Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

A theoretical model for pattern discovery in visual analytics

: Andrienko, N.; Andrienko, G.; Miksch, S.; Schumann, H.; Wrobel, S.

Volltext ()

Visual informatics 5 (2021), Nr.1, S.23-42
ISSN: 2468-502X
ISSN: 2543-2656
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer IAIS ()

The word ‘pattern’ frequently appears in the visualisation and visual analytics literature, but what do we mean when we talk about patterns? We propose a practicable definition of the concept of a pattern in a data distribution as a combination of multiple interrelated elements of two or more data components that can be represented and treated as a unified whole. Our theoretical model describes how patterns are made by relationships existing between data elements. Knowing the types of these relationships, it is possible to predict what kinds of patterns may exist. We demonstrate how our model underpins and refines the established fundamental principles of visualisation. The model also suggests a range of interactive analytical operations that can support visual analytics workflows where patterns, once discovered, are explicitly involved in further data analysis.