
SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry 
September 23-25, 2013, Freiburg, Germany 

Mass flow, pressure drop, and leakage dependent modeling and 
characterization of solar air collectors 

Christian Welza,1, Christoph Maurera, Paolo Di Lauroa, Gerhard Stryi-Hippa,  
Michael Hermanna 

aFraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg, Germany  

Abstract 

In comparison to liquid collectors, the thermal efficiency of air collectors strongly depends on the mass flow, and often air 
collectors can be leaky. Further, for efficient system operation, the air collector’s mass flow will be chosen regarding the 
auxiliary power demand of the fan caused by the pressure drop of the system. In this work the interdependency between 
thermal and hydraulic behavior and the resulting primary energy demand will be explained. Moreover, suitable mass flow 
dependent models for thermal efficiency, pressure drop and leakage will be presented. Because of the mass flow dependent 
correlation of the thermal power gain and the auxiliary power demand, a novel characterization method for air collectors will 
be proposed considering both. 
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1. Comparison of liquid and air collectors regarding mass flow dependency 

The differences of air and liquid collectors lead to individual preferences within a diversity of applications in 
buildings, agriculture, and industry as well as different climates. Decision factors may be the demanded kind of 
heated fluid,  the necessity of storage, the space requirement for tubes,  the risk of leaking liquid, stagnation,  and 
the maintenance effort. Distinct construction principles and fluids and their different influence on heat transfer 
and transport occur.  

Many air collectors have the advantage of a low thermal resistance from the absorbing surface through the 
thin absorber sheet to reach the fluid surface, whereas in liquid heating collectors the heat must be conducted to 
the fluid surface along a much longer path with a smaller cross section (Fig. 1). Liquid collectors benefit from 
the fluid properties, which cause a small convective thermal resistance between the tube-liquid surface into the 
liquid. Air collectors instead have a much higher convective thermal resistance between the channel-air surface 
into the air due to air properties. The fact that air collectors often have heat conducting ribs attached to the 
absorber for enlarging the convective air surface is neglected in this schematic consideration. 

The convective thermal resistance depends inversely on the mass flow. In liquid collectors the convective 
thermal resistance takes just a small part of the resistance from the absorbing surface into the liquid stream. 
Therefore, the thermal efficiency of liquid collectors does not much depend on the mass flow, and high thermal 
efficiencies can be reached even with low mass flow rates. Thus, the electrical auxiliary energy demand for the 
pump can be kept small. Therefore, simple thermal efficiency models of liquid collectors do not consider the 
mass flow. In air collectors the convective thermal resistance makes the bigger share of the resistance from the 
absorbing surface into the air stream. Thus, the thermal efficiency has a high mass flow dependency. For high 
thermal efficiencies high mass flows with an accompanying high electrical auxiliary energy demand of the fan 
blowing through the whole system must be chosen. Thermal efficiency and mass flow will be balanced 
ecologically or economically. 
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Nomenclature 

1a   coefficient for temperature dependent heat loss, W/(m²K) 

2a   coefficient for quadratic temperature dependent heat loss, W/(m²K²) 

max1a   coefficient for temperature dependent heat loss at infinite mass flow, W/(m²K) 

max2a   coefficient for quadratic temperature dependent heat loss at infinite mass flow, W/(m²K²) 

3a   coefficient for mass flow dependent heat loss, s/kg 

FieldA   aperture area of collector field, m² 

SystemSolarof
nConsumptioAuxiliaryC   instantaneous electrical energy costs per time caused by fan or pump of the solar 

system, $, €, … 

SystemConventialof
nConsumptioSavedC   saved instantaneous combustible costs per time of the conventional system, $, €, … 

EffC   specific heat capacity per collector area, J/(kgKm²) 

pc   specific heat capacity, J/(kgK) 

ie
d 1,1   linear coefficient for measured leakage mass flow (e = exit, i = inlet), kg/sPa 

ie
d 2,2   quadratic coefficient for measured leakage mass flow (e = exit, i = inlet), kg/sPa² 

0'F   collector efficiency factor at T = 0, 1 

max0'F   collector efficiency factor at T = 0 and infinite mass flow (maximum of F’0), 1 

G   global irradiance on collector field plane, W/m² 

difG   diffuse irradiance on collector field plane, W/m² 

dirG   direct (beam) irradiance on collector field plane, W/m² 

1h   linear pressure drop coefficient, Pas/kg 

2h   quadratic pressure drop coefficient, Pas²/kg² 

difk   incidence angle modifier for diffuse irradiance, 1 

dirk   incidence angle modifier for direct (beam) irradiance, 1 

m   mass flow, kg/s 

Rowavem ,
   average mass flow of serial collectors in one row, kg/s 

cLoop
Rowave

m
,

   average mass flow in collector field for closed loop, kg/s 

oLoop
iLeL
Rowave

m
,
,

   average mass flow in collector field for open loop ( eL = leaving leakage,  iL  = entering 

leakage), kg/s 

im   mass flow of collector field at inlet, kg/s 

em   mass flow of collector field at outlet, kg/s 

Coll
Meas

iLeLm ,
   measured leakage mass flow of one collector not flown through (e = exit, i = inlet), kg/s 

iLeLm ,
   calculated leakage mass flow of collector field flown through (e = exit, i = inlet), kg/s 



