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Motivation in non-consumer products

 Fluctuating renewable resources

 Frequently full charging not 
secured

 Partial cycling at different state of 
charge levels

 Precise state algorithms necessary 
for an optimized energy 
management
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Example:
Storages in PV off-grid systems
Classification of operating conditions 
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Example power supplies: Smart battery management as 
part of an optimized energy management

 Communication interface 
between EMS and BMS

 Model based energy
management

 Load and generation 
management

 Optimized operation of 
battery system

 Control of energy fluxes

 Model based battery 
management

 SOC prediction in 
dependence on load profile 
forecast

 Efficiencies in dependence 
on load profile forecast 

 Information on aging

Weather 
forecast

Generator and 
load models

Load profile for 
battery system

Battery model

SOC 
forecast

EMS

BMS
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Battery management systems
Motivation and objective

Objective:

Lithium-ion cells have to be monitored and 
controlled, important issues are:

 Safety (e.g. overvoltage/undervoltage 
detection)

 Cycle and calendar life time

 State estimation

 Temperature/voltage monitoring

 High efficiency (well suited cell balancing, low 
energy consumption of the BMS)

Objective reachable 
with high end battery management systems

Central management unit

Module management unit 5
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Battery management system
Overview and function blocks

State estimation
 SOC
 SOH
 Other states (optional)

Control system
 Actuators and switches
 Battery models
 Load management
 Energy management (optional)

Error management
 Safety for cells

Thermal management
 Thermal battery models
 Thermal control

Measurement and monitoring
 Cell voltages
 Temperature
 Current

Communication
 Internal
 To external components

Battery 
Management 

System

safety layer

functional layer

control layer
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The problem of state estimation

 Inner states of the batteries need to be known for e.g. 

 Prognosis of the remaining run-time in an application

 Estimations of power capability

 The point in time for replacing the batteries  

 Inner states cannot be measured directly:

 Inner resistance

 State of charge (SOC)

 State of health (SOH)

 Procedures shall only use simple measurement values like terminal 
voltage, current and temperature
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Example: State of charge estimation

 Ah counter: Integration of measurement errors 

 Most conventional approaches:

 Use of some kind of OCV correction in combination with Ah counting

 Recalibration of the SOC value via OCV consideration needs resting phases

 Flat OCV characteristic with hysteresis for LiFePO4
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 Assumption of a Markov chain:

 It is imperative:

 Input U and Output Z are stochastically independent

 If Xt and Ut are known, then Xt+1 will be independent from all previous states 
X1,…,Xt-1

 Ut is statistically independent from X1,…,Xt and U1,…,Ut-1

 If Xt is known,  Zt will be independent from all other variables

 Bayesian filtering equation:

 A typical filter of this family is the Kalman filter

Introduction to 
Bayesian filters

 
 1111
1 )(),|()|()( tttttttt dxxPuxxPxzPxP 

Current

SOC

Voltage

Example SOC estimation
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 Recursive stochastic state estimator

 More insensitive against measurement errors

 No resting phases necessary for recalibration of SOC

 Fast identification of 
starting values 

 Improved performance for 
aged batteries

Drawbacks:

 Optimal estimator only for
processes with Gaussian noises

 Suitable only for linear systems

 For non-linear systems: 
Extended or Unscented
Kalman Filter 
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Example: State of charge determination
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Particle filter approach
Introduction
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 All probability density 
functions are approximated by 
samples (Monte Carlo method) 

 Offers possibility to deal with 
any kind of distribution by 
approximating the respective 
probability density function by 
a set of particles or samples

 Offers possibility to use 
multimodal distributions 
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Dual particle filter
State of chare and state of health estimation
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Particle filter
Example “State of Charge” estimation
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Initialization: No preliminary information

 SOC unknown

 Particles have been uniformly distributed over the entire SOC scale
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SOC scale

Particles

SOC(L)

Weight(L)Data of particle No. L

Particle filter
Example “State of Charge” estimation
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Grey: SOC-“position“ of the 
initial step or the previous step

Deterministic component
Δt * I  Ah counting

Stochastic component
Process noise

Particle filter
Example “State of Charge” estimation

1. Step: Use of the process model, diffusion
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Probability density 
function

Value according to the measurement 
model (based on the terminal voltage)

Weighted samples High weight Low weight Zero weight

Particle distribution 
from previous step

Particle filter
Example “State of Charge” estimation

2. Step: Use of the measurement model, weighting
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Weighted particle set

Unweighted 
resampled particle set

Result of this step: 
Estimated SOC value

Particle filter
Example “State of Charge” estimation

3. Step: Low variance resampling
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Process, drift, diffusion

Correction

Initial distribution

After measurement model

After process model

Particle filter
Evolution of probability density function
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Particle filter
Results 

Stationary PV application
State of charge and state of health for LiFePO4

“Long-term” testing
State of health for NMC
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Imposed temperature 
Particle filter
Results 

EV application
State of charge and state of health for NMC
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Stationary PV application
SOC estimation forLiFePO4

Stationary PV application
SOH estimation forLiFePO4

Particle filter
Results – Filter noise
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Conclusions 

 State of charge and state of health estimation very important but also 
sophisticated task for nearly all battery applications

 Particle filter for state of charge and state of health estimation with the 
following features:

 Precision: Finds “true“ value with minimal variation

 Speed: Sufficiently fast to cope with PV as well as EV profiles

 Flexibility: Able to cope with different initial values and temperature 
profiles

 Due to low computational efforts it can be implemented very well on  
small scale microcontrollers of battery management systems

 Particle filter is a very flexible and reliable tool for estimating inner states 
of batteries
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Thanks for your attention !!! 

Contact:
matthias.vetter@ise.fraunhofer.de 
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