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Abstract
Morphing attacks are a form of presentation attacks that gathered increasing attention in
recent years. A morphed image can be successfully verified to multiple identities. This
operation, therefore, poses serious security issues related to the ability of a travel or
identity document to be verified to belong to multiple persons. Previous studies touched
on the issue of the quality of morphing attack images, however, with the main goal of
quantitatively proofing the realistic appearance of the produced morphing attacks. The
authors theorise that the morphing processes might have an effect on both, the
perceptual image quality and the image utility in face recognition (FR) when compared to
bona fide samples. Towards investigating this theory, this work provides an extensive
analysis of the effect of morphing on face image quality, including both general image
quality measures and face image utility measures. This analysis is not limited to a single
morphing technique but rather looks at six different morphing techniques and five
different data sources using ten different quality measures. This analysis reveals consistent
separability between the quality scores of morphing attack and bona fide samples
measured by certain quality measures. The authors’ study goes further to build on this
effect and investigate the possibility of performing unsupervised morphing attack
detection (MAD) based on quality scores. The authors’ study looks into intra‐ and inter‐
dataset detectability to evaluate the generalisability of such a detection concept on
different morphing techniques and bona fide sources. The authors’ final results point out
that a set of quality measures, such as MagFace and CNNIQA, can be used to perform
unsupervised and generalised MAD with a correct classification accuracy of over 70%.

1 | INTRODUCTION

The advances in the accuracy of FR, driven by innovative
training strategies [1, 2] and network architectures [3, 4], are
making FR a method of choice for physical and logical access
control. However, FR is still vulnerable to attacks such as the
face morphing attack. Face morphing incorporates two or more
faces from different individuals to create a new face image, such
that the newly created face image (the morphed image) can be
successfully verified to multiple identities [5]. Therefore, this
operation poses a high potential risk in areas such as border
control or financial transactions. Typically, a morphed face im-
age does not only has to be verifiable to multiple identities but
also has to appear realistic in case of human inspection [6, 7].

Therefore, different studies presented new morphing method-
ologies that focus on image appearance [6–9].
As the morphing process can leave morphing artefacts,

whether performed on the image level or on a representation
level in a generative framework, these artefacts can theoreti-
cally affect the perceptual quality of the image or even the
utility of the image for face recognition. Few previous studies
looked at some aspects of the morphed image quality, espe-
cially in relation to the bona fide images, but with very limited
quality metrics and for the sole reason of proving that the
presented morphing processes produce images that are similar
to the bona fide ones [6, 7, 10]. Our recent work [11], which
this manuscript extends on, went into more details in
measuring the effect of morphing on face image quality (FIQ).
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The work pointed out that the morphing process did result in a
consistent effect on certain quality measures, even when re‐
digitisation is applied to the image. However, this initial work
was limited by investigating the effect on only a single
landmark‐based morphing technique, namely the OpenCV‐
based morphing [12]. The work did not also consider the
possibility of detecting morphing attacks based on quality.
Following the highly interesting outcome of Ref. [11], but

the limited generalisability and practicality of its final conclu-
sions, this paper is presented as an extended version of the
work done in Ref. [11], which achieved the best poster award at
BIOSIG 2021. In this work, we extend the previous contri-
butions as follows:

� Instead of a single morphing technique, this work extends
the study of the effect of morphing on face image quality to
six different morphing techniques.

� Instead of a single source of bona fide and morphed face
images, this work extends that to five diverse morphing
datasets, each with multiple variations in the creation or
post‐processing of the attacks.

� A major extension is the novel exploration of using the
quality scores as an unsupervised tool for the detection of
face morphing attack and its generalisability across datasets
and attack types.

Towards the added value of this extended study, the two
main contributions of this work are:

� Theorise a link between face morphing and face image quality
and utility. Based on that, we uncover and analyse the effect of
face morphing on face image quality and utility and the sta-
bility of this effect across different morphing methods.

� Propose the use of face image quality and utility measures as
an unsupervised MAD method by taking advantage of the
morphing process effect on the quality measures. We addi-
tionally investigate the generalisability of this proposed
MAD concept across various variations that might face
MAD in real applications.

These contributions thus drive two basic research questions
addressed in this work: (1) what is the effect ofmorphing on face
image quality and utility? and (2) can this effect be leveraged as
an indication to perform MAD in an unsupervised manner? To
address these questions and reach to a clear confirmation on our
contributions, we perform experiments on 10 quality measures,
divided into face image quality assessment (FIQA) and general
image quality assessment (IQA) categories, experimented on 5
morphing datasets that include six different morphing tech-
niques and five different data sources. Our analyses towards
answering the main research questions involved the following
main detailed investigations:

� Studying the effect of a wide set of morphing techniques on
the image qualities, measured by a diverse set of quality
measures, in comparison to different bona fide sources.

� Revealing the different levels of separability between quality
scores produced by different quality measures on bona fide
versus morphing attacks.

� Investigating the quality differences between different bona
fide sources when the quality is measured by different
quality measures.

� Probing the possibility of leveraging the quality effect to
detect face morphing attacks (i.e. classifying bona fide
and morphing attacks) by using the quality scores as an
MAD decision score within each morphing dataset.

� Investigating the generalisability of classifying bona fide
samples of different sources when the quality scores are
used as an MAD decision score and decision thresholds are
set on other unknown bona fide sources.

� Investigating the generalisability of detecting morphing at-
tacks from different morphing techniques and unknown
data sources when the decision thresholds are set on other
setup containing unknown morphing attacks and bona fide
sources.

� Revealing the overall possible performance and general-
isability of MAD based on different quality metrics on a
wide set of attacks and data sources.

Our study points out that for certain quality and utility
metrics, such as CNNIQA [13] and MagFace [14], there is a
significant effect of morphing on the estimated qualities. Such
methods also produced similar quality values for different
sources of bona fide images. Using selected quality measures
can lead to overall MAD accuracy above 70% on a diverse set
of unknown attack methods and data sources, without the
explicit MAD training.
We structured our work in the following by first intro-

ducing relevant studies in Section 2 with respect to studies
relating image quality to morphing attacks, where the quality of
morphs are however mostly compared to bona fide source
images and the detection of morphing attacks. In Section 3, we
describe the quality and utility measures studied in this work to
investigate how the morphed images affect the image quality
and if these findings can be leveraged on the MAD task. The
morphing datasets and their used morphing techniques are
presented in Section 4 followed by the experimental design
with the used evaluation metrics and the investigation pro-
tocols. Finally, the results are thoroughly discussed in Section 5
and concluded in the Section 7.

1.1 | Nomenclature

To enable a clear understanding of the experimental design and
discussion, we introduce here a list of the used terminologies
that are essential to be differentiated.

� A morphing ‘dataset’ refers to a complete set of data that
includes both the morphing attacks and the bona fide
images. The used morphing datasets are detailed in
Section 4.2.
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� A ‘data source’ is the face image dataset where the bona fide
samples (and the samples used to create the morphing at-
tacks) of each morphing dataset originate.

� A ‘morphing technique’ is a process that creates a morphing
attack from two or more bona fide samples. The morphing
methods considered in this work are presented in details in
Section 4.1.

� A ‘morphing attack’ is an image resulting from morphing
images belonging to multiple identities and aim at being
positively verifiable by these identities.

� An ‘image quality assessment method (IQA)’ is a method
that assesses the perceived or statistical quality of an image
and not specifically designed to measure the utility of the
image for face recognition.

� A ‘face image quality assessment method (FIQA)’ is a
method that assesses the utility of a face image for face
recognition.

� An ‘unknown morphing method’ is a morphing method not
used in the training of a specific MAD and thus ‘unknown’
to the MAD approach.

� An ‘unknown dataset’ is a morphing dataset that is not used
in the training of a specific MAD and thus ‘unknown’ to the
MAD approach.

� An ‘unknown data source’ is a data source that is not used in
the training of a specific MAD and thus ‘unknown’ to the
MAD approach.

� The ‘intra‐dataset detectability’ is the experimental setup
where the performance of MADs is measured on the same
morph dataset used for training, although on an identity‐
disjoint test set not used for training.

� The ‘inter‐dataset detectability’ is the experimental setup
where the performance of MADs is measured on morphing
datasets not used for training the MADs.

2 | RELATED STUDIES

Face recognition systems (FRS) are highly vulnerable to face
morphing attacks [15]. This poses a severe security risk to
operations using automatic face recognition systems for
authentication. Therefore, it is of great interest to understand
the effect of such attacks and to have effective defence
mechanisms. This section of related work thus gives a brief but
concise view on two aspects, the previous studies touching on
the relationship between morphing and image quality and a
high‐level view on MAD.

