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Abstract 

Water Distribution Networks contain lots of quality sensors placed in the network. Generally, the analysis of this sensor data, e.g. 
to check for contaminations, is performed manually by the operators and not by data-driven methods. This has several reasons: 
First, the parameterization of these methods is time consuming, second, many false positive alarms are generated due to special 
operational actions. This paper addresses both problems: An alarm detection method is presented needing only a few parameters 
for configuration and the amount of false alarms is reduced, by using known events for training. The approach is tested on a 
laboratory plant. 
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Peer-review under responsibility of the Organizing Committee of WDSA 2014.  

Keywords: Machine Learning, Time Series Analysis, Condition Monitoring 

1. Introduction

Water Distribution Networks (WDNs) are critical infrastructures that are exposed to deliberate or accidental
chemical, biological or radioactive contamination. During the last years powerful multi-parameter sensors for water 
quality monitoring in WDNs have been developed in order to monitor the water quality. These sensors measure several 
physical and chemical water parameters like conductivity, pH, free chlorine, redox potential, diffusion, and turbidity. 
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2. Aim of the alarm generation module

The aim of the alarm generation module is the online monitoring of the water distribution network. On the basis of
measured historical sensor data, machine learning approaches can be applied to automatically generate a model for 
monitoring the water quality and quantity. The advantage of this approach is that no analytically-formulated expertise 
is needed a priori, and thus the user is not hampered by "unsafe" assumptions about the physical / biochemical behavior 
of the drinking water. 

An alarm is generated, if a novelty occurs in the acquired measurements. In that case measurements can describe 
one station in the WDN which covers several sensors or sensors placed in the network itself. In both contexts, a novelty 
is defined as a detected unknown state of the WDN. Unknown states can be detected using data from the water quantity 
as well as water quality. The output of the module is a continuous alarm index value. This value quantifies the 
difference from the trained model to the acquired measurement data. If the alarm index passes a certain threshold, an 
alarm is detected. 

In the past, several approaches have been investigated and implemented. In [7] an event detection software called 
CANARY is proposed which contains several statistically based algorithms. The company whitewater has developed 
a software tool called BlueBox [10], which can be used to perform an enhanced data analysis on water quality and 
quantity data. Other approaches are presented in [4] by using Support Vector Machines and in [1] by using genetic 
algorithms. Still, all proposed approaches have not be widely applied in WDNs. Two possible reasons for that are: 

• The parameterization of an alarm generation software is complex and time consuming. Appropriate parameters
for the machine learning algorithm need to be selected. Additionally, the selection of the alarm threshold is not an
easy task.

• A lot of abnormalities detected by the software in the data are due to special operational actions. These leads to
false alarms, reducing the credibility of the module. Examples of operational actions which lead to false alarms
are sensor calibrations, flushing of pipes or rapid changes of water quality due to mixing of different water
resources.

In this paper a new approach is presented which reduces the impact of both problems. The development is part of
the project SMaRT-OnlineWDN [8]. The main objective of this project is the development of an online security 
management toolkit for WDNs that is based on sensor measurements of water quality as well as water quantity.  

The paper is structured in two parts: 
In the first part, the methodology of the alarm generation module is explained. This covers the preprocessing step, 

the calculation of the alarm index and the calculation of the alarm threshold. In the second part, results of experiments 
performed on a laboratory plant are presented. The paper closes with a short summary and proposals for future 
research. 

3. Methodology of the alarm generation module

The proposed alarm generation module covers several steps. Initially, a normalization of the measurements is
performed. As multivariate statistical method the principal component analysis (PCA) is used. The PCA is applied to 
the normalized measurements. In the following sections, it is explained in detail how the alarm index and finally the 
generation of the alarm threshold are obtained. 

3.1. Normalization 

Since the event detection module works with different types of quality and quantity parameters (e.g. pressure, 
conductivity) the measurements need to be normalized. For normalization of the data, the z-score normalization [5] is 
used, being defined as 
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while 𝑥𝑥[𝑘𝑘] with 𝑘𝑘 = 1 …𝑛𝑛 is the original measurement data of one process variable. The variable 𝜇𝜇 describes its 
mean value and 𝜎𝜎  the standard deviation. The original set of process variables is defined as 𝑋𝑋 =
{𝑥𝑥1[𝑘𝑘], 𝑥𝑥2[𝑘𝑘], … , 𝑥𝑥𝑚𝑚[𝑘𝑘]}, the normalized one as 𝑍𝑍 = {𝑧𝑧1[𝑘𝑘], 𝑧𝑧2[𝑘𝑘], … , 𝑧𝑧𝑚𝑚[𝑘𝑘]},. The normalization is performed for 
each process variable in 𝑋𝑋. 

3.2. Principal Component Analysis 

The principal component analysis (PCA) is a procedure of multivariate statistics to structure large data sets. It is 
usually used as a data mining method [5] or for model reduction [9]. Applications of the PCA in terms of process 
supervision can be found for example in [3] and [6]. 

