Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Electronic and thermal properties of Sb-based QCLs operating in the first atmospheric window

Elektronische und thermomische Eigenschaften der Sb-basierenden Quantenkaskadenlaser emittierend in dem ersten atmospherischen Fenster
: Vitiello, M.S.; Scamarcio, G.; Spagnolo, V.; Yang, Q.K.; Manz, C.; Wagner, J.; Revin, D.G.; Cockburn, J.


Mermelstein, C. ; Society of Photo-Optical Instrumentation Engineers -SPIE-, Bellingham/Wash.:
Novel in-plane semiconductor lasers VI : 22 - 25 January 2007, San Jose, California, USA
Bellingham, WA: SPIE, 2007 (SPIE Proceedings Series 6485)
ISBN: 978-0-8194-6598-6
Paper 648508
Conference "Novel In-Plane Semiconductor Lasers" <6, 2007, San Jose/Calif.>
Fraunhofer IAF ()
electronic property; elektrische Eigenschaft; thermal property; thermomechanische Eigenschaft; Sb-based; Sb-basierend; quantum cascade laser; Quantenkaskadenlaser; photoluminescence; Photolumineszenz; mid-infrared; mittleres Infrarot

We report on the experimental study of the electronic and thermal properties in state of art Sb-based quantum-cascade lasers (QCLs) operating in the range 4.3-4.9 µm. This information has been obtained by investigating the band-to-band photoluminescence signals, detected by means of an InGaAs-array detector. This technique allowed to probe the spatial distribution of conduction electrons as a function of the applied voltage and to correlate the quantum design of devices with their thermal performance. We demonstrate that electron transport in these structures may be insufficient, thus affecting the tunnelling of electrons and the electronic recycling and cascading scheme. Finally, we present the first measurement of the electronic and lattice temperatures and of the electron-lattice coupling in Sb-based QCLs based on a quaternary-alloy. We extracted the thermal resistance (R(ind L) = 9.6 K/W) and the electrical power dependence of the electronic temperature (R(ind e) = 12.5 K/W) of Ga0.47In0.53As/Al0.62Ga0.38As1-xSbx structures operating at 4.9 µm, in the lattice temperature range 60 K - 90 K. The corresponding electron-lattice coupling (alpha= 9.5 Kcm2/kA) reflects the efficient electronic cooling via optical phonon emission. The experimental normalized thermal resistance R(ind L) = 3.9 Kxcm/W demonstrates the beneficial use of quaternary thicker barriers in terms of device thermal management.