2.1 | Morphing attacks and quality

In Ref. [10], Debiasi et al. investigated the qualities on
morphing attacks, by using image quality (IQ) measures such as
BIQI [16], BRISQUE [17], OG‐IQA [18] and SSEQ [19].
These methods are all based on studying the general image
qualities and belong to the group of no‐reference blind IQA
methods, which require no bona fide source reference image as
a comparison to assess the morphing attack's image quality.

Debiasi uses these quality measures to investigate the vulner-
ability of the morphing attacks on the face recognition solu-
tions. The intuition behind this is based on Ferrara et al.‘s work
[15] pointing out that human experts have difficulties recog-
nising morphed face images of high quality and bona fide
images. Therefore, the authors herein [10] believed that the
quality of morphs might be linked to image quality. The ex-
periments are conducted on the MorGAN dataset, which
contains the bona fide images, MorGAN, and OpenCV
generated morphs. Results show similar quality distributions of
MorGAN attacks to the bona fide images within the MorGAN
dataset, while landmark‐based attacks are slightly off in terms
of image quality. This makes the detectability of these GAN‐
based attacks more difficult compared to classical approaches.
Regarding generating morphs with high quality and reso-

lution, to make the morphing attack more effective, the work in
Ref. [6] proposed an approach to enhance the GANs generated
images into a more realistic quality and resolution morphing
attacks. This improvement could further suppress the artefacts
but not affect their performance on the face recognition sys-
tem. To evaluate the quality of the generated attacks, single
quality measures are used as suggested in Ref. [20]. The authors
reported multiple quality factors, such as sharpness [21], blur
[22], exposure [23], global contrast factor (GCF) [24], contrast
[21, 25], and brightness [25]. These quality measures are re-
ported both for bona fide and morphing attacks. The intuitions
behind these quality factors are, the closer the measure to the
bona fide quality factor, the better the generated morph image.
Based on these outcomes, Ref. [6] showed that the images
enhanced with the proposed method are of higher visual quality
compared to unprocessed attacks and attacks enhanced by
other state‐of‐the‐art super‐resolution methods.
Zhang et al. [7] proposed a new morph generation

approach using an Identity Prior Driven Generative Adversa-
rial Network (MIPGAN) to create high quality and high res-
olution morphed facial images with minimal artefacts. This is
enabled by using a specific loss function, enforcing high
perceptual quality and identity factors to keep generated
morphs without loss of identity. The MIPGAN Face Morph
Dataset is created from FRGC‐V2 face dataset using only
high‐quality passport‐like face images from 140 data subjects.
The analysis of the perceptual image quality of morphs is
performed by comparing it to the reference image. This is
contradictory to the other previously mentioned quality mea-
sures, which favoured the no‐referenced quality assessment
methods. The peak signal‐to‐noise ratio (PSNR [26]) and the
structural similarity index measure (SSIM [27]) are used to
evaluate the quality of the generated attacks. Results based on
these quality measures showed (1) little deviation in the
perceived quality for all four different types of morphing at-
tacks and (2) the MIPGAN created morphs have slightly
higher image quality compared to StyleGAN 2, and (3) MIP-
GAN morphs present similar quality to facial landmark‐based
morphing attacks. In addition, the authors asked 56 human
observers to make a visual comparison between pairs of images
to assess the morphing qualities besides the quantitative mea-
sures such as PSNR and SSIM. They found out that the
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detection of morphed face images is a challenging task even for
human observers, both the experienced and inexperienced user
groups when showing only one single image at a time.
The recent work [11] investigated in total 12 quality mea-

sures on the LMA‐DRD morphing dataset shows the effect of
the morphs on quality and utility. The morphing dataset con-
tains only one morphing technique based on OpenCV. To
measure the face utility, four FIQA methods (MagFace [14],
SER‐FIQ [28], FaceQnet [29], and RankIQ [30]) are utilised to
determine a quality value, which is directly related to the term
face utility for an FR algorithm. Overall, eight general IQA
methods are used to assess the perceived image quality on
morphing attacks. These IQA methods include BRISQUE
[17], PIQE [31], NIQE [32], CNNIQA [13], DeepIQA [33],
MEON [34], RankIQA [35], and dipIQ [36]. All selected
quality and utility measures do not require a bona fide source
to evaluate the attack's quality. Their results stated that most
investigated IQ measures show only minor shift in quality for
bona fide images compared to morphing attacks. Only Mag-
Face [14] from the FIQA methods shows a clear separability
between morphing attacks and bona fide images. Less differ-
entiation between the re‐digitisation process and the digital
image is detected by MagFace in terms of separability, which
points out that the difference is correlated to the morphing
process itself, while most IQA solutions do differentiate be-
tween the digital and re‐digitised images but less on morphing
attack itself. However, the results are limited to a single
morphing technique and bona fide source. No studies on the
detectability of morphing attack based on these quality and
utility measures were conducted.
While most previous studies used quality measures to

support their claim of producing attacks similar to bona fide
images, the contributions in Ref. [11] that we substantially
extend here were limited to studying the effect on one
morphing technique and one data source, without considering
the generalisability of this effect, nor leveraging this effect to
be used as an unsupervised MAD methods. This motivates our
work to present novel contributions in these regards.

2.2 | Morphing attack detection

MAD methods can be categorised into two main groups, single
image and differential MAD [37]. Single image MAD only
analyses the investigated image to make a predicted decision of
attack or bona fide [38–42]. Differential MAD analyses an
investigated image along with a live image (assuming that the
process allows for that). Differential MAD analyses the relation
between both images to build a decision of attack or bona fide
[43–46]. However, the applicability of differential MAD is
limited by the requirement of a live image and thus might be
less practical in various use‐cases.
Single image MAD solutions are commonly modelled as a

binary classifier and can be roughly categorised into ones using
handcrafted features and ones using deep learning features.
Such handcrafted features included Binarised Statistical Image
Features (BSIF) [47, 48], Local Binary Patterns (LBP) [49],

Local Phase Quantisation (LPQ) [41], or features established in
the image forensic analyses such as the photo response non‐
uniformity (PRNU) [10]. The MAD solutions based on deep
learning commonly used pre‐trained networks with or without
fine‐tuning, such as versions of VGG [50], AlexNet [42], or
networks trained for face recognition purposes such as
OpenFace [40]. However, all these studies used a single binary
label as the target of their training. A recent work leveraged the
use of pixel‐wise supervision towards creating a more gen-
eralisable MAD [39]. The work showed higher generalisability
over re‐digitised samples when using the proposed training
paradigm. The use of synthetic‐based face images to create a
diverse MAD development data was recently proposed and
proved to enhance the performance and generalisability of
MADs in comparison to MADs developed based on authentic
data [51], especially given that the authentic data is constrained
by its lack of diversity and the ethical/privacy issues related to
using and sharing it.
A number of MAD studies have analysed the issue of the

generalisability of the MAD decisions when facing variabilities
in the face morphing or image handling process. Such vari-
abilities included the synthetic image generation processes
[6–8, 52], different data sources [53], morphing pair selection
[44], image compression [54], and re‐digitisation [42, 47, 50].
These variabilities have been shown to cause a drop in the
MAD performance when they were unknown in the MAD
training phase. A research direction towards avoiding the de-
pendency on training data, and thus enhance the general-
isability in detecting attacks with unknown variabilities, is the
unsupervised detection of attacks as anomalies. MAD based on
anomaly detection was only rarely addressed in the literature
[52] based on one‐class classification of handcrafted and deep
learnt features, however, with very limited detection perfor-
mance [52]. This work, in its effort to investigate the possibility
of using FIQA and IQA as indicators of an image being
morphed, also offers an unsupervised MAD method that
operates without the need to train an MAD to detect already
known attacks.

3 | FACE IMAGE QUALITY AND
GENERAL IMAGE QUALITY

FIQ represents the utility (value) of the face image to FR
algorithms [55, 56]. This utility can be measured by the FIQ
score (scalar) following the definition in ISO/IEC 2382‐37
[56]. The algorithms designed to measure this utility metric
belong to the family of FIQA methods. The general image
quality, on the other hand, focusses on perceived image quality
and it does not necessarily reflect the utility of the image in FR,
for example, an image of a mask occluded face can be of high
perceived quality but of low utility to FR algorithms [57]. To
investigate the effect of face morphing on the image and the
possibility to use this effect in detecting morphing attacks, we
select a total of 10 different quality measures, divided between
IQA and FIQA categories, which will be summarised in this
section.
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The morphing processes do introduce changes to the
bona fide morphed images. These images can be, to variant
degrees, apparent according to the morphing process, see
Figures 1 and 2. We theorise that the artefacts, whether
minor or major, might have an effect on the perceived image
quality measured by IQA. These artefacts, as well as the fact
that the image becomes less distinct (can be matched to
multiple identities), are also theorised to have an effect on the
utility of the image in FR, which can be measured by FIQA.
This leads to the wide range of investigations in this work,
addressing both the effect of different morphing techniques
on the IQ and FIQ of the images as well as the possible use
of this effect in detecting morphing attacks.

