Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Up-scaling transport in porous polymer membranes using asymptotic homogenization

: Matthies, Jörn Henning; Hopp-Hirschler, Manuel; Übele, Sarah; Schiestel, Thomas; Osenberg, Markus; Manke, Ingo; Nieken, Ulrich


International journal of numerical methods for heat & fluid flow 30 (2020), Nr.1, S.266-289
ISSN: 0961-5539
Fraunhofer IGB ()
homogenization; Membranes; SEM; simulations; up-scaling

Purpose: Efficient numerical assessment of performance is particularly important in digital material design of porous materials. This study aims to present an up-scaled approach to virtually investigate permeation of fluids through a real porous filter membrane with a heterogeneous micro-structure.
Design/methodology/approach: The method of asymptotic homogenization is applied. The structural parameters of the micro-structure are directly obtained from structural equation modeling image analysis of a commercial filter membrane without fitting procedures. The simulation results are compared to permeation experiments of gaseous nitrogen and liquid water.
Findings: The authors found that variations in the pressure gradients across the membrane, resulting from the heterogeneity of pore structure, need to be considered. Remarkable agreement between simulations and experiments is observed.
Originality/value: Despite some research in the field of filtration, no studies on filter membranes have been published yet, although they represent a large segment of filtration technology.