Subs
eLm   substitution mass flow (oLoop = for open loop, cLoop = for closed loop), kg/s 

RowColln /   number of serial collectors in one row, 1 

FieldColln /  number of collectors per field, 1 

Rown   number rows of collector field, 1 

p   inner collector pressure, Pa 

ip   inner collector field pressure at inlet, Pa 

ep   inner collector field pressure at outlet, Pa 

SystemSolar
Power.primAuxiliaryP   instantaneous primary auxiliary power used by fan or pump of the solar system, W 

.Coll
Power.primNetP   instantaneous saving of net primary power , W 

profitNetP     instantaneous net profit per time, $, €, … 

.
.

Coll
PowerThermP   saved conventional instantaneous primary power of the conventional system, W 

iLQ   power loss caused by the entering leakage mass flow, W 

 

eLQ   power loss caused by the leaving leakage mass flow, W 

Capq   power absorbed by thermal capacitance of collector field related to field area and to 0 °C, 
W/m² 

C
eLq
0

   power loss caused by leaving leakage mass flow and related to field area and to 0 °C, W/m² 

C0
iLq


   power loss caused by entering leakage mass flow and related to field area and to 0 °C, W/m² 

C0
eq


   power leaving the collector field at outlet related to field area and to 0 °C, W/m² 

C
iq
0

   power entering the collector field at inlet  related to field area and to 0 °C, W/m² 

Gainq   power gain (enthalpy flow, collector capacitance) of leaking collector field related to field 
area, W/m² 

t   point of time (0 = at initial point of time, 1 = at following point of time), s 

aT   ambient temperature, °C 

iT   fluid temperature at collector field inlet, °C 

eT   fluid temperature at collector field outlet, °C 

mT   mean fluid temperature ( 0t  = at initial point of time,  1t  = at following point of time), °C 

0U   heat transfer coefficient from absorber to ambient, W/(m²K) 

1U   coefficient for temperature dependent heat transfer from absorber to ambient, W/(m²K²) 

 

p   pressure drop of collector field, Pa 

T   difference of mean fluid temperature and ambient temperature, K 

   instantaneous collector efficiency, 1 

0   conversion factor, 1 
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




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








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


 
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3
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p

3
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3
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with 

3i22i12

i2i1

i2
i1e1i2e2
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d
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d
dpdpdc

pd
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d
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d
b
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d

3

d
a




  (14) 

Equation (11) is not usable, if for the curves of measured leakage mass flow (8) only linear coefficients are 
available. For this case the author found another solution not published yet. Another possibility may be to use 
very small quadratic coefficients in (8), which will lead to errors without significance. 

The pressure at the outlet is calculated with equation (10).  

4.4. Leakage mass flow 

For establishing the models of leakage mass flow, it is necessary to set up and solve an integral and include 
the different boundary conditions of the three system cases. After solving the integral for all three system cases 
the universal model is found. 

   










 3

e

3

i
i2e22

e

2

i
i1e1FieldColl

iLeL pp
3

d
pp

2

d

p

n
m ,,/

,
   (15) 

Here, equations (7) and (9), (10), or (11) are necessary. For the leakage mass flow of the open loop with 
overpressure and of the overpressure zone of the closed loop the coefficients d1e and d2e must be used. For the 
overpressure zone of the closed loop pe is set to zero additionally. A leakage mass flow with a positive algebraic 
sign will be achieved. 

For the leakage mass flow of the open loop with underpressure and of the underpressure zone of the closed 
loop the coefficients d1i and d2i must be used. For the underpressure zone of the closed loop pi is set to zero 
additionally. A leakage mass flow with a negative algebraic sign will be achieved. 

4.5. Leakage power loss 

The power loss caused by the leaving leakage mass flow of the open and the closed loop is 

 iep
Subs

eLeL TTcmQ      (16) 

Leaving powers are handled with positive algebraic signs and entering powers with negative algebraic signs 
within the whole modeling, because the useful power at the outlet is a leaving power and has to become positive. 
Therefore, the leakage power loss of a field caused by overpressure will be achieved with a positive algebraic 
sign for the common case of Ti < Te. 

In (16) SubseLm ,
  represents a substitution mass flow, which does not exist in reality. It results from considering 

the increasing air temperature between the inlet and the outlet of the air collector field. A linear increasing 
temperature of the leakage mass flow along the air collector field is considered in the calculation of the thermal 



energy transport by leaking air, where (16) results with the substitution mass flow after integration over the 
collector field length. For the open loop with overpressure the substitution mass flow is 
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For the overpressure zone of the closed loop pe is set to zero, and the substitution mass flow results in 
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When this leakage power loss (16) becomes related to the field area and the temperature point of 0 °C (for 
convenient use of temperatures with the unit degree Celsius in the model), it follows 
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   (19) 

The power loss caused by the entering leakage mass flow of the open and the closed loop is 

 iapiLiL TTcmQ      (20) 

This power loss comes along with a positive algebraic sign for the common case of Ti > Ta. For the open loop 
with underpressure often Ti = Ta.  Then this power loss will be zero. 

