Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Pulsed laser deposition of ceramic thin films using different laser sources



Surface and coatings technology 100-101 (1998), S.411-414 : Ill., Lit.
ISSN: 0257-8972
Fraunhofer ILT ()
CO2-Laser; excimer laser; excimer laser radiation; gas pressure; pulsed laser deposition; thermal material removal; thin film

Sintered targets of Al2O3 are removed by CO(2-) and excimer laser radiation and deposited as thin films onto steel and silicon substrates. Micro Raman spectroscopy and atomic force microscopy are used to characterize the morphological and structural properties of the films. Mechanical properties are investigated by nanoindentation measurements and a laser-acoustic method, optical properties are studied by ellipsometry. Al2O3 films deposited using CO2-laser radiation show an inhomogeneous surface structure with droplets embedded in a matrix, whereas the films deposited using excimer laser radiation are smooth, which is explained by different material removal mechanisms. The microhardness (i.e. ratio of indentation load to residual area of the indent) of the amorphous matrix structure is about 8 GPa, the crystalline droplets are softer at about 2 GPa. Varying the processing gas pressures in the range of 0.0 1 -0.6 mbar yields a change in the index of refraction of the films, which is clo se to the bulk value for gas pressures < 0.1 mbar. The decrease of the index of refraction is caused by a lowered film density, correlating with a lowered mean energy,of the particles impinging on the substrate, which is calculated. The results show the possibility of scaling-up the pulsed laser deposition process for industrial applications by use of C02-laser radiation.