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Motivation in non-consumer products

: Example:
M Fluctuating renewable resources Storages in PV off- gnd Systems
B Frequently full charging not Classification of operating conditions
secured
100- 100
W Partial cycling at different state of 80-

charge levels

M Precise state algorithms necessary
for an optimized energy
management
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Example power supplies: Smart battery management as
part of an optimized energy management

B Communication interface {T} S Weather
between EMS and BMS 7 forecast
B Model based energy * l
management
» Load and generation y é G|en2|rat02|a|nd = EMS
management *mmall | 1030 MOCEIS
» Optimized operation of * ‘
battery system
Y P Load profile for
- Control of energy fluxes -— battery system
B Model based battery ¥ =
management ST . Jv
» SOC prediction in I Battery model
dependence on load profile =
forecast * — BMS
» Efficiencies in dependence SOC SOC
on load profile forecast ~ N forecast
» Information on aging — 4
—
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Battery management systems
Motivation and objective

Objective:

Lithium-ion cells have to be monitored and
controlled, important issues are:

m Safety (e.g. overvoltage/undervoltage
detection)

Cycle and calendar life time
State estimation
Temperature/voltage monitoring

High efficiency (well suited cell balancing, low
energy consumption of the BMS)

Objective reachable
with high end battery management systems

Module management unit s
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Battery management system
Overview and function blocks

State estimation Control system

$ B Actuators and switches
Battery models
B Other states (optional) Load management
Energy management (optional)

control layer
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The problem of state estimation

B Inner states of the batteries need to be known for e.q.
» Prognosis of the remaining run-time in an application
» Estimations of power capability
» The point in time for replacing the batteries

B Inner states cannot be measured directly:
» Inner resistance
» State of charge (SOCQ)
» State of health (SOH)

B Procedures shall only use simple measurement values like terminal
voltage, current and temperature
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Example: State of charge estimation

B Ah counter: Integration of measurement errors
B Most conventional approaches:
» Use of some kind of OCV correction in combination with Ah counting
-~ Recalibration of the SOC value via OCV consideration needs resting phases
B Flat OCV characteristic with hysteresis for LiFePO,
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Introduction to
Bayesian filters Example SOC estimation

- \

Zt+1

Current

B Assumption of a Markov chain:
SOC

Voltage

M It is imperative:
» Input U and Output Z are stochastically independent

» If X, and U, are known, then X,,, will be independent from all previous states
X Xeg

» U, is statistically independent from X,,...,X;and U,,...,U,,
» If X, is known, Z, will be independent from all other variables
W Bayesian filtering equation: P(x) =7 'P(z, | xt)j P(X, | X4, U 1 )P(X,)dX, ,
B A typical filter of this family is the Kalman filter 9
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Kalman filter approach
Example: State of charge determination

M Recursive stochastic state estimator
B More insensitive against measurement errors
B No resting phases necessary for recalibration of SOC

Wi VYier1
|

B Fast identification of |

starting values Measurement Measurement:
System Input - 5 Xt o . SysterD Output
B Improved performance for .
aged batteries M
Process A Z

Drawbacks:

B Optimal estimator only for
processes with Gaussian noises

M Suitable only for linear systems K

- For non-linear systems: 8 | g e
Extended or Unscented
. Model
Kalman Fl|tel’ (Kalman Filter)

Output:
Estimation

Z-l

>

Measurement
Model

Process Model
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Particle filter approach
Introduction

m All probability density
functions are approximated by | | |
samples (Monte Carlo method) ¢ ¢ & @ & @ @ @ @ ® @& @
0 1

W Offers possibility to deal with
any kind of distribution by ‘®® 006 © 06 ©6 © o ¢
approximating the respective T ——
probability density function by oo ® 60 © © © ¢

a set of particles or samples i
m Offers possibility to use 2.
multimodal distributions |
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Dual particle filter
State of chare and state of health estimation

State of charge State of health

SOCHI = SOC;- o (Ibé“ -;IS}}N S0C SOH kel = SOH k
N
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Particle filter

Example “State of Charge” estimation
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Particle filter
Example “State of Charge” estimation

Initialization: No preliminary information
- SOC unknown

—> Particles have been uniformly distributed over the entire SOC scale

Particles \
e i
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Particle filter
Example “State of Charge” estimation

1. Step: Use of the process model, diffusion

Deterministic component Grey: SOC-"position” of the
At * | > Ah counting initial step or the previous step
U

@en @ @ & 6@ @ © ©
I | | | I |
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I | | | | | | | | I I
0 0.5 1

Stochastic component
Process noise
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Particle filter
Example “State of Charge” estimation

2. Step: Use of the measurement model, weighting

Probability density Value according to the measurement Particle distribution
function model (based on the terminal voltage) = from previous step
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Particle filter
Example “State of Charge” estimation

3. Step: Low variance resampling

/ Weighted particle set
1C@ @ W5, s WL i “:/‘.m‘"
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Particle filter
Evolution of probability density function
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Particle filter
Results

Stationary PV application “Long-term” testing
State of charge and state of health for LiFePO, State of health for NMC
1k ek = d 4 1-2 I I State of Health as a function of time
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SOC

Particle filter

Results
EV application
State of charge and state of health for NMC
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SOC

Particle filter
Results - Filter noise

Stationary PV application Stationary PV application
SOC estimation forLiFePO, SOH estimation forLiFePO,
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Conclusions

B State of charge and state of health estimation very important but also
sophisticated task for nearly all battery applications

W Particle filter for state of charge and state of health estimation with the
following features:

> Precision: Finds “true” value with minimal variation
» Speed: Sufficiently fast to cope with PV as well as EV profiles

» Flexibility: Able to cope with different initial values and temperature
profiles

B Due to low computational efforts it can be implemented very well on
small scale microcontrollers of battery management systems

- Particle filter is a very flexible and reliable tool for estimating inner states
of batteries
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