3.1 | General image quality assessment

The five IQA approaches selected in this paper can be grouped
into the following four sub‐categories: (1) based on natural
image statistics [17], (2) convolutional neural network‐based

[13], (3) multi‐task learning‐based approach [58], and (4)
ranking‐based methods [51, 88]. These assessed qualities by
these methods are typically affected by image distortions, ar-
tefacts, and perceived degradation.

BRISQUE [17] accounts for the first sub‐category and is
learnt based on studying the deviation from the general sta-
tistics of natural images. These statistics are originated from the
finding by Rudermann [59] that assumes natural scene images
have a distribution similar to a normal Gaussian distribution.
The degree of deviation from the normal Gaussian is thus
directly related to the degradation in image quality.
The second sub‐category uses convolution layers to auto-

matically extract deep features without the need for a priori
special design using handcrafted features. CNNIQA [13] is
accounted to this category. This approach is a patch‐based
approach that correlates the image quality based on the
fusion of patch decisions, enabling local decisions to
communicate to form a global decision. The default setting
with a patch size of 32 � 32 and a kernel size of 7 � 7 is
chosen according to the original publication in Ref. [13].

F I GURE 1 Each pair of images is an example of the morphed images generated by the morphing attack strategies from the considered 5 morphing datasets.
The sub‐caption first presents the name of the database followed by the naming of the morphing strategy. Visible artefacts in the morphed images are most
apparent for landmark‐based morphing techniques especially close to the nose and eye region, while the GAN‐based approaches generate morphed images with
clearer background

F I GURE 2 Each pair of images presents the
bona fide images from the 5 morphing datasets
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However, we applied the sliding window approach with a stride
size of 4 pixels to increase the patch resolution as the input
image has only a reduced image resolution compared to the
training images used in Ref. [13].

DBCNN [58] is another general IQA method based on
multi‐task learning. In the core of the algorithm, two CNNs
were trained, one on large‐scale synthetically generated data-
sets, while the other focusses on the classification network pre‐
trained on ImageNet [60] for extracting more authentic dis-
tortions. The final quality score is pooled from the features of
both CNNs to a unified representation.
The methods UNIQUE [61] and dipIQ [36] are cat-

egorised into ranking‐based IQA approaches. One benefit of
these methods is that it is easier to generate ranked image pairs
since the absolute quality score for each image is hard to ac-
quire. In addition, it is simple to introduce additional image
distortions and synthesise ranked image pairs. Therefore, the
cost of generating a large, synthetic dataset with ranked image
pairs is relatively low. The network structures of these methods
are built using two parallel streams with shared weights. Only
one trained stream is used to assess the quality of the input
image in the prediction stage.

3.2 | Face image quality assessment

Recent FIQA methods take advantage of deep‐learning‐based
approaches and a large amount of publicly available face image
datasets. Thus, these methods show relatively good perfor-
mance in predicting the utility of a face image for FR. The five
selected FIQA methods are to be categorised into training with
(1) supervised regression learning based on pseudo quality la-
bels as in Ref. [14, 62], (2) unsupervised methods based on FR
model behaviour as in Ref. [29, 63], or (3) ranking‐based ap-
proaches as in Ref. [30].
We used two unsupervised FIQA methods, namely Mag-

Face and SER‐FIQ proposed by Meng et al. in Ref. [14] and
Terhoerst et al. in Ref. [62]. In MagFace, the FIQ estimation is
considered by the loss function during the training process.
The face embedding learnt by the network can be used for
both FR and FIQ estimation. The magnitude of the unnor-
malised face embedding is proportional to the cosine distance
to its class centre and is also directly related to the face utility.
In SER‐FIQ, this method mitigates the need for any auto-
mated or human labelling by correlating the FIQ to the
robustness of the extracted face embeddings to random
dropout patterns. Face images with high utility are expected to
have similar face representations resulting in low variance and
vice versa.

FaceQnet [29] and SDD‐FIQA [63] are categorised into
the supervised FIQA methods. While FaceQnet uses ICAO
compliant face images as high‐quality reference images and
builds quality labelling scores based on the FR genuine com-
parison score to ICAO compliant images, the SDD‐FIQA uses
pseudo quality label based on the Wasserstein distance between
similarity distributions of genuine and imposter image pairs.
Both training networks then fine‐tuned a pre‐trained FR base‐
network (RseNet‐50 [64]) as the backbone architecture and the
successive regression layer on top of the feature extraction
layers are used to associate an input image to an FIQ score.
A ranking‐based FIQA method learnt on comparing pairs

of input images is RankIQ [30]. Chen et al. [30] are inspired
by the idea that it is easier for a human operator to rank pairs
in a relative manner than to define an absolute quality score
for a single image. This method combines two‐stage learning
to first extract individual handcrafted features (e.g. HoG,
Gabor, LBP, and CNN features) and later map these feature
scores to a final quality score by using a kernel trick.
Compared to the other considered FIQA methods, this
method does not relate to very deep features or deep back-
bones, however, proved to perform competitively to recent
FIQA approaches [65].
The presented methods in this section are designed for

either assessing the general image quality or the face image
utility (for FR) in the design concept. A number of the later
methods were shown to predict low qualities for images where
FR models focus on areas beyond the central face area [66],
which might point out extreme poses among other factors.
Our work investigates the face morphing effect on these
measures. Table 1 listed the interpretation of these quality
measures. The term ‘increasing’ indicates the ascending order
of this quality score and means the higher the score the better
the perceived quality or utility, and vice versa.

4 | EXPERIMENTAL DESIGN

The experiments in this work are designed so that they provide
comprehensive answers to the following two research ques-
tions: (1) What is the effect of different morphing approaches
on different IQA and FIQA measures, and (2) is it possible to
use this effect to detect morphing attacks without the explicit
training of an MAD? To address these two main investigations,
we structured our experiment section first to introduce the
variety of different morphing techniques and the 5 morphing
datasets studied in this work. Each morph dataset intends to
provide variations in the created morphing attacks depending
on the bona fide source distributions extracted from the

TABLE 1 The table shows the ordering of the quality measures considered in the manuscript. The term ‘increasing’ means that the way this quality
measure is ordered is ascending and the higher the quality score, the better the perceived quality or utility and vice versa

FIQA IQA

MagFace [14] SDD‐FIQA [63] SER‐FIQ [62] FaceQnet v2 [29] RankIQ [30] BRISQUE [17] DBCNN [58] CNNIQA [13] UNIQUE [61] dipIQ [36]

Increase Increase Increase Increase Increase Decrease Increase Decrease Increase Increase

6 - FU AND DAMER



respective source face datasets. We subsequently introduce the
evaluation metrics before presenting the protocols used in our
investigations.

4.1 | Morphing techniques

The morphing techniques considered in this work can be
grouped into classical landmark‐based approaches and deep‐
learning‐based approaches using generative adversarial net-
works (GANs). While the landmark‐based morphing ap-
proaches could introduce visible blurring effects or other
perceptual artefacts, the GAN‐based approaches can generate
more realistic morphing attacks. However, besides the difficult
training procedure of GAN‐based approaches, it is also more
difficult to constrain the output of the GAN‐based attacks. In
the following, we will shortly explain these morphing tech-
niques in their individual category.

4.1.1 | Facial landmarks‐based morphing
techniques

The OpenCV algorithm is an open‐source implementation
proposed by Satya et al. in Ref. [12] using the extracted
locations of 68 facial landmarks determined by the Dlib li-
brary [67]. The facial landmarks are used to transform both
bona fide source images into one morphed image using
Delaunay triangles to warp the facial landmarks and alpha
blending. This morphing approach has been proven to
produce attacks leading to a relatively high vulnerability in
FR systems [7, 39, 68].

FaceMorpher [69] is another open‐source and facial
landmark‐based morphing algorithm, which is similar to the
OpenCV algorithm. Instead of using Dlib, this method is based
on STASM [70] as the facial landmark detector. These two
landmark‐based morphing algorithms create morphed face
images with visible artefacts especially around the hair region
because the regions outside the landmark positions are simply
averaged.

WebMorph [71] is an online tool provided by the FRLL
dataset provider to generate morphed images. This method
leveraged 189 facial landmarks that are specifically labelled
for the FRLL dataset. The high amount of precisely labelled
landmark positions can generate morphs with reduced visible
artefacts compared to using only 68 facial landmarks. How-
ever, as this method works exclusively for annotated FRLL
images, this morphing technique is used only on the FRLL
dataset.

