Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Ultrafast in-line capable regeneration process for preventing light induced degradation of boron-doped p-type Cz-silicon PERC solar cells

: Brand, A.; Krauß, K.; Wild, P.; Schörner, S.; Gutscher, S.; Roder, S.; Rein, S.; Nekarda, J.

Volltext urn:nbn:de:0011-n-4774562 (432 KByte PDF)
MD5 Fingerprint: 37b58ee4b3183a13329fe745686c6b68
Erstellt am: 27.1.2018

Smets, A.:
33rd European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2017 : Proceedings of the international conference held in Amsterdam, The Netherlands, 25 September - 29 September 2017
München: WIP, 2017
ISBN: 978-3-936338-47-8
ISBN: 3-936338-47-7
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) <33, 2017, Amsterdam>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer ISE ()
PV Produktionstechnologie und Qualitätssicherung; Photovoltaik; Silicium-Photovoltaik; Kontaktierung und Strukturierung; Herstellung und Analyse von hocheffizienten Solarzellen; PERC; LCO; optimization; characterization; processing

Solar cells based on boron-doped p-type Czochralski-grown silicon (Cz-Si) substrates suffer from light-induced degradation (LID) which is related to a metastable boron-oxygen defect and limits the achievable cell efficiency significantly, but can be eliminated by carrier injection at elevated temperatures within a so-called regeneration process. We have developed an ultrafast regeneration process (UFR) to prevent up to 98% of the LID effect in less than 4 seconds process-time. The technology behind this process has been implemented in an in-line prototype tool with belt speeds of up to 8000 mm/min. Compared to competing techniques the technology introduced here enables tools with smaller footprint and broader process window, offering irradiation intensities up to 1 MW/m² and temporal and spatial modulation of the irradiation intensity with up to 100 Hz. Undistorted in-situ temperature measurements can be acquired via commercially available thermographic imaging equipment. Further, we introduce a new parameter called regeneration completeness in order to allow benchmarking for BO-regeneration processes. It quantifies the effectiveness of BO-regeneration processes independent of the overall efficiency in order to allow a direct comparison of the quality of different regeneration processes.