Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Influence of microstructure on the variability and current percolation paths in ferroelectric hafnium oxide based neuromorphic FeFET synapses

: Lederer, M.; Müller, F.; Varanasi, A.; Olivio, R.; Mertens, K.; Lehninger, D.; Raffel, Y.; Hoffmann, R.; Ali, T.; Seidel, K.; Kämpfe, T.; Eng, L.M.

Institute of Electrical and Electronics Engineers -IEEE-; IEEE Electron Devices Society; Japan Society of Applied Physics -JSAP-:
Silicon Nanoelectronics Workshop, SNW 2021 : June 13, 2021, All Virtual, Japan, Workshop Abstracts
Piscataway, NJ: IEEE, 2021
ISBN: 978-1-6654-0293-4
ISBN: 978-4-86348-781-9
Silicon Nanoelectronics Workshop (SNW) <2021, Online>
Fraunhofer IPMS ()

Hafnium oxide based ferroelectric FETs (FeFETs) are highly suitable for in-memory computing applications like neuromorphic hardware due to their CMOS compatibility, high dynamic range, low power consumption and good linearity. Device-to-device and die-to-die variability play an important role, especially due to the polycrystalline nature of ferroelectric hafnium oxide. Here, the variability of FeFET based synapses integrated in 300 mm wafers is investigated, showing low drain current variability for up to 32 states per cell. Furthermore, Si doping of HfO 2enables lower voltage amplitudes for learning compared to Zr. Finally, simulation of current percolation paths in these devices reveals more insight in the parameters affecting variability.