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Abstract Video surveillance has become a hot research topic due to the recently in-

creased importance of safety and security issues. Usually, security personnel has to

monitor a surveillance area and often they have to do this for 24 hours a day. Thus, it

would be desirable to develop intelligent surveillance systems that support this task au-

tomatically. The system described in this contribution is thought of such an automatic

surveillance system that has been developed to detect several dangerous situations in

subway stations. The workflow and the most important steps from foreground segmen-

tation, shadow detection, tracking and classification to event detection are described,

discussed and evaluated in detail. The developed surveillance system yields satisfying

results, as dangerous situations that need to be recognized are detected in most cases.

Keywords Video Surveillance · Foreground Segmentation · Shadow Detection ·

Tracking · Event Detection · Expert System

1 Introduction

Video surveillance is in the center of research at the moment. So far there are already

many different application fields for video surveillance systems. For example in almost

every shop there are cameras to observe customers and recognize shoplifting. Another

field of application is traffic monitoring where the objective is to analyze and regulate

traffic flow.

Nowadays, there are many projects dealing with the observation of humans or crowds
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of humans in public spaces (see for example Gryn et al (2009)). In the busiest shop-

ping area in London (Oxford Street), there are 35 cameras observing customers (see

McCahill and Norris (2002)). On the Central Line of the underground in London, 500

cameras are installed. All these cameras have to be monitored by security personnel

which is a time-consuming and very expensive task. Thus, it is desirable to develop

systems that assist human operators monitoring the scenes or even operate indepen-

dently. For instance, a surveillance system may compute alarms on suspicious events

and advise a human operator to pay attention to a particular screen.

The described system called MetroSurv is thought of such an automatic surveillance

system that is able to detect several dangerous situations in a subway station. The

sample video sequences this system has been based on have been provided by the

largest European public transportation company (RATP, France) within the Interna-

tional Conference on Advanced Video and Signal based Surveillance 2005, see CREDS

(2005).

These video sequences have been recorded at the subway station ”Porte de Lilas” in

Paris and show several dangerous situations which need to be detected in real-time:

– Proximity warning : If a person steps onto the white line near the platforms or

extends an arm, leg etc. over the rails, a proximity warning should be triggered.

– Dropping objects on tracks: This warning shall be raised if a person drops any kind

of object onto the tracks.

– Launching objects across the platforms: If a person throws an object across the

platforms, an alarm should be triggered.

– Person trapped by the door of a moving train: The surveillance system has to rec-

ognize if a person is trapped by the door of a train. False negative detections are

not tolerated.

– Walking on rails: A critical alarm should be raised, if a person is walking along the

tracks.

– Fall on the track : The surveillance system has to detect people that fall on the

tracks.

– Crossing the rails: If a person crosses the tracks, the surveillance system has to

raise a critical alarm after having recognized a “fall on the track” event.

This paper discusses all modules of MetroSurv. For an overview see Figure 1. Fur-

ther details about the system can be found in Krausz (2007). MetroSurv firstly detects

moving objects by classifying each pixel as foreground or background using a Gaussian

Mixture Model approach. This step also includes the detection and removal of shad-

ows, as motion detection algorithms may misclassify shadows as belonging to the fore-

ground. Shadow detection is realized by introducing a reflection model that describes

the physics of light and shadow formally. Objects detected during motion detection are

tracked through the video sequence by establishing correspondences between objects

of the current frame and objects found in the previous frame. Theren, the detected

moving objects are classified into the classes “Human”, “Train” or “Object” using a

rule-based approach. In a high-level layer the system analyzes and interprets human

motion. For that purpose, an expert system is utilized which combines information

about detected objects with a priori knowledge to conclude what is happening in the

scene. If one of the predefined situations occurs, an alarm is raised.

The main contributions of this paper include firstly a high-level feedback scheme to

the foreground segmentation module to cope with situations like sudden illumination

changes. Secondly, a novel shadow detection algorithm is proposed that is based on a
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reflection model. Thirdly, an event recongition method is developed which makes use

of an expert system to analyze the events taking place in the scene.

The paper is organized as follows. The next section presents related work. Then, sec-

tion 3 gives an overview of the structure of MetroSurv. Section 4 briefly describes the

foreground detection module and section 4.2 explains the usage of high-level feedback

which is utilized to improve the results of the foreground segmentation. In section 4.3,

the problem of detecting and removing shadow regions is addressed and discussed. The

tracking procedure is described in section 5. After the classification step (see section

6) the event detection module is presented in section 7. Finally, section 8 presents

obtained results before a conclusion is drawn in section 9.

Fig. 1 Overview of MetroSurv. Firstly, MetroSurv performs foreground segmentation to de-
tect moving objects. Moving objects are tracked continuously throughout the video sequence.
Additionally, each detected object is classified as a human, train or unknown object. The re-
sults of the classification and the tracking module are used in the event detection module to
analyze the activities. If one of the predefined events is detected, an alarm is triggered.

2 Related Work

A short overview of several foreground segmentation approaches is given in Hu et al

(2004). Temporal differencing uses the fact that two subsequent frames are slightly dif-

ferent in regions containing moving objects. Lipton et al (1998) for example compute
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the difference between successive frames and detect motion, if this difference exceeds

a certain threshold. Motion can also be detected by considering the optical flow, see

for example Giachetti et al (1998). However, the most commonly used technique is

background subtraction. Pixels are classified as foreground, if the difference between

the background model and the current frame at a certain location exceeds a threshold.