AMSL is introduced by Neubert et al. in Ref. [9], which
generates morphed images from bona fide images of FRLL
dataset [72] using a private Combined Morphs tool. This tool
enables generating morphed images with no visible ghosting
artefacts around the hair and neck areas compared to OpenCV,
FaceMorpher, and WebMorph, due to its post‐processing step
such as Poisson image editing.

4.1.2 | Generative adversarial network‐based
morphs

Leveraging the recent advances in deep‐learning and generative
adversarial networks (GANs), these GAN‐based methods can
generate more photo‐realistic images without visible artefacts
such as those blending artefacts introduced from other
landmark‐based morphing techniques. StyleGAN 2 [73] is pre‐
trained on FFHQ dataset introduced in Ref. [74] and can
generate high resolution and realistic faces without introducing
noticeable artefacts. The StyleGAN was first used in Ref. [75]
to produce morphed images, which later used an updated
generator in Ref. [7].

MorGAN [49] was the first proposed generative approach.
MorGAN uses a specific loss function so that instead of
generating a morph with most probable lost identity using the
GAN training, the network enforces the generated morphs to
keep the identity information. However, the output of the
MorGAN generated morphs are relatively unrealistic with a
resolution of 64 � 64 pixels.

4.2 | Datasets

Five different and diverse morphing datasets are investigated in
this work to provide generalised conclusions. They are
composed of FRLL‐Morphs [68, 72], FERET‐Morphs
[68, 76], and FRGC‐Morphs [68, 77], LMA‐DRD [39], and
MorGAN [49].
Research in the field of face MAD becomes more strin-

gent, but there is a lack of shared, publicly available datasets. To
overcome this gap, Sarkar et al. [68] worked on creating pub-
licly available morphing datasets with several forms of attacks
to be used for research purposes. They provided new
morphing datasets with five different types of morphing at-
tacks based on OpenCV [12], FaceMorpher [69], WebMorph
[71], AMSL [9] and StyleGAN 2 [73]. The attacks are created
using source face images from three publicly available face
datasets including the Face Research London Lab (FRLL)
dataset, the Facial Recognition Technology (FERET) dataset,
and the Face Recognition Grand Challenge (FRGC) dataset.
These three morph datasets also build a big part of the
foundation of our research in this work.
The FRLL‐Morphs dataset [68] is generated from the

publicly available Face Research London Lab dataset [72]. This
dataset includes 5 different morphing techniques, including
OpenCV [12], FaceMorpher [69], StyleGAN 2 [73], Web-
Morph [71] and AMSL [9]. Each morph technique contains
1222 morphed face images generated using only frontal face
images with high resolution. We note, however, that the AMSL
generates two unique morphed images for every pair of source
bona fide images, which doubles the size of the AMSL morphs
compared to other morphing techniques. The bona fide face
images are extracted using the provided protocol from the
FRLL‐Morphs dataset [72] using only the frontal and smiling
face images. Even though the source images are of very high
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visual quality and under uniform illumination with a large va-
riety of ethnicity, pose, and expression, the number of bona
fide samples in the dataset is limited to 204 images from 102
identities.
The FERET‐Morphs dataset [68] and the FRGC‐

Morphs dataset [68] are extracted from the official FERET
[76] and FRCG v2.0 dataset [77], respectively. Both datasets
include 3 different morphing techniques, including OpenCV,
FaceMorpher, and StyleGAN 2. For each morphing technique,
it contains 529 and 964 morphed face images for FERET‐
Morphs and FRGC‐Morphs, respectively. Opposite to FRLL,
the FERET and FRCG v2.0 dataset contained face images of
large variability in quality and thus enabling creating morphing
attacks with larger quality distributions compared to FRLL‐
Morphs as can be seen in Figure 3. The bona fide images
are extracted using the provided protocols in the FERET‐
Morphs and FRGC‐Morphs datasets.
The LMA‐DRDMorph dataset [39] contains morphed face

images created from the VGGFace2 [78] dataset. The images
used to generate morphs are frontal, with a neutral expression,
and according to the generation details described in Ref. [39].
The large VGGFace2 allows the selection of high‐quality images
according to ICAO standards. The morphing technique is based
on OpenCV using facial landmarks. For further details of the
morphing process and the parameters used, we refer to the work
in Ref. [39]. An additional bona fide image is selected for each
morphed identity, when available. In total, the used LMA‐DRD
morphing dataset contains 276 digital Bona fide (D‐BF) images
and 364 digital morphing attacks (D‐M). These images were
printed on 11.5 � 9 cm glossy photo paper in a professional
studio and scanned with a 600 dpi scanner. They resulted in the
same number of re‐digitised bona fide (PS‐BF) and attacks (PS‐
M), leading to two versions of the dataset, the digital LMA‐DRD
(D) and the re‐digitised LMA‐DRD (PS). Opposite to other
morphing datasets, the LMA‐DRD dataset specifically aims at
investigating the morphing attacks after the re‐digitisation
process. The re‐digitised versions are intended to simulate real
identity document issuing scenarios and their effect on the
digital artefacts, which simulate a realistic challenge for MAD
algorithms.
To enable selection of similar faces to generate more so-

phisticated morphs, the MorGAN dataset [49] created
morphing attacks from a large pool of identities using CelebA
[79]. The CelebA dataset contains around 202,599 face images
of 10,177 identities, which allows the creation of morphing
attacks fulfiling the intended goal. The MorGAN dataset
contains 1000 morphed images for each of the two morphing
attacks. One attack form is based on MorGAN and the other is
created using the landmark‐based morphing approach using
OpenCV [12]. The bona fide images contain two sets (1500
bona fide references and 1500 bona fide probes). The exact
description of the morphing dataset can be found in Ref. [49].
In Table 2, the presented 5 morphing datasets with their

respective source datasets and the included morphing tech-
niques are listed. In addition, the number of the used images in
the individual setting is provided along with the bona fide
image numbers and the total amount of images.

For all images across the morphing datasets, the images are
pre‐processed using the MTCNN framework [80] to detect,
crop, and align (geometric transform) the face to output size of
224 � 224 pixels whenever necessary. The face images in the
MorGAN dataset are already pre‐processed with an output size
of 64 � 64 pixels. For each of the attack forms across the 5
morphing datasets (in total 15) a pair of example images are
depicted in Figure 1. Figure 2 further visualises bona fide face
image pairs for the 5 morphing datasets, where the LMA‐DRD
dataset has two different bona fides, one for the source digital
images and the other for the re‐digitised (PS) images.
Table 3 further list the quality scores for the example im-

ages selected in both figures with 3 best performing quality
measures from both the FIQA and IQA categories. For all
quality measures, a higher quality score indicates a better
quality of the face image, except for BRISQUE and CNNIQA,
which have the inverted meaning. For most quality measures
listed in the table, it is observed that the bona fide images have
a higher quality compared to the morphing attacks across most
morphing datasets.

4.3 | Performance metrics

As targeted to answer both (1) the effect of morphing on
quality and (2) the detectability of morphing attacks by probing
this effect, we grouped the used evaluation metrics into these
two individual classes.
First, to consider the morphing attack and its effect on

quality scores, we listed the quality scores for sample bona fide
and attack images for reference. The different morphing
dataset has different quality distribution. We show this by
visualising the quality score distribution approximated by the
kernel density estimation method on the discrete quality scores
of (1) the bona fide images across morphing datasets or (2) for
bona fide images and the morphing attacks within the same
morphing dataset.
Another property to review is the separability between the

quality distributions of morphing attacks and bona fide. The
Fisher Discriminant Ratio (FDR) is a useful measure to do just
that. We looked at the quality score distributions of the indi-
vidual attacks and the bona fide images within the same
morphing dataset. The term FDR in Ref. [81] is defined by
Equation (1) and quantifies the separability of the score dis-
tributions of morphed and bona fide face images.

FDR¼
�
μ1 − μ2

�2

ðσ1Þ2 þ ðσ2Þ2
; ð1Þ

In Equation (1), the terms μ1 and μ2 are the mean quality
scores of the morphed and bona fide distributions, respectively,
and σ1 and σ2 describe the standard deviation term of both
distributions, respectively.
To draw conclusions on the detectability of the morphing

attack by quality measures, we use the presentation attack
detection measures defined in ISO/IEC 30107‐3 [82] as the
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performance metrics in our work. We used the terms (1)
Attack Presentation Classification Error Rate (APCER)
describing the proportion of attack presentations wrongly

classified as bona fides under certain morphing scenarios, (2)
the Bona Fide Presentation Classification Error Rate (BPCER)
describing the proportion of the error of bona fide face

F I GURE 3 Figure visualises the distributions of the different morphs and the bona fide scores based on the investigated quality measures for the 5
morphing datasets, where the LMA‐DRD further splits into the digital and re‐digitised versions
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images, which are wrongly classified as morphed face images,
and (3) the Equal Error Rate (EER) representing the APCER
or BPCER at the operation point where the APCER and
BPCER are the same value. We further provide the Average
Classification Error Rate ACER describing the average error
between APCER and BPCER as given in Equation (2).

