## Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.# A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects

*:*STAR_Translate("online-access")

Preprint urn:nbn:de:0011-n-872063 (40 KByte PDF) MD5 Fingerprint: 2c38f52dc778387146c9cdfc66f24744 Copyright © 2008 John Wiley & Sons, Inc. Created on: 10.4.2009 DOI: 10.1002/nme.2320 |

International journal for numerical methods in engineering 76 (2008), No.5, pp.601-635 ISSN: 0029-5981 | |

English | |

Journal Article, Electronic Publication | |

Fraunhofer IWM ( | |

three-dimensional beam; warping; piezoelectricity; shear actuator; geometrically non-linear; ferroelectric hysteresis; Preisach model; finite element |

**Abstract**

This paper is concerned with a three-dimensional piezoelectric beam formulation and its finite element implementation. The developed model considers geometrically and materially non-linear effects. Ail eccentric beam formulation is derived based on the Timoshenko kinematics. The kinematic assumptions are extended by three additional warping functions of the cross section. These functions follow from torsion and piezoelectrically induced shear deformations. The presented beam formulation incorporates large displacements and finite rotations and allows the investigation of stability problems. The finite element model has two nodes with nine mechanical and five electrical degrees of freedom. It provides ail accurate approximation of the electric potential, which is assumed to be linear in the direction of the beam axis and quadratic within the cross section. The mechanical degrees of freedom are three displacements, three rotations and three scaling factors for the warping functions. The latter are computed in a preprocess by solving a two-dimensional in-plane equilibrium condition with the finite element method. The gained warping patterns are considered within the integration through the cross section of the beam formulation. With respect to material non-linearities, which arise in ferroelectric materials, the scalar Preisach model is embedded in the formulation. This model is a mathematical model for the general description of hysteresis phenomena. Its application to piezoelectric materials leads to a phenomenological model for ferroelectric hysteresis effects. Here, the polarization direction is assumed to be constant, which leads to unidirectional constitutive equations. Some examples demonstrate the capability of the proposed model.