The accuracy of this method highly depends on the modeling of the background. Har-

itaoglu et al (1998) estimate the background model in a training period over several

video frames when no people are visible. However, in this case the background model

does not adapt to scene changes, e.g. if the illumination conditions change. Therefore,

this approach does not qualify for an application. This problem is addressed in the

tracking system Pfinder described in Wren et al (1997) where the color distribution is

assumed to be Gaussian. In each frame mean intensity value and standard deviation

of the Gaussian are recursively updated. A method superior to these techniques has

been presented in Stauffer and Grimson (1999) where a mixture of Gaussian functions

is used to model each pixel. MetroSurv is motivated by the Gaussian mixture model

approach and extends it by making use of high-level feedback similar to the approach

proposed in Barth and Herpers (2005) which enables us to adapt quickly to scene

changes. Furthermore, a shadow detection module is integrated into the foreground

segmentation module. For shadow detection, two main approaches exist, see Salvador

(2004): Model-based techniques rely on a priori knowledge of the scene. With knowl-

edge of the illumination conditions, the geometry of the environment and the objects

(peopl, cars etc.) present in the scene they can estimate the position of cast shadows.

Property-based techniques on the other hand just consider general properties of shad-

ows and make use of local, spatial, geometric or temporal features. As a local feature,

color and brightness distortion are considered in Horprasert et al (1999) whereas dif-

ferent color spaces are used in Cucchiara et al (2001) and in Salvador (2004). Other

approaches examine edges or texture as spatial features, see for example Frahm et al

(2003). They assume that the texture of a surface covered by a shadow is not changed.

Geometric features are mainly used to reduce false positives by taking the environment

into account (see Hsieh et al (2004)). Salvador (2004) utilizes a temporal feature when

considering two shadow regions in consecutive frames as instances of the same shadow,

if both regions overlap. Our approach integrates a local feature based on the reflectance

and a geometric feature in a post processing step similar to the approach in Salvador

(2004).

Detected objects are tracked in subsequent frames. Tracking can be performed in an

iterative procedure or using Bayesian theory. The Mean Shift algorithm (see Comani-

ciu and Meer (1999)) for instance is a gradient-based approach that starts with the

previous position of an object, evaluates the correctness by computing the distance

between the target model and the candidate model and iteratively refines the position.

On the contrary, probabilistic approaches like Particle Filters (see Isard and Blake

(1998)) are non-iterative and rely on Bayesian theory. They estimate a probability

distribution representing the state of a dynamically changing system by evaluating

observations. MetroSurv integrates an approach proposed by Senior (2002) which es-

tablishes correspondences between detected objects of the previous and the current

frame by computing the spatial distance and the distances between the appearance

by comparing appearance models which are based on a color model and a probability

mask.

Objects that have been detected and tracked in subsequent frames are classified into

different object classes. Hu et al (2004) distinguishes two main categories of classi-
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fication methods: Shape-based classification approaches just consider the shape of an

object. For that purpose, several features of an object are extracted. Lipton et al (1998)

for example use dispersedness of the blob to distinguish between humans and vehicles

whereas Zang and Klette (2003) utilize the aspect ratio of the bounding box. Both

systems extract those features and use simple rules to classify each object. Collins

et al (1999) also compute features of objects (dispersedness, area and aspect ratio) and

feed them into a neural network to classify objects into the classes ”single human”,

”multiple humans” and ”vehicles”. Motion-based classification methods use the fact

that human motion is periodic in contrast to the motion of rigid objects like vehicles.

Time-frequency analysis is used in Cutler and Davis (2000) to analyze the periodicity

of motion and classify the object. In MetroSurv shape-based features are extracted and

used in a rule-based approach for classifying objects.

In order to recognize events taking place in the scene approaches for event detection

mostly take scene context into account. Often, predefined events have to be detected.

For example, Bremond and Medioni (1998) use Finite State Machines that consist of

states representing certain sub-scenarios like ”the car enters zone A”. The whole sce-

nario is recognized if the automaton reaches a final state. Cupillard et al (2004) also

employ finite state automata to recognize simple scenarios. For example, the automa-

ton for the scenario ”a person jumps over a barrier without validating his ticket” is

composed of five states: a person is tracked, the person is at the beginning of the valida-

tion zone, the person moves fast, the person is beyond the barrier and the person is at

the end of the validation zone. Starner and Pentland (1995) use Hidden Markov Models

to analyze motion of a hand to recognize American sign language. With Parametrized-

HMMs, a more complex approach is used in Wilson and Bobick (1998) to interpret

human gestures. One main disadvantage of HMM approaches is the need for training

samples. Furthermore, the topology and the number of states of the model have to be

determined. In addition to finite state machines, Cupillard et al (2004) use Bayesian

Networks for the recognition of more complex scenarios. This approach was proposed

in Hongeng et al (2000) where for example a Bayesian Network is created and trained

for the scenario ”object A slows down toward object B”. More recently, Muncaster

and Ma (2007) apply Dynamic Bayesian Networks. Similar to Hidden Markov Models,

training samples are needed to determine the parameters of the network. Ivanov and

Bobick (2000) analyze tracking results and generate discrete events like ”car-enter” or

”person-exit”, together with likelihood values. These events form the vocabulary of a

Stochastic Context-Free Grammar and are processed by a parser to recognize events.

Ghanem et al (2004) make use of Petri Nets which have been shown to be similar to

rule-based expert systems. A transition represents a rule whereas markings correspond

to facts. Ghanem et al (2004) describe an ontology for event recognition and shows the

use of Petri Nets in the domain of a parking lot. There are several works using Logical

Predicates in combination with an inference mechanism. Shet et al (2005) and Shet

et al (2006), for instance, define rules for activities like ”stealing”. In each frame the

system analyzes the results of the low-level layers and generates facts which are then

put into a knowledge base. A Prolog inference engine is then used for reasoning. Sim-

ilar to Shet et al (2006), MetroSurv defines rules for events that need to be detected.