ACER¼
APCERþ BPCER

2
ð2Þ

The ACER metric is not part of Ref. [82] standard anymore
but helps in giving a single value indicative of the performance.
A lower error rate, for all used error metrics, indicates a higher
PAD performance.

4.4 | Investigations

The experiments are designed to address the two main research
issues: (1) the effect of different morphing approaches on
quality and (2) the possibility of using these effects to detect
morphing attacks.
For the first aspect, the effect of morphing on quality, we

(1) investigate the bona fide of each dataset versus each of the
morphing techniques of this dataset. This investigation in-
cludes a visual presentation of the quality (different measures)
distributions of the bona fide of each dataset alongside the
morphing approaches in these datasets. The investigation also
includes (2) presenting a quantitative measure of how different
are morphing attacks from the bona fide images in each
dataset, that is, the separability FDR measure. For the second
aspect, the possibility of using the morphing effect on quality

to detect attacks, we (1) first look at the possibility to maintain
the correct detection of bona fide, even if the bona fide comes
from a different source. To do that, we fix the BPCER on each
data source and calculate the BPCER on all other data sources.
Then, (2) we investigate to use this BPCER threshold on each
data source to detect the attacks (APCER), despite their dif-
ferences, in that dataset and all other datasets. Third (3), after
having a detailed look at detecting bona fide and attacks
separately (BPCER and APCER), we derive a final overall
conclusion by reporting the detailed ACER measures on all
datasets and attacks, while fixing the BPCER at each data
source individually.

5 | RESULTS AND DISCUSSION

The two main research gaps that this work addresses are (1) the
effect of face morphing on image quality and utility and (2) the
detectability of these different morphing attacks based on
image quality and utility. The experimental outcome regarding
these two issues is discussed based on the detailed results in
this section.

5.1 | The effect of morphing on quality

5.1.1 | How different are the quality score
distributions of bona fide and morphed samples?

To answer this question, we look at the quality score distri-
butions produced by each of the 10 used quality measures. The
distribution comparison is within each dataset bona fide and

TABLE 2 The used morphing datasets
are depicted in the table including their source
dataset and the morphing techniques used in
the individual dataset to create the morphing
attacks. In addition, the number of the used
images under each setting is also provided

No of images

Morph dataset Source dataset No. Bona fide Morphing type No. attack Total

FRLL‐morphs [68] FRLL [72] 204 AMSL [9] 2444 2648

FaceMorpher [69] 1222 1426

OpenCV [12] 1222 1426

StyleGAN 2 [73] 1222 1426

WebMorph [71] 1222 1426

FERET‐morphs [68] FERET [76] 1413 FaceMorpher [69] 529 1942

OpenCV [12] 529 1942

StyleGAN 2 [73] 529 1942

FRGC‐morphs [68] FRGC v2 [77] 3167 FaceMorpher [69] 964 4131

OpenCV [12] 964 4131

StyleGAN 2 [73] 964 4131

LMA‐DRD (D) [39] VGGFace2 [78] 276 OpenCV (D) [12] 364 640

LMA‐DRD (PS) [39] VGGFace2 [78] 276 OpenCV (PS) [12] 364 640

MorGAN [49] CelebA [79] 3000 OpenCV [12] 1000 4000

MorGAN [49] 1000 4000
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morphing attacks. Figure 3 shows the quality score distribu-
tions of different morphing approaches versus its bona fide
distribution within each of the 5 morphing datasets. Each row
represents one IQ or FIQ measure. Observing the quality of
morphing attacks and bona fide as score distributions in
Figure 3, we see that different morphing attacks shift the value
of IQ/FIQ compared to bona fide images for most quality
measures.
In the FRLL‐Morphs, landmark‐based attacks showed

closer quality distribution to the respective bona fide images,
while StyleGAN 2 generated morphs clearly showed lower
quality compared to landmark‐based morphs measured by
quality measures such as MagFace, SDD‐FIQA, SER‐FIQ, and
BRISQUE. The IQA measures such as UNIQUE, CNNIQA,
and dipIQ even signed slightly higher quality for StyleGAN 2
generated morphing attacks than bona fide distributions.
FaceQnet seems to have more difficulty distinguishing the
quality difference between the morphs and bona fide images.
Similar conclusions are to be drawn for both FERET‐Morphs
and FRGC‐Morphs, where StyleGAN 2 created morphs show
lower image quality measured by MagFace, SERFIQ, BRIS-
QUE, and DBCNN. In FERET‐Morphs, DBCNN assigns the
bona fide images better quality compared to other morphing
attacks of different kinds. CNNIQA on the contrary assigns
lower quality values to bona fide images compared to
morphing attacks.
For digital and re‐digitised attacks in the LMA‐DRD

dataset, only MagFace, SER‐FIQ, RankIQ, and BRISQUE
clearly show a quality degradation of morphing attacks towards
bona fide images. CNNIQA even seems to have slightly higher
quality for the digital and re‐digitised morphing attacks

compared to bona fide. Looking at the MorGAN dataset,
consistent findings as in Ref. [10, 49] are observed, where we
could confirm that IQA measures, such as CNNIQA and
dipIQ have similar image quality between MorGAN generated
attacks and bona fide, while BRISQUE shows the opposite
conclusion. SER‐FIQ and BRISQUE put the quality of the
landmark‐based attacks closer to the bona fide images. How-
ever, as it is noticed in Figure 3, the quality of MorGAN at-
tacks and bona fide, for almost all FIQA and IQA, is lower
than other datasets (keep in mind that some quality measures
has reversed interpretation as presented in Table 1). As bona
fide samples of the MorGAN data are also of relative low
quality, this must be strongly influenced by the low resolution
of MorGAN data (64 � 64 pixels). This strong influence of
resolution is evident as it is the only major factor that differ-
entiates between the bona fide samples of all other datasets and
the ones of the MorGAN dataset.

5.1.2 | Are the quality distributions of bona fide
and attack samples separable? And how separable
are they?

Table 4 shows the FDR value between each morphing attack to
the bona fide quality distribution within each morphing data-
set. A large FDR value indicates a high separability between
both distributions and thus indicates the possibility of using
this quality metric for detecting this kind of morphing attack
among the bona fide images.
One finding based on the FDR in Table 4 is that we

observe MagFace having relatively high separability for GAN‐

TABLE 4 FDR scores indicate the separability between morphs and bona fide distributions based on the quality metric. Only intra‐dataset comparison is
considered here. A larger FDR score indicates a better separability between the morphing attack and bona fide distributions

FIQA IQA

Dataset Morph‐type MagFace SDD‐FIQA SER‐FIQ FaceQnet RankIQ BRISQUE DBCNN CNNIQA UNIQUE dipIQ

FRLL‐morphs AMSL 0.5942 0.2021 0.0546 0.0506 0.2063 5.1530 4.1005 2.7154 0.0737 0.2901

FaceMorpher 0.7354 0.3761 0.0052 0.0294 0.2157 3.5891 0.3924 4.3623 0.5835 0.8133

OpenCV 0.8739 0.2959 0.0079 0.0450 0.2092 1.2141 0.0005 4.6174 0.0270 1.4129

StyleGAN 2 3.6564 0.5017 0.6746 0.0246 0.0462 0.9034 1.0804 0.0680 0.0744 0.3583

WebMorph 0.8103 0.1516 0.0014 0.0466 0.1146 5.7858 1.6706 3.3614 0.0014 0.0532

FERET‐morphs FaceMorpher 0.9094 0.0281 0.0148 0.0092 0.2002 0.9251 3.3444 2.8108 0.0098 2.1001

OpenCV 0.8483 0.0197 0.0058 0.0057 0.2071 1.9369 5.2332 2.6064 0.0138 1.7226

StyleGAN 2 2.2707 0.0000 0.2686 0.0082 0.0760 0.5868 1.3572 0.6977 0.0448 0.6578

FRGC‐morphs FaceMorpher 0.4877 0.0021 0.0064 0.0122 0.9074 0.0009 0.0280 0.6465 0.0001 1.2222

OpenCV 0.4492 0.0015 0.0102 0.0109 0.8586 0.0428 0.1082 0.3502 0.0009 0.5369

StyleGAN 2 2.1508 0.0001 0.2715 0.0278 0.2116 0.0242 0.0855 0.0388 0.0239 0.3793

LMA‐DRD (D) OpenCV (D) 0.7061 0.0019 0.1309 0.0010 0.0654 0.1646 0.0002 0.0767 0.0017 0.0112

