
Publica
Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten. Model-Free Grasp Learning Framework based on Physical Simulation
| Informationstechnische Gesellschaft -ITG-; Verband Deutscher Maschinen- und Anlagenbau e.V. -VDMA-, Frankfurt/Main; Verband der Elektrotechnik, Elektronik, Informationstechnik -VDE-: ISR 2020, 52nd International Symposium on Robotics : December, 9-10, 2020, Online-Event. In conjunction with Automatica (abgesagt), December 8-11, 2020, Munich, CD-ROM Berlin: VDE-Verlag, 2020 ISBN: 978-3-8007-5428-1 (Print) ISBN: 978-3-8007-5429-8 (Online) ISBN: 3-8007-5428-2 S.213-220 |
| International Symposium on Robotics (ISR) <52, 2020, Online> |
|
| Englisch |
| Konferenzbeitrag |
| Fraunhofer IPA () |
| Robotik; deep grasping; lernendes System; Simulation |
Abstract
The work at hand presents a generic framework to build classifiers that allow to predict the quality of 6-DOF grasp candidates for arbitrary mechanical grippers based on the depth data captured by a depth sensor. Hereby, the framework covers the whole process of setting up a deep neural network for a given mechanical gripper by making use of synthetic data resulting from a new grasp simulation tool. Furthermore, a new extended convolutional neural network (CNN) architecture is introduced that estimates the quality of a suggested grasp candidate based on local depth information and the pose of the corresponding grasp. As a result, robust grasp candidates can be detected in a model-free fashion.