Contrarily, we do not use a backward chaining mechanism as Prolog offers, but we

make use of an expert system that integrates a priori knowledge of the scene context

and combines it with information about detected objects.
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3 System Overview

The described system developed for detection of dangerous situations in subway sta-

tions is composed of four modules which interact with each other as shown in Figure

1:

– The Foreground Segmentation module decides for each pixel of each frame if it is

considered as foreground and thus could be part of a moving object. For that pur-

pose, background subtraction is applied. The background image is modeled using a

variation of the Gaussian Mixture Models (GMM) approach proposed by Stauffer

and Grimson (1999). It extends the original GMM approach by taking a variable

number of Gaussian functions to avoid underfitting and overfitting. MetroSurv uses

an implementation of this GMM-variation by Zoran Zivkovic1.

In contrast to many other surveillance applications, MetroSurv detects and pro-

cesses shadows as shadow regions may cause several problems. For instance, a

shadow region may connect the foreground regions of two moving objects resulting

in a single foreground region or it may even be recognized as a moving object.

For shadow detection a novel algorithm is proposed which is based on a reflection

model that describes the physics of light and shadow formally.

– The Tracking module employs blobtracking to follow moving objects. By modeling

the appearance of each object it is even able to track objects that are (partially)

occluded.

– The Classification module classifies each detected object into the classes “Human”,

“Train” or “Unknown”. For that purpose, it uses features of the object’s shape to

classify it by means of rules. Additionally, it takes temporal consistency into ac-

count. Moreover, the classification results are used as high-level feedback to improve

the performance of the foreground segmentation module and the tracking module.

– The Event Detection module analyzes the results of the classification and the track-

ing module and tries to detect the predefined events of CREDS. MetroSurv makes

use of the rule-based expert system CLIPS2 that holds the current state of the

scene in its working memory and contains rules for detecting events.

4 Foreground Segmentation

The first step of our video surveillance system is the detection of moving objects.

For that purpose, each pixel of an incoming video frame It has to be classified as

part of a moving object (foreground) or as part of the background. The result of

the foreground segmentation is a binary image FGt that marks pixels as belonging

to the foreground (FGt(x, y) = 1) or background (FGt(x, y) = 0). All subsequent

processing steps depend on the foreground segmentation results, because they just

consider foreground regions of the frame. Foreground segmentation is therefore crucial

for the quality of a video surveillance system. There are several difficult situations

a surveillance system should be able to cope with: For example, background clutter

should not be classified as foreground, the appearance of a moving object may be similar

to the background or the illumination condition change. In order to improve the results

of the foreground segmentation algorithm shadow regions need to be considered during

1 CvBSLibGMM: http://staff.science.uva.nl/∼zivkovic/Publications/CvBSLibGMM.zip
2 CLIPS: http://www.ghg.net/clips/CLIPS.html
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a special substep, as shadow regions change the appearance of the background and

might thus be classified as foreground regions. This causes some problems: A shadow

region might be considered as a moving object or two distinct objects (e.g. two people)

might merge due to a shadow region. MetroSurv addresses this problem by detecting

shadow regions and distinguishing shadow regions from real foreground object regions

(see section 4.3).

4.1 Adaptive Gaussian Mixture Models

MetroSurv models the background image with a modified version of the Gaussian

Mixture Model approach. In contrast to Stauffer and Grimson (1999), it uses a variable

number of Gaussian functions as proposed in Zivkovic and van der Heijden (2004, 2006).

This approach avoids under- and overfitting of the background model. The foreground

segmentation module in MetroSurv works as follows: For each new data sample the

Euclidean distances to all K Gaussian distributions is computed. For the best matching

distribution it is decided, if this distribution belongs to the background by considering

its weight as well as its variance. If this distribution belongs to the background, this

pixel is classified as a background pixel. The variance and the mean values of all

distributions are updated according to Stauffer and Grimson (1999), whereas the weight

of a distribution is updated by applying a slightly different equation given in Zivkovic

and van der Heijden (2006). If a weight is less than zero, this Gaussian distribution is

dropped and K is decremented. If none of the distributions matches, a new Gaussian

is introduced with the pixel value as its mean, an initial variance and an initial weight.

After that, the weights of the Gaussian distributions are normalized. The output of

this algorithm is a classification of the considered pixel as background or foreground

pixel. Furthermore, the parameters of the distributions are adapted and can be used

for the next incoming data sample.

4.2 High-Level Feedback

MetroSurv improves its foreground segmentation results by utilizing feedback of high-

level modules such as the classification module:

– Changing illumination: The neon light in subway stations often cause flicker in the

image sequence which results in problems in the foreground segmentation module.

Similar to Barth and Herpers (2005) this problem is addressed by increasing a

parameter that controls the update velocity (α) for all pixels except for pixels

belonging to an object classified as a human or a train. Changing illumination

condition is detected, if the number of extracted blobs exceeds a threshold which

is determined empirically.

– Changing illumination due to presence of a train: When a train enters the scene, the

illumination in the scene changes drastically, because the train cabin is illuminated

and the headlamps of the train illuminate the scene as well. If an approaching train

is detected in the scene, the update velocity α for all pixels (except for pixels of a

human or a train) is increased as described above, so that the background model

adapts quickly to the changed illumination.
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– Ghosting : MetroSurv handles the problem known as waking person or ghosting.

If the classification module in MetroSurv detects a ghost, α is increased at that

location in order to incorporate those pixels quickly into the background model.

– Incorporation: When a train does not move for a while, it incorporates into the

background model. To avoid this problem the parameter α is set to zero for all

pixels belonging to the train. Now, the background model in the local area of the

train is not updated and the train is entirely classified as foreground in subsequent

frames.

