Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Transient photovoltage in perovskite solar cells: Interaction of trap-mediated recombination and migration of multiple ionic species

: Walter, Daniel; Fell, Andreas; Wu, Yiliang; Duong, The; Barugkin, Chog; Wu, Nandi; White, Thomas; Weber, Klaus

Postprint urn:nbn:de:0011-n-5040298 (1.7 MByte PDF)
MD5 Fingerprint: 12114fac8441f2c723828b7d852b097c
Erstellt am: 08.05.2019

Journal of physical chemistry. C, Nanomaterials and interfaces 122 (2018), Nr.21, S.11270-11281
ISSN: 1932-7447
ISSN: 1932-7455
Bundesministerium für Bildung und Forschung BMBF
01DR17019; CCPV
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer ISE ()
Photovoltaik; Neuartige Photovoltaik-Technologien; Farbstoff- und Perowskitsolarzellen

It is highly probable that perovskite solar cells (PSCs) are mixed electronic-ionic conductors, with ion migration being the driving force for PSC hysteresis. However, there is much that is not understood about the interaction of ion migration with other processes in the cell. The key question is: what factors of a PSC are influenced when ions are free to move? In this contribution, we employ a numerical drift-diffusion model of PSCs to show that the migration of both anions and cations in interaction with trap-mediated recombination in the bulk and/or at the surfaces of the perovskite absorber can manifest both current–voltage hysteresis and unusual nonmonotonic PSC photovoltage transients. We identify that a key mechanism of this interaction is the influence of the net ionic charge throughout the perovskite bulk—which varies as the ions approach new steady-state conditions—on the distribution of electrons and holes and subsequently the spatial distribution of trap-mediated recombination modeled after Shockley Read Hall (SRH) statistics. Relative to intrinsic recombination mechanisms, SRH recombination can be highly sensitive to local asymmetries of the electron–hole population. We show that this sensitivity is key to replicating nonmonotonic transients with multiple time constants, the forms of which may have suggested multiple processes. This work therefore supports the conceptualization of the hysteretic behavior of PSCs as dominated by the interplay between ion migration and trap-mediated recombination throughout the perovskite absorber.