Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites

: Zhang, J.F.; Zhang, X.X.; Andrä, H.; Wang, Q.Z.; Xiao, B.L.; Ma, Z.Y.


Journal of materials science & technology : JMST 87 (2021), S.167-175
ISSN: 1005-0302
ISSN: 1000-3029
Fraunhofer ITWM ()

Thermal residual stress and strain (TRSS) in particle reinforced metal matrix composites (PRMMCs) are believed to cause strengthening effects, according to previous studies. Here, the representative volume element (RVE) based computational homogenization technique was used to study the tensile deformation of PRMMCs with different particle aspect ratios (AR). The influence of TRSS was assessed quantitatively via comparing simulations with or without the cooling process. It was found that the strengthening effect of TRSS was affected by the particle AR. With the average strengthening effect of TRSS, a fast method of introducing the strengthening effect of TRSS to the tensile behavior of PRMMCs was developed. The new method has reduced the computational cost by a factor 2. The effect of TRSS on continuous fiber-reinforced metal matrix composite was found to have a softening-effect during the entire tensile deformation process because of the pre-yield effect caused by the c ooling process.