4.3 Shadow Detection

For shadow detection it is advantageous to combine several features. Thus, MetroSurv

exploits local, spatial and geometric features. Most local features dealing with color

spaces are not appropriate for shadow detection in MetroSurv because of the high noise

level of the video data. One useful local feature is based on the reflectance which is

used in the first step of MetroSurv ’s shadow detection module. Herein, a hypothesis is

proposed which states, if the current pixel belongs to a shadow region or not. The local

feature is extended to the neighborhood of a pixel (spatial feature) in the second step

in which the initial hypothesis is verified. Finally, a geometric feature is used during a

postprocessing step, in which false positive detection results are reduced.

4.3.1 Hypothesis

The initial hypothesis is proposed for all pixels classified as foreground in the back-

ground subtraction module: If the (R, G, B) values of the current pixel are lower than

the values of the corresponding pixel in the background image, this pixel is considered

as a shadow pixel as an initial hypothesis.

4.3.2 Verification

Then, this initial hypothesis must be verified. The response of the camera’s cth sensor

is:

Ic = σc(λ)S(λ)E(λ) (1)

where σc is the sensor’s sensitivity, E(λ) is the illuminant signal and S(λ) is a func-

tion that relates the reflectance of a surface to that of a perfect Lambertian surface

(Barnard (1999)). Now consider two adjacent points p and p′. At this point two different

assumptions can be made:

1. Since p and p′ are adjacent, they receive the same irradiance: E(λ, p) = E(λ, p′).

2. The two points p and p′ lie on the same surface and have therefore the same

reflectance: S(λ, p) = S(λ, p′).

Several shadow detection algorithms are based on these two assumptions. Assumption 1

forms the basis of the algorithms presented in Lo and Yang (2006) and Subramanya et al

(2005) whereas Bhattacharyya (2004) relies on the other assumption. Our algorithm

uses both assumptions.
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Reflectance Ratio First, if assumption 1 holds, the ratio of the intensities can be sim-

plified to:

Ic(p)

Ic(p′)
=

σc(λ)S(λ, p)E(λ, p)

σc(λ)S(λ, p′)E(λ, p′)
=

S(λ, p)

S(λ, p′)
(2)

The same applies for the corresponding pixels in the background model:

Ic,BG(p)

Ic,BG(p′)
=

SBG(λ, p)

SBG(λ, p′)
(3)

If p and p′ are located in shadow regions, the surface in the current frame and in the

background model is the same which means that S(λ, p) = SBG(λ, p) and S(λ, p′) =

SBG(λ, p′). Now both ratios should be equal:

RFG(p, p′) =
Ic(p)

Ic(p′)
=

Ic,BG(p)

Ic,BG(p′)
= RBG(p, p′) (4)

This property is called ”color constancy between pixels” in Lo and Yang (2006) and

”reflectance ratio” in Subramanya et al (2005).

The difference D(p, p′) = |RFG(p, p′) − RBG(p, p′)| between these ratios gives a hint,

if this pixel could be a shadow pixel. Similar to Lo and Yang (2006), a window W

around the pixel p is taken into account by summing up the differences. In addition

to that, all three color channels are considered. The final score ScRR(p) for pixel p is

calculated as:

ScRR(p) =
X

c∈{R,G,B}

X

p′∈W,p′ 6=p

Dc(p, p′) (5)

If this score is small, the point is assumed to be a shadow pixel.

There are two problems: First, the assumption does not hold for sharp shadow edges,

where the irradiance of the two points differs. Second, condition 4 can be fulfilled, when

p and p′ are not in shadow, but lie on a surface with a similar reflectance S(λ, p) ≈

SBG(λ, p) and S(λ, p′) ≈ SBG(λ, p′).

Irradiance Ratio Now assume that assumption 2 holds and consider again two adjacent

points p and p′. The ratio of the intensities can be written as:

Ic(p)

Ic(p′)
=

σc(λ)S(λ, p)E(λ, p)

σc(λ)S(λ, p′)E(λ, p′)
=

E(λ, p)

E(λ, p′)
(6)

Let p and p′ be shadowed pixels. In this case the irradiance is equal and the ratio given

above is equal to 1:

Ic(p)

Ic(p′)
= 1 (7)

Unfortunately, this is also true if p and p′ are located in an illuminated area. Therefore,

the condition given in equation 7 can just be used to retract a pixel previously classified

as shadow. Similar to the reflectance ratio, the irradiance ratio is calculated for a

window W around the pixel p and for all color channels. If the mean value is not close

to 1, p and p′ are not both located in a shadowed region and the shadow region is

reclassified as foreground.
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Fig. 2 Analysis of the shadow boundaries (Salvador (2004)). As region C has no adjacent
foreground pixels, it is correctly classified as shadow whereas region A is completely surrounded
by foreground pixels and is therefore reclassified as foreground. Region B is also reclassified as
foreground as it is connected to to enough pixels classified as foreground pixels.

4.3.3 False Positive Reduction

After these two steps, there may still be some regions inside the moving objects which

are misclassified as shadow regions. In a postprocessing step similar to that in Salvador

(2004) and Bevilacqua (2003), these false positives are detected. First, all detected

shadow pixels must be associated with a shadow region. For that purpose, a sequential

labeling algorithm described in Nayar and Bolle (1996) is applied. Second, the pixels

adjacent to a shadow region must be analyzed.

Let M l
b be the number of background pixels adjacent to shadow region l and M l

f the

number of foreground pixels adjacent to shadow region l. If a certain fraction of all

adjacent pixels belongs to the foreground,
M l

f

M l
f

+ M l
b

≥ mfthresh, then this shadow

region is assumed to be misclassified in the previous step. Empirically, this threshold

was set to mfthresh = 0.7.

