Fraunhofer-Gesellschaft

Publica

Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Synthesis of porous silicon, nickel and carbon layers by vapor phase dealloying

 
: Saager, Stefan; Scheffel, Bert; Modes, Thomas; Zywitzki, Olaf

:

Surface and coatings technology 427 (2021), Art. 127812
ISSN: 0257-8972
Europäische Union EU
100275833; PoSiBat
Englisch
Zeitschriftenaufsatz
Fraunhofer FEP ()
high deposition rate; thin films; electron beam; evaporation; dealloying

Abstract
Porous thin films have various application fields, e.g., for energy conversion in fuel cells, energy storage in lithium ion batteries or supercapacitors as well for catalysis, filtration and sensing. We synthesized porous thin films by co-evaporating a low-vapor-pressure material (e.g., Si, Ni or C) together with zinc and depositing a compact layer of resulting composite. High-rate deposition process up to 100 nm/s was realized by electron beam physical vapor deposition (EB-PVD) of the materials from two graphite crucibles with a fast deflected electron beam in high vacuum. Immediately after deposition, the coated substrates were heated up in vacuum to a temperature above 500 °C and thereby zinc is removed selectively. Due to its higher vapor pressure against that of remaining component, zinc is expelled from the layer and vacancies are generated by so called vapor phase dealloying (VPD). We investigated the feasibility of VPD process for the elements silicon, nickel and carbon. The elemental composition and the morphology of the layers prior and after thermal annealing were analyzed by scanning electron microscopy, by energy-dispersive X-ray spectrometry and by X-ray diffraction.

: http://publica.fraunhofer.de/dokumente/N-642872.html