Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Analysis and Design of a Leading Edge with Morphing Capabilities for the Wing of a Regional Aircraft - Gapless Chord- and Camber-Increase for High-Lift Performance

: Contell Asins, Conchin; Landersheim, Volker; Laveuve, Dominik; Adachi, Seiji; May, Michael; Wacker, Jens David; Decker, Julia

Volltext ()

Applied Sciences 11 (2021), Nr.6, Art. 2752, 28 S.
ISSN: 2076-3417
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer LBF ()
Fraunhofer IBP ()
Fraunhofer EMI ()
morphing; leading edge; carbon fibre reinforced plastic; Gapless; CFD-Analysis

In order to contribute to achieving noise and emission reduction goals, Fraunhofer and Airbus deal with the development of a morphing leading edge (MLE) as a high lift device for aircraft. Within the European research program “Clean Sky 2”, a morphing leading edge with gapless chord- and camber-increase for high-lift performance was developed. The MLE is able to morph into two different aerofoils—one for cruise and one for take-off/landing, the latter increasing lift and stall angle over the former. The shape flexibility is realised by a carbon fibre reinforced plastic (CFRP) skin optimised for bending and a sliding contact at the bottom. The material is selected in terms of type, thickness, and lay-up including ply-wise fibre orientation based on numerical simulation and material tests. The MLE is driven by an internal electromechanical actuation system. Load introduction into the skin is realised by span-wise stringers, which require specific stiffness and thermal expansion properties for this task. To avoid the penetration of a bird into the front spar of the wing in case of bird strike, a bird strike protection structure is proposed and analysed. In this paper, the designed MLE including aerodynamic properties, composite skin structure, actuation system, and bird strike behaviour is described and analysed.