Figure 2 shows an example for this analysis: Shadow region C, which is not connected

to the shadow casting object, has no adjacent foreground pixels and is therefore clas-

sified as shadow whereas region A lies inside a moving object and is reclassified as a

foreground region. The condition for region B is fulfilled, so that it is also reclassified

as foreground.

5 Tracking

The tracking module in MetroSurv is inspired by the works of Senior et al (2001),

Senior (2002) and Cucchiara et al (2004). In each frame the motion detection module

extracts all blobs which are called visual objects in MetroSurv. With the knowledge

of the tracks already detected in the previous frame, the tracking system tries to find

correspondences between these new visual objects and the tracks. The tracking proce-

dure is as follows: In the first step of the tracking module the visual objects extracted

from frame t are mapped to the tracks of frame t− 1. Each object is represented by an

appearance model. If a visual object could not unambiguously be mapped to a track

(for example in case of occlusions), the appearance model is used to assign pixels to
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tracks.

For mapping visual objects to existing tracks which are both characterized by a bound-

ing box the Bounding Box Distance measure bbDist is used: Consider two bounding

boxes A and B . If one of the two centroids lies inside the other bounding box, bbDist is

zero. Otherwise bbDist is equal to the minimum Euclidean distance from the centroid

CA of bounding box A to the closest point PB on B and the Euclidean distance from

CB to the closest point PA on A. Besides a small bounding box distance, the areas of

the blobs must be similar.

If a visual object is mapped to more than one existing track, the appearance models

which are associated to the tracks are used to assign pixels of the visual object to one

of the tracks. The appearance model consists of a color model and a probability mask

similar to Senior et al (2001) and Senior (2002). The color model is initialized by copy-

ing all pixels belonging to the track’s blob into the color model cm. The probability

mask pm is initialized by setting these pixels to a predefined probability value. As the

appearance of objects change during tracking, the appearance model has to be updated

as follows:

cmt(x, y) = cmt−1(x, y) · (1 − α) + It(x, y) · α, if It(x, y) ∈ Track (8)

pmt(x, y) = pmt−1(x, y) · (1 − α) + α, if It(x, y) ∈ Track

where α is a learning rate between zero and one. Pixels of the appearance model, which

do not belong to this track, are updated according to:

cmt(x, y) = cmt−1(x, y) · (1 − α), if It(x, y) /∈ Track (9)

pmt(x, y) = pmt−1(x, y) · (1 − α), if It(x, y) /∈ Track

For assigning pixels to existing tracks template matching between the appearance

model and the current frame inside a search region around the previous position of

the track is performed. For template matching only those pixels of the color model are

used which have a probability value in the probability mask greater than 0.5. Template

matching is performed using normalized cross correlation.

6 Classification

In each frame the classification module of MetroSurv classifies each track into the

classes Cl = {Human, Train, Unknown, Ghost}. Firstly, the trajectory of the object

is analyzed for ghost detection. If the object has not moved for a while, it is assumed

to be a ghost. After that, it is classified as a human, train or unknown object. Taking

temporal consistency into account, a track Tr keeps track of its classification results,

so that the probability PHuman(Tr) can be calculated as follows:

PHuman(Tr) =
khuman(Tr)

khuman(Tr) + ktrain(Tr) + kunknown(Tr)
(10)

where kCl stands for the number of classification results saying that the objects is an

instance of class Cl. The probabilities PTrain(Tr) and Punknown(Tr) are calculated

accordingly.

Each track is characterized by the shape of its blob. For a blob several features are

determined: area, perimeter, breadth, height and orientation. This features are used in



12

a simple rule-based classification step: Firstly, the classification system assumes that

humans as well as trains stand on the platform or on the tracks, respectively. Thus,

the user has to define the position of the platform and tracks by providing an image

with this information to MetroSurv. If the maximum y-value of a blob is outside these

regions, the blob is classified as an unknown object.

A train can be distinguished from humans by considering its height and its area. If

the area or the height of the blob exceeds a certain threshold, the blob can definitely

be classified as a train and ktrain(Tr) is incremented. If the blob’s area is less than

this threshold but greater than a second threshold, the track is classified as a human.

Both thresholds have been determined empirically. Otherwise the extracted features

are used to discriminate between humans and other objects. For that purpose, typical

values for the different features have been measured beforehand. If most of the criteria

are fulfilled, the object is assumed to be a human and the counter khuman(Tr) is

incremented. Otherwise, it is classified as an unknown object.

7 Event Detection

The event detection module in our system takes the results of the low-level vision

modules as input. For each object detected in the scene the following information is

available: centroid, bounding box, trajectory, velocity, moving direction, classification

(human, train or unknown object). The module raises an alarm as output if one of

seven predefined events takes place.

Ideally, the system should be flexible, so that it can be extended to detect further

events. The knowledge representation should be very easy to understand, as domain

experts should be able to formulate the events the system has to detect. It is very

important for a surveillance system to analyze the results of the vision modules in real-

time. Furthermore, knowledge about the scene context should be taken into account.

The event detection module is inspired by the works of Shet et al (2005) and Fer-

nandez et al (2007). As a detailed description of the events that need to be detected is

provided, it seems natural to choose a rule-based approach. Figure 3 shows an overview

of the event detection module. The core consists of a rule-based expert system. In the

following section the basics of expert systems are introduced.

