

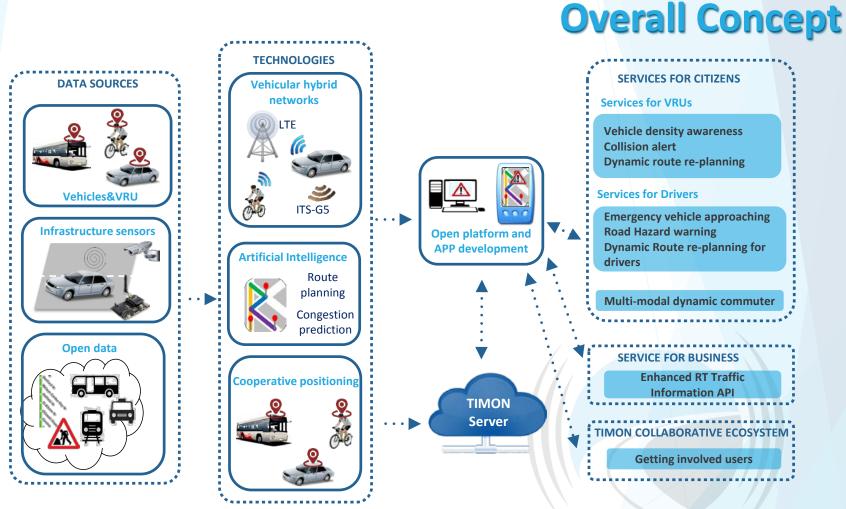
# TIMON

## **Hybrid Communication**

#### CODECS Workshop / May 19, 2017 Karsten Roscher, Fraunhofer ESK Enrique Onieva, Deusto

## Contents

## Project Overview


## > Hybrid Communication Concepts

## Services Enabled by Hybrid Communication

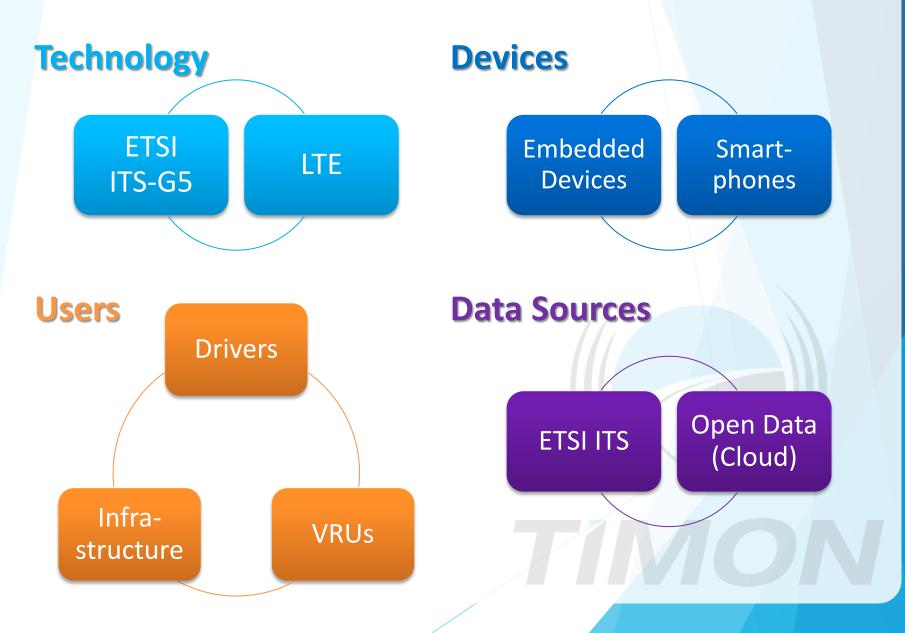
## **Project Overview**

# Enhanced **real-time services** for an optimized **multimodal** mobility relying on **cooperative networks** and **open data** *TIMON*

