Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Epitaxial GaInP/GaAs/Si Triple-Junction Solar Cell with 25.9% AM1.5g Efficiency Enabled by Transparent Metamorphic AlxGa1-xAsyP1-y Step-Graded Buffer Structures

: Feifel, Markus; Lackner, David; Schön, Jonas; Ohlmann, Jens; Benick, Jan; Siefer, Gerald; Predan, Felix; Hermle, Martin; Dimroth, Frank

Volltext urn:nbn:de:0011-n-6383858 (2.5 MByte PDF)
MD5 Fingerprint: ddd461c6ba89e9615c29706749fd9068
(CC) by-nc-nd
Erstellt am: 29.7.2021

Solar RRL 5 (2021), Nr.5, Art. 2000763, 7 S.
ISSN: 2367-198X
European Commission EC
H2020-Low-cost, low-carbon energy supply - Developing the next generation technologies of renewable electricity and heating/cooling; 727497; SiTaSol
Application relevant validation of c-Si based tandem solar cell processes with 30 % efficiency target
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
03SF0525A; MehrSi
Hocheffiziente III-V Mehrfachsolarzellen auf Silicium - 'Epitaxie, Prozessierung und Charakterisierung von III-V Mehrfachsolarzellen auf Silicium
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer ISE ()
Photovoltaik; Silicium-Photovoltaik; III-V- und Konzentrator-Photovoltaik; Dotierung und Diffusion; III-V Epitaxie und Solarzellen

III-V/Si multi-junction solar cells are potential successors to the silicon single-junction cell due to their efficiency potential of up to 40% in the radiative limit.[1] Herein, latest results of epitaxially integrated GaInP/GaAs/Si triple-junction cells are presented. To reduce parasitic absorption losses, which have limited the current density in the Si bottom cell in the previous devices, transparent AlxGa1-xAsyP1-y step-graded metamorphic buffers are investigated. Compared with previous GaAsyP1-y step-graded buffers, the transmittance is enhanced significantly, while no significant impact on the threading dislocation density is observed. Implemented into a new triple-junction solar cell, an increase in short-circuit current density from 10.0 to 12.2 mA cm−2 is achieved, leading to a new record conversion efficiency of 25.9% under AM1.5g conditions.