Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

Development of a solventless stir bar sorptive extraction/thermal desorption large volume injection capillary gas chromatographic-mass spectrometric method for ultra-trace determination of pyrethroids pesticides in river and tap water samples

: Sargazi, Mona; Bücking, Mark; Kaykhaii, Massoud

Volltext ()

Open chemistry 18 (2020), Nr.1, S.1339-1348
ISSN: 2391-5420
Zeitschriftenaufsatz, Elektronische Publikation
Fraunhofer IME ()
pesticides; stir bar sorptive extraction; thermaldesorption; simultaneous determination; capillary gaschromatography-mass spectrometry; water analysis

Stir bar sorptive extraction (SBSE) has been developed in 1999 to efficiently extract and preconcentrate volatile compounds, and many applications have been found after that. This technique conforms to the principles of green chemistry. Here, we used an autosampler with an online thermal desorption unit connected to CGC-MS to analyze pesticides. This study describes the development of a highly sensitive extraction method based on SBSE for simultaneous determination of ultra-trace amounts of four pesticides λ-cyhalothrin, α-cypermethrin, tefluthrin, and dimefluthrin in environmental water samples. This method was compared to the standard liquid–liquid extraction. In this study, a totally solventless SBSE was applied to river and tap water samples for the extraction and preconcentration of four pesticides. PDMS-coated SBSEs of 10 mm × 1 mm thickness were used for this purpose, and SBSEs were directly placed into a large-volume injector of a CGC-MS for thermal desorption of the analytes. In all extractions, deltamethrin was used as an internal standard. This method showed linearity in the range of 1.0–200.0 ng L−1 for cyhalothrin, tefluthrin, and dimefluthrin and 10.0–800 ng L−1 for cypermethrin. Preconcentration factors of 179, 7, 162, and 166 were obtained with very low limits of detection of 0.32, 3.41, 0.36m and 0.69 ng L−1 for cyhalothrin, cypermethrin, tefluthrinm and dimefluthrin, respectively. These detection limits are thousands of times lower than that of the standard method of liquid–liquid extraction. Reproducibility of the method, based on the relative standard deviation, was better than 7.5% and recoveries for spiked tap and river water samples was within the range of 87.83–114.45%. The application of PDMS-coated SBSE coupled with CGC-MS equipped with a large volume injector thermal desorption unit can be used for ultra-trace analysis of environmental water samples. Solventless SBSE offers several advantages over conventional traditional liquid–liquid extraction such as being very fast and economical and provides better extraction without requiring any solvents; so it can be considered as a green method for the analysis of pesticides.