Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Towards a reference architecture for context-aware services

: Bürkle, A.; Müller, W.; Pfirrmann, U.

Postprint urn:nbn:de:0011-n-908809 (804 KByte PDF)
MD5 Fingerprint: db7640a98f0d9c5311d4b9b02bdf80ca
Created on: 28.8.2009

Pinder, S.:
Advances in human computer interaction
Vienna: InTech Education and Publishing, 2008
ISBN: 978-953-7619-15-2
Book Article, Electronic Publication
Fraunhofer IITB ( IOSB) ()

This Chapter describes an infrastructure for multi-modal perceptual systems which aims at developing and realizing computer services that are delivered to humans in an implicit and unobtrusive way. The framework presented here supports the implementation of humancentric context-aware applications providing non-obtrusive assistance to participants in events such as meetings, lectures, conferences and presentations taking place in indoor "smart spaces". We emphasize on the design and implementation of an agent-based framework that supports "pluggable" service logic in the sense that the service developer can concentrate on the service logic independently of the underlying middleware. Furthermore, we give an example of the architecture’s ability to support the cooperation of multiple services in a meeting scenario using an intelligent connector service and a semantic web oriented travel service. The framework was developed as part of the project CHIL (Computers in the Human Interaction Loop). The vision of CHIL was to be able to provide context-aware human centric services which will operate in the background, provide assistance to the participants in the CHIL spaces and undertake tedious tasks in an unobtrusive way. To achieve this, significant effort had to be put in designing efficient context extraction components so that the CHIL system can acquire an accurate perspective of the current state of the CHIL space. However, the CHIL services required a much more sophisticated modelling of the actual event, rather than simple and fluctuating impressions of it. Furthermore, by nature the CHIL spaces are highly dynamic and heterogeneous; people join or leave, sensors fail or are restarted, user devices connect to the network, etc. To manage this diverse infrastructure, sophisticated techniques were necessary that can map all entities present in the CHIL system and provide information to all components which may require it. From these facts, one can easily understand that in addition to highly sophisticated components at an individual level, another mechanism (or a combination of mechanisms) should be present which can handle this infrastructure. The CHIL Reference Architecture for Multi Modal Systems lies in the background, and provides the solid, high performance and robust backbone for the CHIL services. Each individual need is assigned to a specially designed and integrated layer which is docked to the individual component, and provides all the necessary actions to enable the component to be plugged in the CHIL framework.