Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

How cellulose nanofibrils and cellulose microparticles impact paper strengt - A visualization approach

: Hobisch, M.A.; Zabler, S.; Bardet, S.M.; Zankel, A.; Nypelö, T.; Eckhart, R.; Bauer, W.; Spirk, S.

Volltext ()

Carbohydrate polymers 254 (2021), Art. 117406, 9 S.
ISSN: 0144-8617
ISSN: 1879-1344
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer IIS ()

Cellulosic nanomaterials are in the focus of academia and industry to realize light-weight biobased materials with remarkable strength. While the effect is well known, the distribution of these nanomaterials are less explored, particularly for paper sheets. Here, we explore the 3D distribution of micro and nanosized cellulosic particles in paper sheets and correlate their extent of fibrillation to the distribution inside the sheets and subsequently to paper properties. To overcome challenges with contrast between the particles and the matrix, we attached probes on the cellulose nano/microparticles, either by covalent attachment of fluorescent dyes or by physical deposition of cobalt ferrite nanoparticles. The increased contrast enabled visualization of the micro and nanosized particles inside the paper matrix using multiphoton microscopy, X-ray microtomography and SEM-EDX. The results indicate that fibrillary fines enrich at pores and fiber-fiber junctions, thereby increasing the relative bonded area between fibers to enhance paper strength while CNF seems to additionally form an inner 3D network.