LMA‐DRD (PS) OpenCV (PS) 0.6552 0.0006 0.1144 0.0001 0.0423 0.0102 0.0075 0.0648 0.0201 0.0668

MorGAN OpenCV 0.1562 0.0291 0.0279 0.0375 0.0466 0.0350 0.1349 0.0937 0.0005 0.1157

MorGAN 0.1855 0.0268 0.1619 0.0055 0.0194 0.4380 0.0728 0.0050 0.0015 0.0442
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based morphing attacks (such as StyleGAN 2, MorGAN, and
even for re‐digitised morphing attacks in the LMA‐DRD
dataset), while RankIQ, BRISQUE, and CNNIQA outper-
form mostly in separating landmark‐based morphing attacks.
The highest FDR values in Table 4 are marked in bold for
improved visibility. This finding might be justified by the na-
ture of the IQA measures looking at the general image quality
but having trouble focussing on learning the specific GAN‐
based artefacts in a face image. BRISQUE and CNNIQA as
representative quality measures of the IQA family focus more
on the visible artefacts in the morphed images and less on
realistic artefacts introduced by GAN‐based approaches. These
visible artefacts are easier to be introduced by landmark‐based
morphing techniques using alpha blending of two bona fide
sources such as in the case of FaceMorpher, OpenCV, and
WebMorph in the FRLL‐Morphs, FERET‐Morphs, and
FRGC‐Morphs datasets as visualised in Figure 1. Another
CNN‐based quality measure using multitask learning
(DBCNN) even outperforms CNNIQA in FERET‐Morphs,
showing stronger separability for landmark‐based morphs to
bona fide as well as for StyleGAN 2 generated morphs (but
still inferior to MagFace in this case).

5.1.3 | Are morphing attacks with relatively low/
high IQ also lead to low/high FIQ?

Several studies in Ref. [34, 65] pointed out that the FIQ
measures such as MagFace [14], SDD‐FIQA [63], SER‐FIQ
[62], and CR‐FIQA [55] are highly correlated with the face
utility as defined in ISO/IEC 29794‐1 [83]. A recent work [65]
has shown that for normal FR samples, IQ measures also
correlate to utility but to a much lower degree than FIQ. That
work also showed low correlation between the decisions of
IQA and FIQA. Knowing that IQA intends to measure the
perceptual quality and FIQA intends to measure the image
utility, one can see from the quality distributions in Figure 3

that not only the IQ is affected by morphing but also the utility
related FIQ measures, more clearly for MagFace than others.
To quantitatively represent the correlation between IQA and

FIQA, we look into the lowest and highest quality samples for a
set of FIQA and IQA measures and measure the ratio of the
shared (overlapped) samples in each of these groups (high or
low quality). To calculate this correlation between quality esti-
mation methods, we calculate the attack samples overlap ratio
between the samples of the lowest quality (10% of the data)
between every pair of quality estimation methods and the same
for the 10% of the highest quality. A large overlapping ratio
indicates a larger reasoning similarity between the considered
pair of methods. These ratios are presented in Figure 5 for the
top 10% qualities and in Figure 6 for the bottom 10% quality, for
the 2 FIQA and 2 IQA methods that showed the largest sepa-
rability betweenmorphing attacks and bona fide samples, that is,
MagFace and RankIQ from FIQA methods, and CNNIQA and
dipIQ from IQA methods. For most morphing attacks, the
correlation is slightly larger within FIQA methods (i.e. between
MagFace and RankIQ) and within IQA methods (i.e. CNNIQA
and dipIQ) than it is between FIQA and IQA methods. This is
not always true, as CNNIQA and MagFace show a relatively
higher correlation when assessing StyleGAN2 morphs. How-
ever, the correlation between IQ and FIQ measures is relatively
low, indicating that, as proven previously on bona fide samples
in Ref. [65], an image with low perceptual quality does not
necessarily lead to a low FR utility and vice versa. A clear
example of that is applying FR on masked faces [84, 85], where
an image of a masked face can be of high perceptual quality, but
it is of low utility given the mask occlusion [57].
So far, our investigations showed that some quality mea-

sures are clearly affected by the morphing process. We have
seen also that the different morphing techniques affect these
quality measures differently. A major outcome is that some
quality measures, such as MagFace, do result in a high sepa-
rability between bona fide samples and the different attacks.
This will be leveraged in the next section to investigate how

F I GURE 4 The figure depicts the bona fide quality score distributions using kernel density estimation approximation of the 5 morphing datasets according
to the proposed quality measures. MorGAN bona fide scores reveal lower quality compared to other bona fide images from other morphing datasets. This figure
also provides a slight hint of the quality of the underlying source datasets from which the morphing attacks are created
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F I GURE 5 The overlap ratio between the morphing attack samples designated to be among the highest 10% qualities (in their respective datasets) as ranked
by different pairs of FIQA and IQA methods (on the X and Y axes). MagFace and RankIQ are FIQA methods, and CNNIQA and DeepIQ are IQA methods.
This indicates the morphing attacks with relatively high IQ do not necessary lead to high FIQ

F I GURE 6 The overlap ratio between the morphing attack samples designated to be among the lowest 10% qualities (in their respective datasets) as ranked
by different pairs of FIQA and IQA methods (on the X and Y axes). MagFace and RankIQ are FIQA methods, and CNNIQA and DeepIQ are IQA methods.
This indicates the morphing attacks with relatively low IQ do not necessary lead to low FIQ
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can this separability be used to detect morphing attacks and
how generalisable is this detection over multiple morphing
attack methods and bona fide sources. A side observation is
that morphing attacks with relatively low/high IQ does not
necessary lead to low/high FIQ, confirming previous studies’
conclusions on normal FR tasks [65].

5.2 | The unsupervised detectability of
morphing attacks by quality measures

In this section, we start by looking at the detectability within
each dataset, motivated by the bona fide‐attack separability
presented in the last section. Then, motivated by the differ-
ences in the quality distributions of the different bona fide
sources, we investigate the generalisability of detecting
morphing attacks/bona fide by quality over different bona fide
sources and attack methods.

5.2.1 | If quality measures were used as an MAD
detection score, what would be the detection error
within each of the investigated datasets?

Table 5 shows the EER for each morphing technique in each
dataset by using the quality measures as MAD scores. It is to

note ⋆ behind the quality and utility measure in the table. This
⋆ indicates the reversed ordering of the quality measure to its
original meaning as listed in Table 1. Looking at the quality
distribution for dipIQ, we observed that the bona fide quality
is lower compared to the morphing attacks. Therefore, in order
to use this quality metric as an MAD score, we have to reverse
the quality scores to make the score thresholds consistent with
other quality measures considered in this work. The same is for
RankIQ, DBCNN, and CNNIQA measures. The smaller the
EER, the better is this quality metric suited for MAD task. The
numbers in bold indicate the lowest EER for each attack type
across all used quality measures within the same morphing
dataset. The last row in the table shows the mean overall EER
scores for each quality metric across all morphing types and
datasets. This overall performance provided us the indication,
which quality metric performs generally well on most of the
MAD tasks. The best 3 performing quality measures from the
FIQA and IQA categories are selected for further detailed
cross‐dataset investigations. Therefore, for the rest of the ex-
periments, 6 FIQA/IQA methods will be considered, namely
the MagFace, SER‐FIQ, RankIQ, BRISQUE, CNNIQA, and
dipIQ.
Based on the EER values in Table 5 and consistent with

the previously discussed FDR values, MagFace shows the
lowest EER for StyleGAN 2 generated morphs in the FRLL‐
Morphs, while inverted CNNIQA shows the lowest EER for

TABLE 5 EER score is presented between the morphs and bona fide distributions using the quality metric as a decision threshold. The quality measures
with * indicate that using the inverse of the quality value (lower quality indicates bona fide) leads to a lower average EER and thus is used. Each EER operation
point is calculated using the morphing attack and the bona fide scores of the same dataset. In each row of the table, the quality metric with the lowest EER
between bona fide and morphing attacks within the same morphing dataset is marked in bold. Only the mean EER value in the last row is averaged across the
morphing attacks and morphing datasets alongside the quality measure to determine the best performing 3 measures from both the IQA and FIQA categories,
which are in bold

FIQA IQA

Dataset Morph‐type MagFace SDD‐FIQA SER‐FIQ FaceQnet RankIQ* BRISQUE DBCNN* CNNIQA* UNIQUE dipIQ*

FRLL‐Morphs AMSL 0.3122 0.3908 0.5471 0.4524 0.3646 0.0694 0.0883 0.0791 0.4437 0.3572