When this leakage power loss becomes related to the field area and the temperature point of 0 °C, it follows 

a

Field

piL

C0
iL T

A

cm
q 







    (21) 

4.6. Inlet mass flow 

To use the modeled collector field in a system model, the inlet mass flow must be known. Since outgoing 
mass flows come along with a positive algebraic sign, ingoing mass flows carry a negative algebraic sign. This 
makes it easier to add the leakage model to existing collector models. The inlet mass flow of the open loop with 
overpressure is 

Leei mmm      (22) 

The inlet mass flow of the open loop with underpressure is 

Liei mmm      (23) 

The inlet mass flow of the closed loop with overpressure and underpressure is 

ei mm      (24) 

4.7. Average mass flow 

It was identified that the change of the main mass flow caused by leakage, which was used in the thermal 
efficiency model (6), influences the thermal power in a similar dimension as the leakage does. Therefore it is 



appropriate to quantify this mass flow change and to consider it in the thermal efficiency model. In order to do 
this the average mass flow of one row is necessary. For both variations of the open loop this is 
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For the average mass flow of one row in an open loop with overpressure the coefficients d1e and d2e will be 
used. For the open loop with underpressure the coefficients d1i and d2i will be used. 

The average mass flow of one row in the closed loop is 
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5. Energy balance 

5.1. Energy balance 

For simulation it is necessary to write the energy balance and to calculate the outlet temperature of the 
collector field for each time step. With consideration of the leakage power losses, the thermal collector capacity, 
and its values with its algebraic signs the energy balance related to the field area is 
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The entering and leaving specific power and the specific heat flow caused by the thermal capacity are 
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at which Tm is the mean fluid temperature. 
Setting the specific powers (19), (21) and (28) into the energy balance (27) and rearranging it becomes to 
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5.2. Outlet temperature 

For the analytical calculation of the outlet temperature the left side of (29) will be replaced by the product of 
thermal efficiency (6) and the area specific global solar irradiance. For 0,max in (6) the beam and the diffuse 
irradiance will be considered together with its incidence angle modifiers. After rearranging this quadratic 
equation to a general quadratic function the outlet temperature will be achieved with the second root (zero of a 
function) by 
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at which under consideration of equation (5) 
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5.3. Plausibility check of energy balance including entire leakage model 

A validation of the model parts in chapter 4 and the energy balance of chapter 5.1 with measurement results 
were not done, since a test sample with uniform distribution of leakage and a high effort of precise measurement 
equipment would be necessary. 

The entire leakage model in chapter 4 was tested thoroughly for plausibility in a spreadsheet numerically and 
graphically. Measurement data of pressure drop and leakage were used for the model inputs. 

 Afterwards the entire leakage model and the energy balance were implemented in the widely-used collector 
type 832 v3.08 for TRNSYS in a type version which is not yet publically available, and it runs in simulations. 
Simulation results were compared with spreadsheet results with exact agreement. The determination of the outlet 
temperature was not implemented into type 832. Instead, its original iterative solution was left unchanged. 

6. Determination of an ecologic or economic mass flow  

Chapter 6 and 7 give an overview of the determination of an ecologic or economic mass flow and 
characterization of collectors with the consideration of these mass flows. Details on the methodology can be 
found in [3]. 

6.1. Mass flow of Maximum saving of Primary power, MMP (ecologic mass flow) 

The MMP is defined as the collector mass flow which is necessary for the instantaneous maximum saving of 
net primary power of the conventional system by the solar system. The net primary power saving is defined as 
the difference in (32). The minuend is the saved conventional instantaneous power of the conventional system, 
which equals the thermal energy production of the collector. The subtrahend is the instantaneous primary power 
used by the fan or pump of the solar system. The subtrahend considers the conversion factor from primary power 
to the hydraulic power supply of the fan or pump, which is identical to the hydraulic power demand of the whole 
solar system including the collector field. 

SystemSolar
Power.primAuxiliary

.Coll
Power.Therm

.Coll
Power.primNet PPP     (32) 

Currently the primary energy factor, the thermal efficiency of the conventional system, and the thermal losses 
of the solar system other than thermal losses of the collector field are neglegted in the minuend. These are 
relatively small and compensate for each other partly in (32). Storage losses and a low degree of utilization are 
not considered also. 

6.2. Mass flow of Maximum saving of operating Costs, MMC (economic mass flow) 

The MMC is defined as the collector mass flow which is necessary for the instantaneous maximum net profit 
per time. The net profit per time is defined as the difference in (33). The minuend is the saved instantaneous 
energy costs per time of the conventional system by the solar system. The subtrahend is the instantaneous 
electrical energy costs per time caused by the fan or pump of the solar system. Both terms consider energy 
prices. 
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