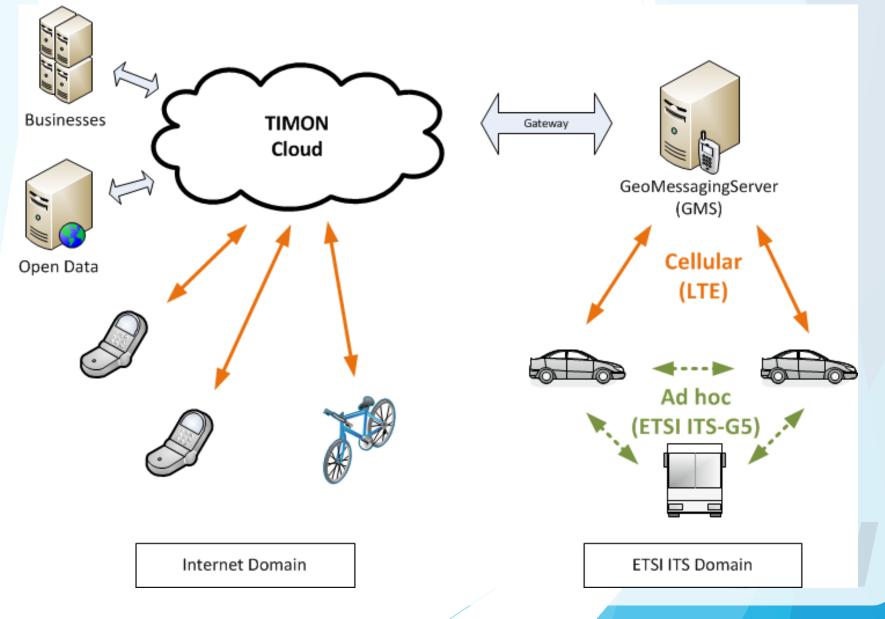
- Executed by a consortium of 11 partners at EU level
- Duration: 42 months (June 2015 November 2018)
- > Objective:
  - Develop a cooperative open web-based platform and mobile application in order to deliver real-time information and services to drivers, vulnerable road users (VRUs), and businesses
  - By taking advantage of cooperative communication and by processing open data related to mobility



- Increased road safety: Driver assistance systems based on V2V and V2I, services for VRUs
- Flexible and sustainable mobility: Transport and mobility data from a diverse range of sources for optimized multimodal route planning and congestion prediction


## Contents

#### Project Overview


#### Hybrid Communication Concepts

## Services Enabled by Hybrid Communication

# **Hybrid Communication in TIMON**



## **Communication Architecture**



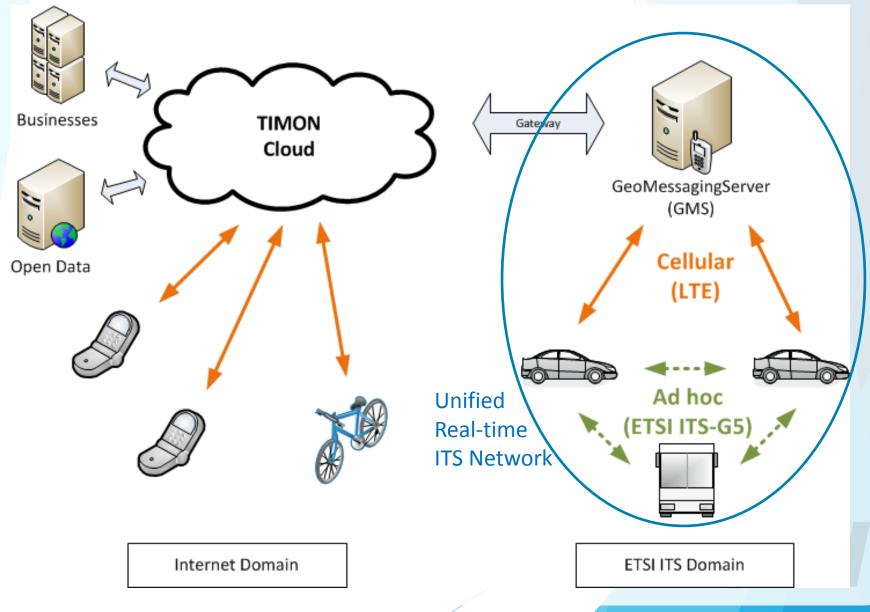
## **Communication Domains**

#### Internet

- Smartphone app for end-users, IP-based communication
- Variable data formats, sources, protocols, patterns
  - In TIMON: aggregated and harmonized by TIMON Cloud

#### ETSI ITS (TR 101 607)

- Integrated devices in vehicles, public transport, road side units
- ETSI ITS GeoNetworking / Basic Transport Protocol
- Standardized Messages: CAM, DENM, SPAT, ...
- Time critical (safety) applications
- Gateway mediates between the two domains
  - Cloud can trigger and receive warnings (DENM) and evaluate floating car data generated by CAMs


## **Towards Hybrid ITS Networks**

Future ITS applications require predictable communication

- Reliable, real-time communication
- Feedback about available communication resources



## **Communication Architecture Revisited**



## **Hybrid ITS Networks: Expectations**

Increased reliability

- Redundancy creates additional dissemination paths
- Combine the strengths of individual technologies
- Increased efficiency
  - Communicate with the most suitable technology
  - Direct local information exchange vs. cloud/fog/...
- QoS differentiation
  - Low-latency safety applications vs. best effort services
- Future-proof architecture
  - Consideration of multiple technologies from the start without reinventing applications and services every time
- Integration of new users and devices, e.g. VRUs
- Our approach: Unified GeoNetworking with adaptive selection of the optimal technology / network

# **Network Selection Strategies in TIMON**

If we have multiple communication channels (technologies) available, how do we select the right one?