The main concept of a PCA means to perform an orthogonal transformation to map the set of correlated variables 
into a set of linear, uncorrelated ones. The PCA assumes that the acquired measurements are stationary Gaussian 
distributed random variables. The resulting uncorrelated variables are then called the principal components of the 
variable set. Mathematically, the principal components then cover the variance accounted for in the data set. This 
means that only a small amount of principal components needs to be used for monitoring. Usually, the first two 
principal components are used to describe the state trajectory of the system. Further information on how the PCA can 
be used for process supervision can be found e.g. in [3]. 

The calculation of the principal components is carried out by computing the eigenvectors of the covariance matrix. 
The covariance matrix Σ𝜖𝜖 𝑅𝑅𝑚𝑚×𝑚𝑚 is defined as 
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with 𝜎𝜎𝑖𝑖𝑖𝑖2  being the covariance of the two standardized variables 𝑥𝑥𝑖𝑖[𝑘𝑘] and 𝑥𝑥𝑗𝑗[𝑘𝑘] in the variable set. Next, the 
eigenvalues 𝜆𝜆 of the covariance matrix are calculated and sorted in ascending order. This results in the final diagonal 
matrix Λ𝜖𝜖 𝑅𝑅𝑚𝑚×𝑚𝑚:  
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In a next step, the corresponding eigenvectors of the eigenvalue matrix Λ are calculated and summarized in columns. 
This results in the matrix Γ𝜖𝜖 𝑅𝑅𝑚𝑚×𝑚𝑚 

11 12 1

21 22 2

1 2

m

m

m m mm

γ γ γ
γ γ γ

γ γ γ

 
 
 Γ =  
 
  





   



   (4) 

Finally, the matrix Γ is used to perform the linear transformation 

TZ Y Z→ = Γ    (5) 

while 𝑌𝑌 contains the principal components. For example, 𝑦𝑦1[𝑘𝑘] = 𝛾𝛾11 𝑥𝑥1[𝑘𝑘] + ⋯+ 𝛾𝛾𝑚𝑚1𝑥𝑥𝑚𝑚[𝑘𝑘] is the time series of the 
first principal component when having new acquired measurements. For the calculation of the alarm index the first 
two principal components are used since this usually covers most of the variance accounted for in the data set.  
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4. Stages of the Event detection

To check if an event has occurred, in the measurements, three steps need to be performed. First the model has to
be trained using offline data from the WDN. Next, the alarm index is calculated using online data. Finally, it has to be 
checked if the index passes a certain threshold.  

4.1. Training the model 

Initially, training data is selected, which defines the “normal state” of the WDN. For WDNs, in general, this 
selection is performed by experienced personnel of the water utilities. After performing the normalization (1), this 
data is used to calculate the principal components given in equation (5). In a second step, new measurement data 
coming from the process devices and the calculated principal components, are used to generate the alarm index. 

4.2. Calculating alarm index 

The alarm index at sample 𝑘𝑘 is calculated with the measurement data 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘]𝜖𝜖𝑅𝑅𝑚𝑚. In a next step, each value in 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘] is normalized on mean and standard deviation from the training data. 

The alarm index is then calculated by taking the dot product between the selected number of principal components 
Γ𝜖𝜖𝑅𝑅𝑚𝑚×𝑙𝑙 with 1 ≤ 𝑙𝑙 ≤ 𝑚𝑚 and the data 𝑍𝑍𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘] = {𝑧𝑧1𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘], … , 𝑧𝑧𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘]} given as: 
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𝒀𝒀𝒏𝒏𝒏𝒏𝒏𝒏 is a vector with length l. Finally, the alarm index 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝜖𝜖𝜖𝜖 results from summing up the values in 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛  

[ ] [ ] [ ]Alarm T
newY k k k= ⋅new newY Y  (7) 

Since the alarm value 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is defined between 0 ≤ 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≤  ∞ a dynamic threshold needs to be calculated that 
defines if an event has occurred or not. 

4.3. Calculation of the threshold 

The threshold is generated by calculating the alarm index using the training data, the selected number l of principal 
components and by calculating the threshold of the alarm index in terms of the variance from the training data. 
Therefore, the alarm index is calculated using the training data to generate𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. This is performed by calculating 
𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑘𝑘] = Γ𝑇𝑇𝑍𝑍[𝑘𝑘] for each sample 𝑘𝑘 = [1, … 𝑛𝑛] in the training set which finally leads to the alarm index 

[ ] [ ] [ ]Alarm T
newY k k k= ⋅train trainY Y  (8) 

In a next step the threshold 𝑄𝑄𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝜖𝜖 𝑅𝑅 for the alarm index is calculated as: 

( )Alarm
threshold trainQ K VAR Y= ⋅  (9) 

In the following, the parameterization is set to K = 6. If 𝑌𝑌𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 >  𝑄𝑄𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  counts, an alarm is generated. 
It is important to mention that this algorithm only needs two parameters to be set, namely the number of principal 

components l and the parameter K for calculating the threshold. Both parameters are statistically interpretable values. 
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5. Experimental Results

5.1. Laboratory plant 

The developed methodology has been tested on a laboratory water distribution network. Two configurations with 
different outflow conditions have been investigated. The two configurations are sketched in Figure 1: Configuration 
1 and 2 of the plant to perform experiments. Once the outlet Out8 is used as outflow, once the outflow Out6.. In this 
installation of the laboratory network five conductivity sensors, two flow meters and one pressure sensor are installed. 
To simulate a contamination, an injection including a dosing pump is installed at the inflow. The pump injects NaCl 
solution into the network, leading to an increase of conductivity, being measured by the conductivity sensors. The two 
configurations of the laboratory network can be characterized as follows: 

Fig. 1: Configuration 1 and 2 of the plant to perform experiments. Once the outlet out8 is used as outflow, once the outflow Out6. 