7.1 Expert Systems

We have utilized the rule-based expert system CLIPS3. Such an expert system offers a

simple syntax for writing rules and facts so that domain experts are able to understand

and formulate rules on their own. Nevertheless, the language is very powerful and the

expert system offers a ready-to-use inference mechanism which works in real-time. In

contrast to the system VidMAP in Shet et al (2005) which employs Prolog, an expert

system offers forward chaining and therefore works data-driven whereas Prolog works

goal-driven. For that reason, VidMAP contains a reasoning thread that is invoked every

5 seconds to insert facts into the knowledge base and query the Prolog engine.

Figure 4 shows the general layout of an expert system with forward chaining. Such

a system consists of a working memory, a rule set and an inference engine. The working

3 CLIPS: http://www.ghg.net/clips/CLIPS.html
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Fig. 3 Event detection. This module uses an expert system to analyze the activities taking
place in the scene. For that purpose, tracking and classification results are analyzed and facts
are inserted into the knowledge base. Firstly, tracks are considered independently to generate
primitive events. Secondly, the context of the environment is taken into account and context
events are generated. The last step in the activity analysis module (complex events) is skipped
in this system, because no interactions between objects in the scene have to be analyzed.
An inference engine analyzes the facts in the knowledge base and the rules which model the
seven predefined events that have to be detected. If such an event is detected, an alarm is
raised.

Fig. 4 Main components of an expert system with forward chaining, see Kazarov and Ryabov
(1998).
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memory contains all facts. A fact represents a piece of information and is the basic unit

of data in an expert system, see CLIPS (2006). In CLIPS the structure of (non-ordered)

facts can be defined using the deftemplate construct, for example

(deftemplate trackobject

(slot label)

(slot classification)

(multislot centroid)

...

)

For example, a fact like (trackobject (label 1)(classification human)(centroid

55 103)) can be added to the list of facts. These facts in the working memory represent

the knowledge about the current state. New facts are added to the working memory

if the current state changes. The working memory is also updated by rules. In CLIPS

rules have the following form, see Jackson (1998):

(defrule <rule-name>

<premise 1>

...

<premise m>

=>

<action 1>

...

<action n>

)

The left-hand side of a rule consists of a set of conditions. The right-hand side defines

actions that are executed if the rule fires. Often, new facts are added to the working

memory, existing facts are modified or retracted. The inference engine determines which

rules are applicable and puts them onto the agenda. If multiple rules are applicable,

the order of the rules is determined by considering a conflict resolution strategy. All

applicable rules are fired according to the conflict resolution strategy until no applicable

rule remains.

7.2 Knowledge Representation

Usually, surveillance systems, which are designed to detect certain events in video

sequences, rely on knowledge. Three main types of knowledge can be distinguished:

1. Scene context : Surveillance systems operate in certain environments. Mostly, knowl-

edge about this environment is used for inference. Knowledge about the geometry

of the environment can be provided to the system in form of 3D models (see for

example Vu et al (2002)).

2. Current state: The surveillance system has to represent the current state of the

scene in a formal way. For example, it has to be aware of the humans’ positions,

their velocity and moving direction.

3. Detected events: As a surveillance system has the job of monitoring an area and

raising an alarm, it has to know which events need to be detected.
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Knowledge must be provided to the system in a formal way. Its representation should

be easy to express and to understand for humans, as often domain experts define ac-

tivities the system has to recognize. Of course the representation of knowledge often

depends on the chosen activity analysis approach in the surveillance system. For ex-

ample in Cupillard et al (2004) knowledge about the activities that should be detected

in the video sequences are provided to the system through the states and the topology

of the finite state automaton.

An example for a knowledge representation language in the context of video surveil-

lance is ERL (Event Recognition Language), see Nevatia et al (2003): ERL aims at

formalizing the third kind of knowledge. It provides a language for representing events

that should be detected by the surveillance system. Such a representation of an event

has the following form:

EventType EventName (ObjType ObjName,...)

Event description;

The EventType is PRIMITIVE for simple events, which are performed by a single actor,

SINGLE THREAD for a combination of primitive events or MULTI THREAD for a combi-

nation of multiple single-thread events which have some temporal, spatial or logical

relations and even can involve multiple scene objects. Event description contains the

representation of the event. The description of multi-thread events can include boolean

expressions or temporal constraints. The parameters ObjType ObjName,... include all

objects that are involved in this event. This representation language is independent of

the event recognition approach. In Nevatia et al (2003), an event is translated to a tree

structure which is passed to an inference mechanism. Nevatia et al (2003) proposes to

recognize primitive events by using Bayesian Networks. Single-thread events are recog-

nized by employing a variation of HMMs and multi-thread events can be detected by

evaluating all sub-events and their relationships.

A similar knowledge representation language can be found in Vu et al (2003).

Our system represents knowledge as follows:

1. Scene context : Knowledge about the scene context is provided to the system by the

definition of zones. Figure 5 shows the zones of interest. The green zones correspond

to the platforms, the yellow zones represent the white lines and the red zone stands

for the tracks. If three dimensional information about the scene context (tracks,

ticket machines, seats) was available, this information could be represented by

VRML models.

2. Current state: The current state of the scene is represented by the facts that are

asserted to the knowledge base of the expert system.

3. Detected events: Predefined events our system should be able to detect are repre-

sented by the rules of the expert system.

7.3 Facts: Event Generation

Similar to Fernandez et al (2007), the objects detected by the vision modules are

analyzed in multiple stages. Knowledge about the current state of the scene is then

represented by asserting facts to the knowledge base. Firstly, a single object is con-

sidered independently: the results of the vision modules are analyzed and events are

generated for this object. As Fernandez et al (2007) points out, there are three levels
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(a) (b)

Fig. 5 (a) Zones of interest for the subway station in (b). The green zones correspond to the
platforms, yellow zones represent the white lines and the red zone corresponds to the tracks.

