Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

High-Efficiency Diamond Wire-Sawn mc-Si-Based PERC Solar Cells Textured by Atmospheric Pressure Dry Etching

: Kafle, B.; Ridoy, A.I.; Saint-Cast, P.; Clochard, L.; Duffy, E.; Duncker, K.; Petter, K.; Peters, S.; Hofmann, M.

Postprint urn:nbn:de:0011-n-5486072 (633 KByte PDF)
MD5 Fingerprint: dab9040b75c90920733f9216421cf0aa
Erstellt am: 17.8.2019

Verlinden, P. ; WIP - Renewable Energies, München:
35th European Photovoltaic Solar Energy Conference and Exhibition 2018 : Proceedings of the international conference held in Brussels, Belgium, 24 September-28 September 2018; DVD-ROM
München: WIP, 2018
ISBN: 978-3-936338-50-8
ISBN: 3-936338-50-7
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) <35, 2018, Brussels>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer ISE ()
Plasmatechnologie; Photovoltaik; Silicium-Photovoltaik; Dotierung und Diffusion; Oberflächen: Konditionierung; Passivierung; Lichteinfang; Herstellung und Analyse von hocheffizienten Solarzellen; Pilotherstellung von industrienahen Solarzellen; Technologiebewertung; Texturing; silicon; wire-sawing; silicon wafer; cell

In this paper, we present further results on the integration of a “black-silicon” texturing process on diamond-wire sawn multicrystalline silicon wafer, using atmospheric pressure dry texturing (ADE) in a passivated emitter and rear cell (PERC) solar cell architecture. Following on from our previous work on high-efficiency nanotextured solar cells, we present further optimization of our texturing process, resulting in the uniform formation of spherical caps-like surface morphology with low reflectivity and comparable reflection distribution to the wet-chemical acidic texture based on additives. First cell results show up to 19.8% conversion efficiency. Characterisation and analysis of the cells highlight current limitations and identify potential for improvement: optimization of the firing process and minimization the inherent bulk-related recombination losses in the mc-Si material, which is expected to lead to further gain in conversion efficiencies.