing costs in maintenance

II. Introduction – Predictive maintenance

What are the challenges in predictive maintenance?

Deterministic description of load - failure - relation

(→ models)

- quality of the model and the input parameters essential
- even for unique systems possible

Pattern recognition, Data-mining,
Machine learning,...
(→ artificial generation of knowledge)

- "learning" from the history
- large data base necessary

Initial situation

Fatigue cracks on frame components of forming presses

- Press crown, table, ram
- Hydroforming components

High costs caused by

Undetected cracks \rightarrow change of press characteristics \rightarrow product quality!

I.P.A. International Packaging Association Meeting

- Production shifting
- Costly & time consuming repair \rightarrow long down times!

Berlin 18/10/2016

- Welding (if possible) often only a temporary solution
- Manufacturing of new components

Automated monitoring and accumulation of mechanical stresses for the early detection of overloads and for the avoidance of fatigue cracks recommended

Monitoring of mechanical stresses

Challenges in the stress monitoring by strain gauges

- Definition of critical spots under real loads is difficult
- Strain gauge application often problematically
 - Limited accessibility (corners, inner structures)
 - ➤ High number of sensors necessary (cost of instrumentation, cables!)

I.P.A. International Packaging Association Meeting

- Calibration of sensors!
- Lifetime of sensors!

Approach

 Combination of real sensors and und physical models ("Virtual Sensory")

Berlin 18/10/2016

Principle of Virtual Sensory for stress monitoring in mechanical components

Also: "Secondary usage" of design data / models

Berlin 18/10/2016

I.P.A. International Packaging Association Meeting

Monitoring mechanical strains and stresses in time domain

Accuracy monitoring of the Virtual Sensors (modOBSERV)

Evaluation regarding fatigue strength and RUL

RUL estimation: Evaluation of the distance between real stresses and finite life fatigue strength limit [in number of load cycles]

Initial situation

Additional critical components of forming machines

- Main drive (motor, bearing, flywheel, transmission, clutch)
- Crank assembly
- Press guide (slide guide)
- Tappet balancing
- Process media (oil, air)

SoA monitoring concepts

- Threshold definition
- Estimation of short-term trends

Challenges for prediction

Data base for "non-deterministic" methods to small Wear models rarely/not available

Approach

- Increasing data base by networking similar systems/machines
- Generation of added value from "conventional" CM systems
- Learning from the history for the future

Development of an IT infrastructure for networked (and cooperative) maintenance

Data acquisition Slovenia

Test example: Artificial intelligence (AI): Model reduction and development of Virtual Sensory by artificial neural networks (ANN)

Information and Alerts: at the right time, at the right place

Information access with access control

- Web Browser
- Mobiles (Web Browser, App, SMS)
- Interfacing to ERP
- Interfacing to SAP

Alerts and Status

- Next to the machine
- via Email
- via SMS
- Browser-based dashboard

Example GUI: browser based

Example GUI: Monitoring of mechanical stresses and load history

Full resolution: "SingleShot"

Monitoring ram tilting

Ram Tilt: Pitch angles

Excentric force injection: XY plot:

Total force (Y) versus off-center coordinates (X)

Virtual & Augmented Reality for Maintenance Support and Service

Virtual Reality (VR)

3D visualisation of assets

Augmented Reality (AR) / Glasses

Applications Intelligent HMI

- Individualised information for every user
- Actual, relevant information locally
- Live-Condition-Monitoring
- Diagnosis/ failure causes
- Standardised control
- Service applications
- Energy flow visualisation
- Presentation
- Various systems:
 (3D-)Monitors, Tablets,
 Smartphones, -glasses, -watches

Overall system and networking

- Cloud-based data storage
- Intelligent data evaluation for generation of new information
- RUL estimation
- Optimisation of tracking and navigation in shop floors
- Online parameter optimisation of press drives

Improved Man-Machine-Interaction / Improvement of process quality / cost reduction

VI. Outlook

Press Shop 4.0 (Presswerk 4.0) – a strategic research frame

VI. Outlook

EU Cluster MAINTENANCE@FoF

Partners und working areas

Power Machine tools (milling)

©EASE-R³ Machine tools

Machine tools, spindles, robotics, transport systems (lift trucks), batteries

Manufacturing devices, assembly lines, fixtures

Machinery, Robotics, in-line manufacturing (AM)

White rooms: Robots, effectors, transportation, dna fixturing systems

Cluster Expert Workshop to discuss and define

Brussels, 15.-16. February 2016

Roadmap will be published in October 2016

Additional workshops & roadmaps: Zero Defect Manufacturing, Robotics, High Precision Manufacturing, Clean Factory

www.mainfof.eu

whiterR

i MAIN

EU research foci EU 2030

THANK YOU

Contact

Dipl.-Ing. Markus Wabner (COORDINATION)
Fraunhofer Institute for Machine Tools and Forming Technology IWU
Reichenhainer Str. 88
D-09126 Chemnitz

Tel.: +49 (0) 371/5397-1458 Fax: +49 (0) 371/5397-1447

markus.wabner@iwu.fraunhofer.de http://www.iwu.fraunhofer.de

