Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Perovskite Photovoltaics on Roll-To-Roll Coated Ultra-thin Glass as Flexible High-Efficiency Indoor Power Generators

: Castro-Hermosa, S.; Lucarelli, G.; Top, M.; Fahland, M.; Fahlteich, J.; Brown, T.M.

Volltext ()

Cell reports 1 (2020), Nr.5, Art. 100045, 18 S.
ISSN: 2666-3864
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer FEP ()

The internet of things revolution requires efficient, easy-to-integrate energy harvesting. Here, we report indoor power generation by flexible perovskite solar cells (PSCs) manufactured on roll-to-roll indium-doped tin oxide (ITO)-coated ultra-thin flexible glass (FG) substrates with notable transmittance (>80%), sheet resistance (13 Ω/square), and bendability, surpassing 1,600 bending procedures at 20.5-mm curvature. Optimized PSCs on FG incorporate a mesoporous scaffold over SnO2 compact layers delivering efficiencies of 20.6% (16.7 μW⋅cm−2 power density) and 22.6% (35.0 μW⋅cm−2) under 200 and 400 lx LED illumination, respectively. These represent, to the best of our knowledge, the highest reported for any indoor flexible solar cell technology, surpassing by a 60%–90% margin the prior best-performing flexible PSCs. Specific powers (W/g) delivered by these lightweight cells are 40%–55% higher than their counterparts on polyethylene terephthalate (PET) films and an order of magnitude greater than those on rigid glass, highlighting the potential of flexible FG-PSCs as a key enabling technology for powering indoor electronics of the future.