Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Industrially feasible rear side concept for n-type silicon solar cells approaching 700 mV of Voc

: Suwito, D.; Jäger, U.; Benick, J.; Janz, S.; Hermle, M.; Preu, R.; Glunz, S.W.

Volltext urn:nbn:de:0011-n-1592507 (203 KByte PDF)
MD5 Fingerprint: 26503a361b3f5278358c61dd0a4bbb08
Erstellt am: 4.8.2012

European Commission:
25th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2010. Proceedings : 5th World Conference on Photovoltaic Energy Conversion, 6-10 , September 2010, Valencia, Spain
München: WIP-Renewable Energies, 2010
ISBN: 3-936338-26-4
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) <25, 2010, Valencia>
World Conference on Photovoltaic Energy Conversion <5, 2010, Valencia>
Konferenzbeitrag, Elektronische Publikation
Fraunhofer ISE ()
Solarzellen - Entwicklung und Charakterisierung; Silicium-Photovoltaik; Oberflächen - Konditionierung; Passivierung; Lichteinfang; Herstellung und Analyse von hocheffizienten Solarzellen; Industrielle und neuartige Solarzellenstrukturen; Produktionsanlagen und Prozessentwicklung

n-Type silicon as base material offers a great potential for highly efficient solar cells. In this work we present an industrially feasible approach for the rear passivation and contacting of n-type cells on the basis of phosphorous doped amorphous silicon carbide in combination with a laser process (PassDop). The PassDop layer deposited by plasma enhanced chemical vapor deposition (PECVD) fulfills three requirements at the same time: (i) The recombination at the passivated surface is reduced to surface recombination velocities (SRV) as low as 3 cm/s. (ii) The layer acts as a dopant source during a laser process yielding local back surface fields (LBSF) underneath the metal contact points reducing the SRV at the very contact area to below 3000 cm/s. (iii) The PassDop layer in combination with evaporated aluminium results in an effective rear reflectance of 93±1 % of the cells including the metallization points. On low temperature high-efficiency n-type solar cell structures this approach proved to be extremely reproducible and led to efficiencies of up to 22.4 % (Voc=701 mV, FF=80.1 %).