Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Unsupervised texture segmentation of images using tuned matched Gabor filters

: Teuner, A.S.; Pichler, O.; Hosticka, B.J.


IEEE transactions on image processing 4 (1995), Nr.6, S.863-870
ISSN: 1057-7149
Fraunhofer IMS ()
Bildsegmentierung; digitale Bildverarbeitung; maschinelles Sehen; Textur

In this correspondence, we propose a novel method for efficient image analysis that uses tuned matched Gabor filters. The algorithmic determination of the parameters of the Gabor filters is based on the analysis of spectral feature contrasts obtained from iterative computation of pyramidal Gabor transforms with progressive dyadic decrease of elementary cell sizes. The method requires no a priori knowledge of the analyzed image so that the analysis is unsupervised. Computer simulations applied to different classes of texture illustrate the matching property of the tuned Gabor filters derived using our determination algorithm.