Fig. 6 Event Generation (see Fernandez et al (2007)). Events are grouped into three different
types. Primitive events refer to events of a single independent object. When taking scene
context into account, context events can be generated. For generating complex events other
scene objects must be taken into account.

that can be used to analyze an object: When examining the trajectory, events like

”run” or ”turn around” can be generated. Considering the body posture of a person,

it can be concluded, if a person sits down, stands or moves the head up and down.

If the face of a person is analyzed, events like ”concentrated” or ”worried” could be

generated.

Secondly, an object is analyzed with respect to its environment. Now events are gen-

erated for this object by taking knowledge about the scene context into account. In

the last step interactions between objects in the scene are examined by considering all

detected objects. Figure 6 shows some examples for these three types of events.

In the following the event generation in our system is described.

Primitive Events As stated before, the inputs of the analysis module are results of the

tracking and the classification module. For each object present in the scene, there are

six pieces of information which have to be analyzed in the first step. The results of

this first step are primitive events (see Fernandez et al (2007)). The word ”primitive”

refers to the fact that each object is processed independently. The following primitive

events are generated:

– stopped : An object has stopped, if its velocity in x-direction and y-direction are

both below one pixel per frame.
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– moving normal : An object moves, if one of its velocity components is below three

pixels per frame.

– moving fast : An object moves fast, if one of its velocity components is greater than

three pixels per frame.

– appears: An object has just appeared in the scene, if a corresponding fact is not

yet in the knowledge base.

– disappears: An object has just disappeared, if it is no longer present in the scene.

– direction angle: The moving direction is measured in degrees.

Context Events In the second stage information about the scene context is taken into

account and context events are generated. Knowledge about the scene context is pro-

vided to the system by defining zones of interest (see Figure 5(a)). By considering

this context information together with the current position of an object, our system

can conclude in which zone the object is located in. Since in our case no calibration

data for the cameras is available, it is not possible to estimate an object’s position in

three dimensional coordinates. Thus, the zone a human is located in is estimated by

considering the highest y-value of a blob corresponding to a person. The context events

that are generated for each object are:

– inside zone: All zones an object is located in.

– completely inside zone: If an object is located in just one zone, it is completely

inside this zone.

– moving to zone: By considering the current position and the moving direction, the

zone an object is moving to can be computed. This movement could be used as a

hint. For example, if a person stands on the platform, but moves to the tracks, a

proximity warning is more probable. Note that in the current implementation this

hint is not used.

Complex Events If a surveillance system has to detect interactions between objects,

like two people talking, a third step in the analysis stage could be applied. After

having analyzed an object independently (primitive events) and with respect to the

context of the scene (context events), interactions between objects could be examined

by considering all objects detected by the vision modules. In the case of this system

no interactions between objects have to be detected, so this step is skipped and no

complex events are generated.

7.4 Rules: Event Detection

In the following subsections, the detection of some events is explained. For each event

there exists a rule in the rule set of the expert system that invokes a function that just

logs the alarm. This function could be extended to ask a human operator to evaluate

the situation or to cause a train to stop.

Proximity warning A proximity warning for object o is raised if it is classified as human

and if it is completely inside the yellow zone (white line, see Figure 5) or if it is inside

the green and the red zone.
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( t r a ckob j e c t ( l a b e l ? id )
( c l a s s i f i c a t i o n unknown )
( motion ∼stopped )
( complete ly−i n s i d e−zone t r a ck s )
( angle ? angle ) )

Listing 1 Properties of an object dropped on the tracks. The operator ∼ is a connective
constraint. Such a constraint is satisfied, if the following constraint is not satisfied (see CLIPS
(2006)). In this case the object must not have stopped. The angle of the moving direction must
lie between −35◦ and −145◦.

Dropping objects on tracks This alarm is raised for an object with label ?id (in CLIPS

?id denotes a variable), if it has the properties defined in listing 1. The angle of the

moving direction (?angle) must lie between −35◦ and −145◦.

Launching objects across the platforms This event is similar to the previous event. In

contrast to that, the angle of the moving direction (?angle) must be greater than −35◦

or less than −145◦.

Person trapped by the door of a moving train This event is recognized if the bounding

box of an object classified as train overlaps the white line (see listing 2), as the blobs

of the train and the person merge into a single foreground region. Additionally, a

proximity warning is raised, too.

( d e f r u l e alarm4
? f a c t <− ( t r a ckob j e c t ( l a b e l ? l a b e l )

( b l ?minx ?maxy)
( t r ?maxx ?miny )
( i n s i d e−zone $? zones )
( c l a s s i f i c a t i o n t r a i n ) )

( t e s t (member$ platform ( c r ea t e$ $? zones ) ) )
=>

( alarm 4 ? l a b e l ?minx ?maxx ?miny ?maxy)
)

Listing 2 Complete rule for the event ”Person trapped by the door of a moving train”. bl
stands for the bottom left corner of the bounding box and tl for its top right corner. If this
rule is applicable, a function is called which logs this alarm together with the object’s id and
its bounding box.

Walking on rails A person is walking on the rails, if an object with label ?id is detected,

that has the properties defined in listing 3. The angle of the moving direction (?angle)

must have a value greater than 35◦ and less than 145◦ or less than −35◦ and greater

than −145◦.

Fall on the tracks This alarm is raised, if a person touches the red zone. See listing 4

for the complete rule.
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( t r a ckob j e c t ( l a b e l ? l a b e l )
( complete ly−i n s i d e−zone t r a ck s )
( c l a s s i f i c a t i o n human)
( angle ? angle ) )

Listing 3 Walking on rails.