Configuration 1 
In configuration 1 the stop cock at the outflow Out6 is closed and at outflow Out8 is open while passing the 
conductivity sensors C1, C3 and C5. The conductivity sensors C2 and C4 do not measure an increase of conductivity 
if NaCL is injected since the flow rate in that pipe section is zero. The acquired measurements with and without 
injected NaCl are shown in Figure 2. 

Configuration 2 
In configuration 2 the stop cock at the outflow Out8 is closed and open at outflow Out6. In that case, the water flow 
passes the conductivity sensors C2, C4 and C5. The sensors C1 and C3 do not measure an increase of conductivity 
after NaCL injection. The measurements with and without injected NaCl are given in Figure 3. 
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Fig. 2. Measurements from configuration 1 of the laboratory plant. 

 

Fig. 3. Measurements from configuration 2 of the laboratory plant. 

 

5.2. Tested scenarios 

The acquired measurements of the two network configurations have been used to test the alarm generation module 
for different scenarios. At all, five different scenarios are investigated. The resulting alarm indices, including their 
calculated thresholds, are given in Figure 4. The scenarios are explained as follows: 

Injection Scenario 1:  
Training data: Clean water config. 1, clean water config. 2 
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Test data: Contaminated water config. 1 
This scenario covers the basic functioning of the module. Clean water is used for training, contaminated data for 

testing. For clean water the alarm index stays below the threshold, for contaminated water, the threshold is passed by 
large meaning that an event has be detected (see alarm index in figure 4, subplot 1). 

Injection Scenario 2:  
Training data: Clean water config. 1, clean water config. 2 
Test data: Contaminated water config. 2 

This scenario is similar to the first one. Only, that in this case contaminated water from configuration 2 is used. 
Like in the first scenario, the contamination is detected by the module (see alarm index in figure 4, subplot 2). 

Injection Scenario 3:  
Training data: Clean water config. 1, clean water config. 2, contaminated water config. 1 
Test data: Contaminated water config. 1 

In this scenario the contaminated water from configuration 1 is used for training and testing the module. The 
thought of this scenario is to test if it is possible to train specific states of a system and store it in the module as being 
normal. The resulting alarm index (Figure 4, subplot 3) shows, that the contaminated data leads to a small increase of 
the alarm index, but stays below the threshold. Hence, no event is raised by the module. 

Injection Scenario 4:  
Training data: Clean water config. 1, clean water config. 2, contaminated water config. 1 
Test data: Contaminated water config. 2 

Scenario 3 showed that specific states of a system can be stored in the module. This scenario checks if it is still 
possible to detect other events coming from other system configurations. The resulting alarm index in figure 4, subplot 
4, indicates that this is still possible. Since the contaminated water from configuration 2 was not used for training, the 
module still detects the event. The alarm index passes the calculated threshold by large. 

Injection Scenario 5:  
Training data: Clean water config. 1, clean water config. 2, contaminated water config. 1, contaminated water 
config. 2 
Test data: Contaminated water config. 1, contaminated water config. 2 
In this scenario both the training data and test data contain information from contaminations in configuration 1 and 
configuration 2. Due to that, no events are detected in the test data (see alarm index in figure 4, subplot 5). This 
indicates that it is possible to store several different patterns of a system in the module that are then declared as a 
normal state of the WDN. 
 

6. Summary and future work 

In this paper, an easy-to-parameterize event detection algorithm based on principal component analysis has been 
presented. This algorithm only needs two parameters to be set, namely the number of principal components and the 
sigma-environment for calculating the threshold. Both parameters are statistically interpretable values. 

Next, several experiments at a laboratory network were performed to check the performance of the developed 
module. It has been tested if different process patterns can be stored in the module as being normal process behaviour. 
Therefore, data containing clean and contaminated water from the laboratory network for two configurations were 
used. The results showed that for these two configurations of the plant, it is possible to learn patterns as normal states 
of the WDN.  

Future work will focus on the construction of a complete diagnosis chain. This covers the step to localize the source 
of the contamination in the WDN after an event has occurred and a classification of the event. Furthermore, the another 
focus will be on the optimization of the selected threshold. Additionally, the extension of the PCA using different 
kernel methods needs to be checked. Possibly, kernel methods lead to better results, since they are a nonlinear methods. 
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Fig. 4. Alarm indices for the investigated scenarios. 
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