Reliability vs. Efficiency

Policy-Based

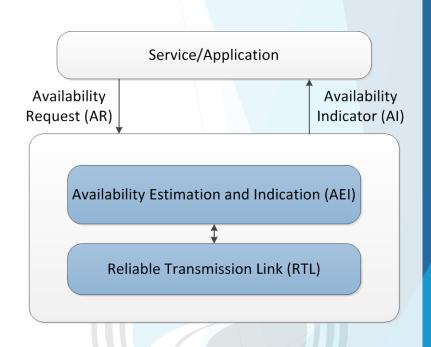
Selection strategy specified a priori by experts

#### > Availability Indication

 Online estimation of availability probabilities for each technology depending on requested QoS parameters

Q-Learning

 Online adaption of technology selection based on success/error feedback of previous attempts


# **Availability Indication**

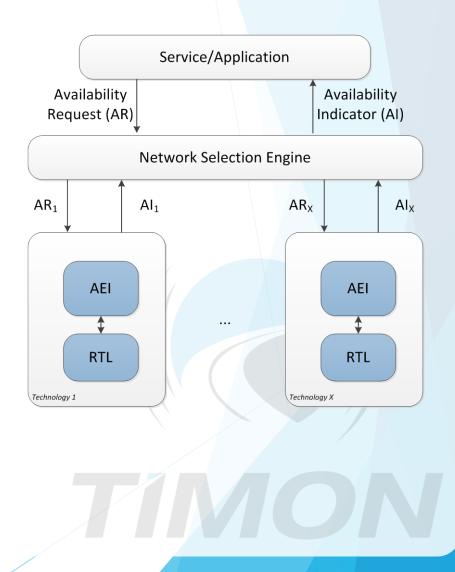
### Availability Request (AR): Minimum reliability threshold and/or maximum tolerable latency

# > Availability Indicator (AI):

Estimated probability of fulfilling the request

## Application can take action according to the indication



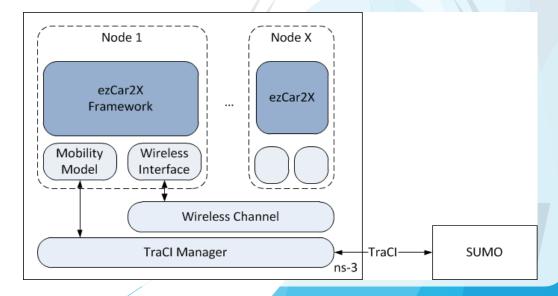

Schotten, Hans D., et al. "Availability indication as key enabler for ultra-reliable communication in 5G." 2014 European Conference on Networks and Communications (EuCNC), 2014

# **Network Selection Using Availability Indication**

#### > Network Selection Engine:

Aggregates availability indication from multiple technologies

- Cost-based selection of one or multiple links to fulfill the request
- Independent estimators for each technology easily scale to new technologies




# **Estimating Availability for ITS-G5**

- Common communication patterns provide no feedback
  Estimation of link quality based on available information
  - Estimation of link quality based on available information
    Details will be published in *"K. Roscher, T. Nitsche, R. Knorr: Know Thy Neighbor -*
    - A Data-Driven Approach to Neighborhood Estimation in VANETs. In Proceedings of 2017 IEEE 86th Vehicular Technology Conference. Sep. 2017"

#### Data collection based on large scale simulation

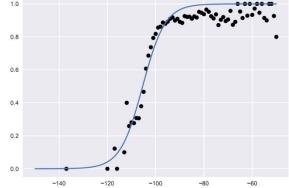
- Scenario: City of Luxembourg and surrounding highways
- Environment:
  - ns-3
  - SUMO
  - Fraunhofer ESK's ezCar2X



# **Estimating Availability for ITS-G5: Features**

#### Collected data

- Local
  - Position, velocity, channel busy ratio, packet size, ...
- Remote information exchanged in beacons or CAMs
  - Position, velocity, beacon timing and signal strength, ...
- Ranking of features according to mutual information with the transmission success (unicast and broadcast)
  - Most important: time since the last received beacon
  - Also significant:
    - Distance
    - Received signal strength
    - Difference between headings


# **Estimating Availability for ITS-G5: Results**

- Estimation quality depends on communication mode and beacon frequency
- Unicast
  - Better predictable (retransmissions): up to 90% accuracy
  - Higher beacon frequencies <u>improve</u> accuracy
- Broadcast
  - Overall lower accuracy: 70% to 82%
  - Higher beacon frequencies <u>decrease</u> accuracy

# **Ongoing Work**

#### Estimation of LTE availability based on RSRP

- Good results in controlled simulation scenarios
- Evaluation in high load situations
- Investigation of additional parameters with suitable partners



Performance of the selection algorithms is currently under investigation

- Can be fine tuned towards efficiency or reliability
- Opportunity to take application requirements into account
  - 1. Cooperative Awareness
  - 2. Cooperative Perception
  - 3. Cooperative Maneuvers

4. ...