( d e f r u l e alarm6
? f a c t <− ( t r a ckob j e c t ( l a b e l ? l a b e l )

( b l ?minx ?maxy)
( t r ?maxx ?miny )
( i n s i d e−zone $? zones )
( c l a s s i f i c a t i o n human)
( motion ˜ stopped ) )

( t e s t (member$ t r a ck s ( c r ea t e$ $? zones ) ) )
( or ( t e s t (member$ l i n e ( c r ea t e$ $? zones ) ) )
( t e s t (member$ platform ( c r ea t e$ $? zones ) ) )
)

=>

( alarm 6 ? l a b e l ?minx ?maxx ?miny ?maxy)
)

Listing 4 Complete rule for the event ”Fall on the track”.

Crossing the rails This event is similar to the event ”Walking on rails”. The only

difference is the constraint on the angle of the moving direction: Its value has to be

between −35◦ and 35◦ or it has to be greater than 145◦ or less than −145◦.

8 Results

The foreground segmentation algorithm has been proven to give good results for some

difficult situations in comparison to several other algorithms as shown in Krausz (2007).

In particular, the results for the problem “Camouflage” are very satisfying. This prob-

lem type is very important for MetroSurv, since people visible in the video sequences

often wear dark clothes that look similar to the background.

Figures 7 and 8 show the effectiveness of the high-level feedback: Figure 7 compares

the result of the foreground segmentation when the detection of ghosting is enabled

and when it is not activated. In Figure 8(b), a train is detected and the speed of update

is thus adapted.

Figure 9 presents some results of the shadow detection algorithm proposed in sec-

tion 4.3. Green pixels are classified as shadow regions. Red Pixels indicate that these

pixels were classified as shadow pixels in the first two steps of the algorithm (hypoth-

esis and verification), but were reclassified as foreground pixels in the false positive

reduction step.

The tracking module of MetroSurv is evaluated by considering a video sequence

showing four people. The results of the evaluation are satisfying. Two people could be

tracked correctly in 93.4% or 99.6% of the time they are visible, respectively, although

they are involved in a number of occlusion situations (60% resp. 50.8%).

The classification module is also evaluated using the aforementioned video sequence.
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(a) (b)

Fig. 7 Foreground segmentation results if the detection of ghosting is enabled (Figure (b)).
If a ghost is detected, the update velocity α is increase in this region.

(a) (b)

Fig. 8 Foreground segmentation results if high-level feedback is used (Figure (b)): When a
train is detected, the speed of update is adapted.

All but one person are classified correctly as humans in more than 98% of the time they

are visible. Although a simple rule-based approach is used, the classification results are

very satisfiying and efficient.

The detected events of our system have been compared to the ground truth annotation

of the video sequences. Most of the predefined events could be detected with a sufficient

detection rate. For example, the event ”Walking on Rails“ is detected with a detection

rate of 83%, whereas ”Person trapped by the door of a moving train“ is always detected.

As the event detection module analyzes the tracking and classification results, it highly

relies on the accuracy of these results. For example, the detection rate of proximity

warnings is 67% as the low-level vision modules does not work properly in some cases.

Consequently, it is important to note that the most important criterion for the quality

of an automatic surveillance system is the accuracy of the low-level modules. If the

event detection module has to analyze inexact or erroneous data, its detection rate will

be low. In order to improve the system’s robustness, fuzzy logic could be integrated

into the event detection module by using a fuzzy expert system (see Liao (2005) for an

overview).

Our system has a sufficient performance with about 12 fps when executed in parallel

on four processors. Of course, the performance depends on the complexity of the scene.

In videos sequences with a single person, the performance goes up to 30 fps when being

executed on four processors in parallel. Figure 10 depicts the relative processing time of

the analysis module for two different video sequences where in one video sequence only

a single person is visible. In the second video sequence, a group of people is present in
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(a) (b) (c) (d)

(e) (f)

Fig. 9 Results of the shadow detection algorithm. Green regions are classified as shadows. Red
pixels were classified as shadow pixels, but are then reclassified in the false positive reduction
step.

the scene. Due to several occlusion situations most of the time is spent on tracking.

In both video sequences less than 5% of the processing time is spent on the event

detection, since the event detection module is very fast due to the inference engine of

CLIPS.

The event detection module is flexible and can easily be extended to recognize further

events, since it makes use of the inference engine CLIPS which offers a simple syntax.

Consequently, it is even possible for domain experts to formulate events. Furthermore,

it is even possible to apply the event detection module in other application domains.

For that purpose, rules have to be adapted to incorporate knowledge about the specific

application domain and to specify events that have to be detected.
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Fig. 10 Execution time of the modules in percent for two different video sequences. In the
first video sequence (Scene 4 Configuration 1) only a sinlge person is visible whereas in the
second video sequence a group of people is present in the scene. For that reason, most of the
time is spent on tracking in the latter video sequence. The event detection module takes less
than 5% of the execution time.

9 Conclusion

An automatic video surveillance system for the detection of dangerous events in a

subway station has been presented and its modules have been described and evalu-

ated: The foreground segmentation module uses a variable number of Gaussians to

model the background. In order to improve its results feedback of high-level modules

is utilized. Furthermore, a novel algorithm for the detection of shadow regions has

been proposed and shown to be very effective for reclassifying shadow regions as back-

ground. The tracking module which uses ideas proposed by Senior (2002) is able to

track objects even if they are partially occluded. Each detected object is successfully

and efficiently classified by a simple rule-based approach. Finally, the described event

detection module uses an approach which distinguishes it from most other works in

the field of surveillance systems. It provides a simple syntax for rules, so that even

domain experts are capable of describing events that should be detected. Furthermore,

the expert system CLIPS offers a fast inference engine.
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