FaceMorpher 0.2856 0.3232 0.4935 0.4755 0.3519 0.1023 0.3077 0.0360 0.2807 0.2610

OpenCV 0.2645 0.3620 0.4881 0.4644 0.3407 0.2187 0.5029 0.0541 0.4758 0.1384

StyleGAN 2 0.0704 0.3437 0.2365 0.4640 0.4272 0.2570 0.2381 0.4313 0.5859 0.3101

WebMorph 0.2826 0.3948 0.4799 0.4480 0.3956 0.0541 0.1867 0.0713 0.5061 0.4308

FERET‐Morphs FaceMorpher 0.2420 0.4386 0.4575 0.4688 0.3913 0.7391 0.8941 0.1080 0.5425 0.1040

OpenCV 0.2514 0.4480 0.4688 0.4669 0.3913 0.8431 0.9452 0.1229 0.5501 0.1512

StyleGAN 2 0.1399 0.4915 0.3459 0.5198 0.4178 0.6957 0.7977 0.2892 0.5728 0.2647

FRGC‐Morphs FaceMorpher 0.3039 0.4761 0.5062 0.5353 0.2417 0.4305 0.5280 0.3094 0.4907 0.1815

OpenCV 0.3143 0.4793 0.5156 0.5353 0.2448 0.5031 0.5820 0.3703 0.4948 0.2977

StyleGAN 2 0.1432 0.4948 0.3268 0.5685 0.3662 0.4886 0.4004 0.4741 0.5207 0.3195

LMA‐DRD (D) OpenCV (D) 0.2428 0.4783 0.3659 0.5000 0.4239 0.3913 0.4964 0.4529 0.4783 0.5362

LMA‐DRD (PS) OpenCV (PS) 0.2509 0.4727 0.3709 0.5091 0.4473 0.4436 0.5127 0.4509 0.4691 0.3891

MorGAN OpenCV 0.3880 0.4540 0.4470 0.5530 0.4400 0.4520 0.3940 0.4200 0.4970 0.6100

MorGAN 0.3750 0.4560 0.3900 0.4780 0.5300 0.6820 0.4150 0.4770 0.4980 0.4540

Mean 0.2577 0.4335 0.4293 0.4959 0.3849 0.4247 0.4859 0.2778 0.4937 0.3203
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all landmark‐based morphs within this dataset. The corre-
sponding finding is to be observed for FERET‐Morphs.
Regarding the FRGC‐Morphs, the inverted RankIQ surpris-
ingly shows lower EER for FaceMorpher and OpenCV
morphs compared to the inverted CNNIQA. As for the LMA‐
DRD datasets and the MorGAN dataset, MagFace constantly
outperforms the other quality measures in terms of EER by a
large margin to further consolidate its superior ability to be
used as a decision metric in the detectability of morphing at-
tacks. We observed that MagFace and the inverted CNNIQA
show overall low EER across all morphing attacks and
datasets.

5.2.2 | How different are the qualities of different
bona fide samples? And how does that effect the
correct detectability of bona fide?

Figure 4 depicts the quality distributions of all the bona fide
images across the 5 data sources using all 10 selected quality
measures. Since the MorGAN dataset has been originated
from lower image resolution, the quality of this dataset is
visibly lower compared to other bona fide sources. This is
shown by all FIQA measures. MagFace, SDD‐FIQA, and SER‐
FIQ clearly placed the quality of the MorGAN bona fide im-
ages that are considerably lower than bona fide images in other
data sources. Only CNNIQA, DBCNN, and UNIQUE did not
place the MorGAN bona fide images as far from other bona
fide images. Besides bona fide images in the MorGAN dataset,
other datasets showed slightly different quality distributions,
however, not consistently over all quality measures. FRLL bona
fide images consistently showed tight quality distributions in
comparison to other data sources, which might be due to the
highly controlled capture environment in FRLL. The FERET
bona fide samples showed relatively shifted quality distribu-
tions in comparison to other data sources, especially with the
BRISQUE, DBCNN, and CNNIQA measures, which might
be due to the fact that the FERET dataset was captured in the
early 1990s with relatively outdated cameras and thus differ-
ences in the resulting images. In general, putting MorGAN
(low resolution and thus low utility) aside, all bona fide sources
showed similar FIQA distributions despite the differences in
the perceived quality.
Given that the quality values can be used as an MAD score,

setting the BPCER value on one bona fide source, we inves-
tigate what would be the resulting BPCER on the other data
sources. To show that, Table 6 listed the BPCER values for all
other bona fide images of the other data sources (second
column) when fixing the decision threshold so the BPCER of
the data source (in the first column) is at 0.2. Along each row,
the lowest BPCER (with the most effective quality measure as
an MAD score) is marked in bold. Under most settings,
MagFace, the inverted RankIQ, BRISQUE, inverted
CNNIQA, and dipIQ show low BPCER on other bona fide
sources when counting the occurrences of minimum BPCER
in bold across settings. We can see from Table 6 that despite
the change in the bona fide source, thresholding the quality on

one source does not lead to extremely high BPCER on other
data sources in most cases. If we neglected the unrealistic
MorGAN bona fide, the FIQA methods perform significantly
better in detecting bona fide than IQA methods.
How detectable are the different morphing attacks by

quality when fixing the decision threshold on diverse bona fide
sources (i.e. BPCER)?
To answer this, we fix the BPCER, each time on the bona

fide of one of the five data sources and calculate the APCER of
each of the attack types in each of the morphing datasets.
Table 7 shows the APCER of the morphing attacks when
fixing the BPCER of the individual bona fide scores at 0.2 for
the bona fide source in the first column. Considering the first
row, the experimental setting is to fix, for example, the decision
threshold using a quality measure for the bona fide distribution
of the FRLL‐Morphs at BPCER = 0.2 and use this decision
threshold to determine the APCER value of AMSL, Face-
Morpher, OpenCV, StyleGAN 2, and WebMorph attacks in the
FRLL‐Morphs. The APCER value is not only determined for
all morphing attack types within the same morphing dataset
but also across all other attacks in the other morphing datasets
as well. This is targeted at studying the effectiveness of using
IQ and FIQ measures for MAD on unknown morphing at-
tacks and bona fide sources.
The bold number in Table 7 shows the lowest APCER

within the same morphing attacks and morphing dataset across
different quality measures that are used as MAD scores and the
bona fide source is used to fix the BPCER threshold. MagFace
shows the lowest APCER for StyleGAN 2 generated morphs
both in the FRLL‐Morphs (APCER = 0.0123), FERET‐
Morphs (APCER = 0.0813), and the FRGC‐Morphs
(APCER = 0.0861). In comparison to StyleGAN 2 attacks,
the APCER produced by MagFace is higher for landmark‐
based attacks, such as FaceMorpher, OpenCV, and Web-
Morph. On the other hand, the inverted CNNIQA shows low
APCER values on landmark‐based attacks, both within the
same morphing dataset or in other morphing datasets, and this
is more significant for the FRLL‐Morphs and FERET‐
Morphs. Looking at the third row showing APCER results
for FRGC‐Morphs, the inverted dipIQ outperforms the
inverted CNNIQA in terms of lower APCER for landmark‐
based morphing attacks.
For detecting the morphing attacks in the LMA‐DRD

datasets, MagFace outperforms all other IQA and FIQA
measures by a large margin when the BPCER threshold is set
on the same bona fide source. In both cases of LMA‐DRD (D)
and LMA‐DRD (PS) datasets, MagFace and the inverted
RankIQ clearly outperform all other quality measures based on
IQA. The reason could be the mitigated image artefacts after
the re‐digitisation process, rendering the FIQA methods more
superior detection performance.
In the case of the MorGAN dataset, due to its relatively

low image resolution, we focussed only on the intra‐class
performance and its APCER. The lowest APCER is again
observed for MagFace with 0.61 and 0.66 both for landmark‐
based OpenCV method and MorGAN‐based morphing at-
tacks, respectively, which is still very high.
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5.2.3 | Given an overall MAD performance
measure, how well do quality measures perform as
MADs across datasets and attacks?