## Summary

- Hybrid communication with an adaptive network layer enables transparent use of existing applications over a wide range of current and future technologies, e.g. ITS-G5, LTE/LTE-V2X, 5G, ...
- Applications can efficiently leverage the benefits of all available communication channels without modification
- ETSI Network Layer security is technology independent
  - Pseudonym and authentication scheme can be used for other technologies as well
- × Standardization and technology availability
  - × ETSI GeoNetworking standard is currently tailored to ITS-G5
  - Broadcast communication via cellular requires dedicated broadcast features (for scalability)

### Contents

- Project Overview
- Hybrid Communication Concepts
- Services Enabled by Hybrid Communication

# (a piece of the) Technological Challenge

- Use of data gathered thought communication architectures for Development of advance Artificial Intelligence for:
  - Congestion Prediction
  - Intermodal Route Planning
- Use of different sources of data in a connected environment: vehicles, vulnerable road users, infrastructure and open data:
  - Vehicle as a Sensor → positioning, time stamp, speed...
  - Vulnerable road users as Prosumers: provide data and consume processed information
- Actual mobility services (mainly) based on infrastructure and open data
- Use of real time data

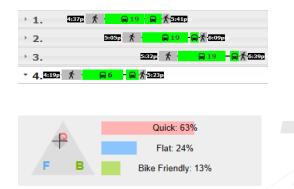
# **Advanced Artificial Intelligence**

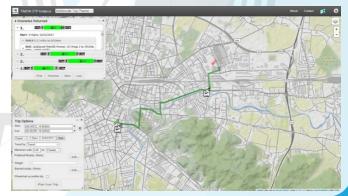
#### Interpretability

- Data Science in transport relies in classical AI
  - Decision Trees
  - Regression Techniques
  - Neural Networks
- Focused on precision ← → Not interpretability

#### Imbalance

- Traffic data is imbalanced: Abnormal situations are very rare
- High accurate predictions ← → Not Useful
  - No congestion at 4:30 am
  - No significant changes in traffic in next 10 minutes
  - Nobody in this room will win the lotto


# **Proposed Approach**


Improved evolutive tuning of fuzzy based prediction models

- Ordered multi-class problem (Nearest state predicted better)
- Cost-sensitive approach (Uncommon state hit better)
- Class size dependent accuracy

Differential evolution based intermodal route optimization

- CO<sub>2</sub> emission calculation (Green routes)
- Triangle preferences (Bike friendly)
- Public alternative route in high pollution days
- Walking, bike, motorbike, vehicle, public transport (Intermodal)





## Results

#### 70% of data reduction

- <10 minutes to build prediction models</p>
- <0.1 seconds to compute predictions</p>
- 90% accuracy in predictions
  - 80% of hit for abnormal states
  - 99% of times error in road speed is less than 10km/h
- Models based in 4-15 rules using only about 5 variables

| Expected/Obtained | Normal   | Increasing | Dense   | Congestion |
|-------------------|----------|------------|---------|------------|
| Normal            | 0.96     | 0.043      | 0.00074 | 0.00010    |
| Increasing        | 0.32     | 0.67       | 0.010   | 0.000059   |
| Dense             | 0.098695 | 0.809953   | 0.091   | 0.00016    |
| Congestion        | 0.31     | 0.65       | 0.033   | 0.0017     |

| Expected/Obtained | Normal | Increasing | Dense  | Congestion |
|-------------------|--------|------------|--------|------------|
| Normal            | 0.88   | 0.12       | 0.0014 | 0.000024   |
| Increasing        | 0.061  | 0.85       | 0.082  | 0.002      |
| Dense             | 0.0093 | 0.16       | 0.80   | 0.019      |
| Congestion        | 0.0012 | 0.056      | 0.15   | 0.79       |

## **Contact Information**

Karsten Roscher, Fraunhofer ESK: karsten.roscher@esk fraunhofer.de

Enrique Onieva, Deusto: enrique.onieva@deusto.es





TIMON project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no 636220.

# **TIMON Project**

Project Coordinator: DEUSTO (perallos@deusto.es) Dissemination Leader: CORTE (secretariat@corte.be)

www.timon-project.eu





TIMON project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no 636220.

## **Partners & Roles**



- 11 organisations
- 8 countries
  - Spain, Germany, Italy, UK, Hungary, Slovenia, Belgium, Netherlands
- Project Coordinator DEUSTO
- Technical Manager ISKRA