To answer that, we investigate the ACER values scored on
different datasets when the BPCER is fixed on each bona fide
source individually. Table 8 shows the ACER values, which is
the balanced error between BPCER and APCER. It shows a
clearer trade‐off between bona fide and attack detection. A

smaller ACER indicates the overall high performance of using
this quality measure for the MAD task. This value is calculated
when fixing the decision threshold such that the BPCER for
the bona fide source shown in the first column is at 0.2. This
threshold is then used to calculate the ACER, by adding the
BPCER and APCER scores at this decision threshold and
dividing by 2.
The ACER values in Table 8 provide supporting findings

to those extracted for the APCER in Table 7 and BPCER

TABLE 6 BPCER of the morph
datasets is given in the table, by fixing the
decision threshold so that the BPCER of one
morph dataset is at 0.2 (left‐most column) and
using this threshold to calculate the BPCER
for other morphing datasets (second from left
column). The bold numbers mark the best
performing quality metric within each
morphing dataset, which is determined across
each row. One can see that despite the change
in the bona fide source, thresholding the
quality on one dataset does not lead to
extremely high BPCER on other datasets in
most cases

Dataset (BF) dataset (BF) MagFace SERFIQ RankIQ* BRISQUE CNNIQA* dipIQ*

FRLL‐morphs FERET‐
morphs

0.3008 0.2788 0.1415 0.9766 0.2887 0.0248

FRGC‐morphs 0.3098 0.3249 0.1042 0.5513 0.6227 0.0736

LMA‐DRD (D) 0.1689 0.2098 0.0027 0.4687 0.8142 0.2207

LMA‐DRD (PS) 0.2039 0.2039 0.0138 0.3416 0.7438 0.2259

MorGAN 1.0000 1.0000 0.0010 0.9743 0.1316 0.0274

FERET‐
morphs

FRLL‐morphs 0.0588 0.1716 0.3578 0.0000 0.0882 0.5098

FRGC‐morphs 0.1876 0.2346 0.1734 0.0224 0.5463 0.2993

LMA‐DRD (D) 0.0981 0.1444 0.0245 0.0054 0.7486 0.5668

LMA‐DRD (PS) 0.1350 0.1460 0.0303 0.0028 0.6749 0.5675

MorGAN 1.0000 1.0000 0.0023 0.1346 0.0986 0.1764

FRGC‐morphs FRLL‐morphs 0.0686 0.1716 0.4020 0.0000 0.0049 0.3775

FERET‐
morphs

0.2088 0.1635 0.2173 0.7481 0.0113 0.1203

LMA‐DRD (D) 0.1035 0.1144 0.0245 0.1090 0.3224 0.4142

LMA‐DRD (PS) 0.1433 0.1157 0.0386 0.0413 0.3691 0.4132

MorGAN 1.0000 1.0000 0.0027 0.7348 0.0237 0.1015

LMA‐DRD (D) FRLL‐morphs 0.2500 0.1961 0.7010 0.0049 0.0000 0.1569

FERET‐
morphs

0.3418 0.2562 0.3857 0.8662 0.0014 0.0191

FRGC‐morphs 0.3483 0.2952 0.4054 0.2760 0.0821 0.0641

LMA‐DRD (PS) 0.2314 0.1791 0.2066 0.0826 0.2011 0.1983

MorGAN 1.0000 1.0000 0.0307 0.8474 0.0107 0.0204

LMA‐DRD (PS) FRLL‐morphs 0.1814 0.1961 0.6961 0.0588 0.0000 0.1569

FERET‐
morphs

0.2880 0.2725 0.3808 0.9519 0.0014 0.0198

FRGC‐morphs 0.2965 0.3142 0.3997 0.4263 0.0815 0.0654

LMA‐DRD (D) 0.1553 0.2071 0.1826 0.3842 0.1913 0.2071

MorGAN 1.0000 1.0000 0.0294 0.9509 0.0104 0.0214

MorGAN FRLL‐morphs 0.0000 0.0000 0.8971 0.0000 0.4706 0.5490

FERET‐
morphs

0.0000 0.0000 0.6100 0.2689 0.4416 0.2180

FRGC‐morphs 0.0000 0.0003 0.6681 0.0325 0.7483 0.3331

LMA‐DRD (D) 0.0000 0.0000 0.5967 0.0191 0.8852 0.5913

LMA‐DRD (PS) 0.0000 0.0028 0.5840 0.0028 0.8347 0.6171
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values in Table 6. The bold number shows the lowest ACER
values determined when fixing the BPCER of the individual
bona fide source in the first column at 0.2. MagFace as the
detection metric performs more stable across all different
kinds of morphing attacks and morphing datasets. For FRLL‐
Morphs, FERET‐Morphs, and FRGC‐Morphs, MagFace
shows, among other quality measures the best ACER for
detecting morphing attacks such as StyleGAN 2 and also the
attacks in LMA‐DRD. The inverted CNN and dipIQ share the
success for detecting landmark‐based morphing attacks with
minimum ACER value in the individual experimental settings.
For the re‐digitised LMA‐DRD dataset, BRISQUE shows
good error performance in terms of minimum ACER.
The right‐most column in Table 8 shows the mean

average ACER value across all morphing attacks and
morphing datasets for each IQA and FIQA measure. We also
marked all mean ACER values below 0.3 in bold for better
visibility. Based on this averaged ACER value, we observe
that several quality/utility measures show stable ACER in the
MAD task across different morphing attacks and morphing
datasets. Mostly MagFace, but also the inverted CNNIQA,
and the inverted dipIQ all perform equally well under specific
experimental conditions. While FIQA measures work well on
StyleGAN 2 generated morphing attacks, IQA measures work
well in detecting facial landmark‐based morphing attacks. The
good performance of these measures is reflected in the low
ACER values. Thus the quality measures of MagFace and
CNNIQA can be used as unsupervised MAD with the overall
performance of ACER below 0.30 under the diverse and
unseen bona fide sources and attack variations. This relatively
high MAD performance by MagFace and CNNIQA might be
explained by their design concept. The MagFace quality is the
magnitude of the sample embedding using the network
trained as proposed in Ref. [14]. This is based on training the
FR model using a loss that adapts the penalty margin loss
based on this magnitude and thus links the closeness of a
sample to its class centre to the unnormalised embedding
magnitude. A morphed face image is designed to be close to
multiple classes (identities) and thus is typically not expected
to be extremely close to an individual class. The CNNIQA
quality is based on processing image patches. This property is
proven in Ref. [13] to be extremely sensitive to local dis-
tortions, which makes it a perfect choice for local quality
estimation. This corresponds to being sensitive to the local
artefacts caused by the different morphing processes as dis-
cussed and shown in Ref. [8]. One can take advantage of the
different properties of image IQA and FIQA methods to
build a possibly stronger MAD based on quality measures.
This can be performed by quality score‐level information
fusion approach [86], which, after score normalisation [87],
can give relative weights that correspond to the estimated
performance of each of the fused methods [81, 88].
To sum up, our investigation on the detectability of

morphing attacks using the quality measures shows that FIQA
and IQA metrics can be used as unsupervised attack detection
measures under different attack scenarios. While MagFace
from FIQA performs relatively better on GAN‐basedT
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morphing attacks, the inverse CNNIQA from IQA measure
performs relatively better on landmark‐based morphing
attacks.

5.3 | Take‐home messages

In this section, we summarise and highlight the most important
outcomes discussed in detail in Section 5:

� All face morphing techniques do introduce a change in FIQ
and IQ measures of face images in comparison to their
corresponding bona fide samples. Such a shift was larger
and more consistent in some FIQ/IQ methods than in
others, for example, MagFace, CNNIQA, and dipIQ
showed relatively stronger quality score shifts. This shift
directly corresponds to a quality separability between bona
fide and attacks.

� The proposed use of FIQ and IQ measures as unsupervised
MAD methods produce a stable and generalisable MAD
performance for some of the quality measures. We noticed
that setting an MAD decision threshold can produce rela-
tively generalisable MAD decisions across bona fide sources
and morphing techniques. This is especially the case for
MagFace, CNNIQA, and dipIQ, as expected given the sta-
ble effect of different morphing techniques on their quality
scores.

� Following the above‐mentioned observations, we showed
that using quality measures, such as MagFace and CNNIQA,
as unsupervised MAD results in ACER values below 30%
on a diverse set of unknown data sources and morphing
techniques.

6 | CONCLUSION

Given the complexity of MAD and the threat the morphing
operation posed on the automatic face recognition system, we
studied the effect of morphing on image quality and utility. We
found a general quality shift in morphed images compared to
bona fide images by using these investigated IQA and FIQA
measures. However, these quality measures behave differently
on landmark‐based and GAN‐based morphing attacks, yet to
different degrees.
Based on the observed separability in the quality measures

between the bona fide and morph samples, we theorise that
such measures can be used as unsupervised MADs, where the
quality score can act as an MAD detection score. Our analyses
were successful in showing that using these quality measures to
differentiate between morphing attacks and bona fide samples,
quality measures such as MagFace and inverted CNNIQA can
consistently lead to ACER values below 0.30 on completely
unknown bona fide sources and attack methods. Based on that,
we conclude that these quality measures represent useful de-
cision measures for practitioners designing applications for the
MAD task as a stand‐alone MAD indicator, or in future work,
as a supporting measure for MAD decisions.T
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